
CoDel-ACT:
Realizing CoDel AQM for Programmable Switch ASIC

Vedant Bothra, Aditya Peer, Vijay Kumar Singh, Mukulika Maity, Rinku Shah

2024 IFIP/IEEE Networking Conference
June 4, 2024

The Bufferbloat Problem

Reference: https://tcpcc.systemsapproach.org/aqm.html
2

Use Active Queue Management (AQM) → RED, CoDel, PIE

Ideal queue Persistently full queue

Bufferbloat problem

https://tcpcc.systemsapproach.org/aqm.html

State-of-the-art AQM

Use case State-of-the-art
AQM implementations Flexible Scalable

(support >100s of Gbps)

Last-mile gateways
Software switch implementations 3–7

● Linux kernel, DPDK, bmv2 switch
 ✔ ╳

Backbone networks
(Data centers & ISPs)

Fixed function hardware 8–11

● Cisco/Arista switch, Cable modem

Programmable Network hardware1–2
● Tofino switch, FPGA-based NIC

 ╳

 ✔

 ✔

 ✔

References:
[1] R. Kundel et al., “P4-codel: Experiences on programmable data plane hardware,” ICC 2021
[2] A. Sivaraman et al., “No silver bullet: Extending sdn to the data plane,” in Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, 2013
[3] S. Laki et al., “Towards an aqm evaluation testbed with p4 and dpdk, SIGCOMM 2019
[4] P. V ̈or ̈os et al., “T4p4s: A target-independent compiler for protocol-independent packet processors,” HPSR 2018
[5] C. Papagianni and K. De Schepper, “Pi2 for p4: An active queue management scheme for programmable data planes,” CoNext 2019
[6] G. Ramakrishnan et al., “Fq-pie queue discipline in the linux kernel: Design, implementation and challenges,” LCN 2019
[7] R. Kundel et al., “P4-codel: Active queue management in programmable data planes,” NFV-SDN 2018
[8] https : / / www.cisco.com/c/en/us/products/collateral/switches/catalyst- 9000/white- paper- c11-742388.html
[9] https://www.arista.com/en/um-eos/eos-quality-of-service#xx1166435
[10] https://www-res.cablelabs.com/wp-content/uploads/2019/02/28094021/DOCSIS-AQMMay2014.pdf
[11] T. Høiland-Jørgensen, D. T ̈aht, and J. Morton, “Piece of cake: a comprehensive queue management solution for home gateways,” LANMAN 2018
[12] X. Du, K. Xu, L. Xu, K. Zheng, M. Shen, B. Wu, and T. Li, “R-aqm: Reverse ack active queue management in multitenant data centers,” ToN 2022 3

Our focus
1. Backbone networks
2. CoDel AQM

○ Parameterless
○ Ease of configuration

https://www.arista.com/en/um-eos/eos-quality-of-service#xx1166435
https://www-res.cablelabs.com/wp-content/uploads/2019/02/28094021/DOCSIS-AQMMay2014.pdf

Controlled Delay (CoDel)

4

Recovering from congestion?
● NO: count = historical value
● YES: count = 1

if queue_delay > TARGET?
● DROP the first packet
● UPDATE dropNext time

○ dropNext: wait time before dropping next packet
● Until dropNext time

○ Increment count for subsequent packets

codel_init() function

codel_update() function

codel_init() function depends
on historical count values

Does existing programmable switch-based CoDel design
effectively solve Bufferbloat?

5

References:
[1] R. Kundel et al., “P4-codel: Experiences on programmable data plane hardware,” in ICC 2021.

P4-CoDel1 : Queue delay for 10 parallel TCP flows

Queue delay > TARGET

Average Queue delay = 8.3 ms
Does not maintain historical state!

CoDel-ACT’s Key Idea

(Re)Design CoDel AQM

● Adapt packet drop rate
○ based on historical packet drop count
○ RFC-compliant

● Operates at line rates
○ Runs entirely in the data plane

● Amenable to be implemented on Intel Tofino switch

6

Design challenge I
“Same register cannot be accessed across different switch pipeline stages”

7

Design challenge II

8

“A packet can access a single register only once (either read/write/ RegisterAction)”

codel_init() function

Design challenge III

9

“High error rate for dropNext computation.”

Error rate: 42% to 58%

CoDel-ACT design

10

Register State Synchronization
● First delay violation

○ Sync after codel_init()
● Congestion cycle ends

○ Sync after codel_update()

Shadow Registers
● Within single stage :

○ count
○ dropNext

Shadow registers
● Across stages:

○ count
○ dropNext

Evaluation Questions

1. How does CoDel-ACT perform compared to state-of-the-art?

2. How aggressive is CoDel-ACT compared to state-of-the-art?

3. What is the impact of packet recirculation on switch resource utilization?

11

Experiment setup

12

Setup:
● AMD Ryzen 9 5950X
● Aurora 610 Intel Tofino switch
● Congestion emulated by rate

limit on Tofino’sTM

Workload/Tofino configuration:
● Parallel TCP flows using “iperf3”
● Emulated flow RTT using “tc”
● Total packet rate = 90% of bottleneck bandwidth

CoDel parameters:
● TARGET = 5 ms
● INTERVAL = 100 ms

CoDel-ACT vs. P4-CoDel performance

Varying RTT:
Average queue delay

● CoDel-ACT < TARGET
● P4-CoDel > TARGET

Varying number of flows:
Average queue delay

● CoDel-ACT < TARGET
● P4-Codel exceeds TARGET

○ Up to 43 %. 13

Varying: Flow RTT
Parallel TCP flows = 10

Bottleneck bandwidth = 100 Mbps

Varying: Number of Flows
Bottleneck bandwidth = 100 Mbps

How aggressive is CoDel-ACT compared to P4-CoDel?

CoDel-ACT drops more packets
=> more aggressive
=> Quick congestion recovery

Number of parallel TCP flows = 10
Bottleneck bandwidth = 100Mbps

14

Conclusion

● Implemented RFC-compliant CoDel on Intel Tofino switch

● Compared to state-of-the-art
○ Average queue delay (⬇52%)

○ Worst-case bandwidth wastage (4%)

Future work
● Reduce state synchronization delays

15

