
Approximation Algorithms

End-Sem (Take Home)
Full Marks : 40

Deadline : April 30, 11 AM

Try to solve all the problems. Please write the solutions independent of each other. You
are not allowed to discuss with anybody. No external sources other than class notes/lecture
notes/book sections that have been uploaded may be consulted for solving these problems. Vio-
lation of any of the above would be considered an act of plagiarism. Please try to be brief and
precise in your solutions. You may state any result mentioned/proved in the lectures without
proof.

Problem 1 Recall the facility location problem. You are given a graph G = (V,E) along
with a partition of the vertex set in to F , the set of possible facility locations and C, the set of
possible client locations. There is a facility opening cost fi associated with opening a facility
i ∈ F . Further, the cost of serving client j ∈ C by facility i ∈ F is dij. The objective is to
open a set of facilities and assign all the clients to its nearest open facility so as to minimize
the sum of total facility opening cost and total serving cost.

Design a greedy O(lnn)-approximation algorithm for the above problem.
(Hint: Try to imagine the optimal solution as a collection of ’starś’, where each star has a

facility at the center and clients attached to it. All you need to do is pick a bunch of stars so
as to cover all clients. Have you seen something similar ? Can you adapt the greedy procedure
for that problem for solving this one?)

Problem 3 Consider a primal-dual pair of linear programs as follows.

min
n∑

i=1

cixi max
m∑
j=1

bjyj

n∑
i=1

aijxi ≥ bj, ∀j = 1, 2, · · ·m
m∑
j=1

aijyj ≤ ci,∀i = 1, 2, · · ·n

x ≥ 0 y ≥ 0

Given a pair of feasible solutions (x?, y?), where x? ∈ Rn and y? ∈ Rm, the complementary
slackness conditions are as follows

i) (Primal conditions:) either x?i = 0 or
∑m

j=1 aijy
?
j = ci,∀i = 1, 2, · · ·n

ii) (Dual conditions:) either y?j = 0 or
∑n

i=1 aijx
?
i = bj,∀j = 1, 2, · · ·m

a) Prove that (x?, y?) are optimal solutions if and only if the above conditions are satisfied.

b) Now write the natural LP relaxation for set cover. Prove that the algorithm that rounds
every non-zero variable to 1 yields an f -approximation to set cover, where f is the
maximum frequency of any element.(Hint: Use primal complementary slackness)
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Problem 3 Given a directed graph G = (V,A), with wij being the weight of the directed
arc (i, j).

a) Prove that the following is an LP-relaxation to the directed max-cut problem

max
∑
i,j

wijzij

s.t. zij ≤ xi,∀i ∈ V, (ij) ∈ A
zij ≤ 1− xj,∀j ∈ V, (ij) ∈ A

0 ≤ xi ≤ 1

b) Let U be one side of the cut. Consider the randomized algorithm that puts vertex i ∈ V
in U with probability xi/2+1/4. Prove that this yields a 1/2-approximation to directed max-
cut.

Problem 4 Given an undirected graph G = (V,E), recall the spanning tree polytope defined
by the following constraints as follows. Define E[S] = {(s, s′) ∈ E : s ∈ S and s′ ∈ S}.

∑
e∈E

xe = |V | − 1∑
e∈E[S]

xe ≤ |S| − 1, ∀S ⊂ V, |S| ≥ 2

xe ≥ 0

Prove that at any extreme point, if xe > 0,∀e ∈ E, then xe = 1, ∀e ∈ E. You can use the
following steps :

a) Let χ(F ) ∈ {0, 1}|E| be the characteristic vector of a subset F ⊆ E. Prove that

χ(E[S]) + χ(E[T ]) ≤ χ(E[S ∪ T ]) + χ(E[S ∩ T ])

b) Use uncrossing and rank lemma to prove that there exists a laminar family of tight
constraints, L such that

(i) L is laminar

(ii) L is linearly independent

(iii) |L| = |E|

c) Prove that any laminar family on a universe of |V | elements that excludes singleton sets
has size at the most |V | − 1.

Use all the above to finish the proof.

(You do not need to spell out all the details. As long as you can convince me you have
understood the solution, you earn credit)
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