
FB3: Mathematik/Informatik

Prof. Nicole Megow Summer 2017
Dr. Syamantak Das

Approximation Algorithms

Lecture Notes 3:Greedy Algorithms

1 Weighted Set Cover

In the set cover problem, we are given a universe of n elements U = {e1, e2, · · · en} and a
family of m subsets of U , F = {S1, S2, · · ·Sm}. There is a cost function (or weight function)
associated with the family F , c : F → R+. c(Sj) denotes the cost of the subset Sj. The goal
is to find the minimum cost subset of F ′ ⊆ F , or in simpler terms, a collection of sets of the
minimum total cost such that

∀i = 1, 2, · · ·n, ei ∈
⋃

Sj∈F ′
Sj

1.1 Greedy Algorithm

We shall adopt a greedy algorithm for this problem. Let Ut be the set of uncovered elements
at the beginning of iteration t and let ut = |Ut|. Note that U1 = U , the whole universe. Then,

we shall pick the set from F which minimizes the ratio
c(Sj)

|Sj∩Ut| . We continue till all elements

are covered. The algorithm runs for t′ iterations such that Ut′ = φ.

Theorem 1. The above Greedy algorithm is an (ln(n) + 1)-approximation algorithm for
weighted set cover

In order to prove the above theorem, we shall be using the following crucial lemma.

Lemma 2 (Greedy Ratio Lemma). At any iteration t, c(St)
|St∩Ut| ≤

OPT
ut

Proof. (sketch). Consider the beginning of iteration t and recall that Ut is the set of elements
still uncovered in Greedy. Now, consider the sets that the optimal solution uses to cover these
elements. Let the set of these sets be Ot. Surely, we have not yet selected any of the sets in
Ot till the iteration t− 1, since otherwise, at least one of the elements in Ut would have been
already covered. Hence, the minimum ratio set that greedy picks at iteration t must have a
ratio which is at most the minimum among the sets in Ot. Formally,

c(St)

|St ∩ Ut|
≤ minSj∈Ot

c(Sj)

|Sj ∩ Ut|

1

Hence,

c(St)

|St ∩ Ut|
≤ minSj∈Ot

c(Sj)

|Sj ∩ Ut|
≤

∑
Sj∈Otc(Sj)∑

Sj∈Ot |Sj ∩ Ut|
≤ OPT

|Ut|
(1)

The second least inequality follows from the following simple algebraic fact

Fact 3. Let ai, bi be two sets of positive real numbers. Then mini
ai
bi
≤

∑
i ai∑
i bi

The above Fact follows from the simple averaging argument (please try to verify).
Now,

ut+1 = ut − |St ∩ Ut|

Using (1)

ut+1 = ut(1−
c(St)

OPT
)

≤ ute
− c(St)

OPT

The above implies that for any t, ut ≤ u1Π
t−1
i=1e

− c(St)
OPT = u1e

−
∑t−1

i=1
c(St)
OPT . Taking natural

logarithms (to the base e) on both sides and a simple algebraic manipulation gives

t−1∑
i=1

c(Si) ≤ ln(
u1
ut

)OPT ≤ ln(n)OPT , since u1 = n and ut ≥ 1

Note that, we have not considered the cost of St in the above calculation. However, it is
easy to see that this can be bounded by at most OPT using (1).

Remarks

• Note that the above analysis can yield stronger guarantees for other applications. For
example, if we stop the algorithm at the iteration t (we choose t subsets). Then the
approximation ratio is actually ln(u1/ut) and this could be much better than ln(n). Of
course this is not a set cover solution. However, we shall see an application of this in
the exercises in a slightly different context.

• For some applications, one might need to come up with an approximate version of the
Greedy Ratio Lemma. For example, finding the object that minimizes the ratio of cost
over number of new elements covered might itself be an NP-hard problem. In such cases,
if one can guarantee that the Greedy Ratio Lemma holds with a factor of α, then using
the above analysis, one can achieve a factor α ln(n) approximation for the problem.

2 Tight Example

The following example shows that the analyssi of greedy is essentially tight, up to some
constant factors. There are n elements and assume they are partitioned in to ` levels, where

2

2k elements

Figure 1: Tight example for Greedy

` = O(log n) and level k contains 2k−1 elements. Each of the square sets cover eveything in
one level, while each of the two red sets can cover n/2 elements. Every set has cost 1. Greedy
can potentially choose all the square sets, making its cost O(log n) while OPT chooses the
two red sets incurring a cost of 2.

3 Hardness

Theorem 4. For any c < 1, if there is a c log(n)-approximation for set cover, then there
exists algorithms that run in time nO(log logn) for each problem in NP.

We shall see a weaker version of this result in a subsequent lecture.

3

