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The Bufferbloat Problem

Reference: https://tcpcc.systemsapproach.org/aqm.html
2

Use Active Queue Management (AQM) →  RED, CoDel, PIE

Ideal queue Persistently full queue

Bufferbloat problem

https://tcpcc.systemsapproach.org/aqm.html


State-of-the-art AQM

Use case State-of-the-art 
AQM implementations Flexible Scalable 

(support >100s of Gbps)

Last-mile gateways
Software switch implementations 3–7

● Linux kernel, DPDK, bmv2 switch
        ✔   ╳

Backbone networks 
(Data centers & ISPs)

Fixed function hardware 8–11

● Cisco/Arista switch, Cable modem 

Programmable Network hardware1–2 
● Tofino switch, FPGA-based NIC

        ╳

        ✔

    ✔
  

     ✔ 
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Our focus
1. Backbone networks
2. CoDel AQM

○ Parameterless
○ Ease of configuration

https://www.arista.com/en/um-eos/eos-quality-of-service#xx1166435
https://www-res.cablelabs.com/wp-content/uploads/2019/02/28094021/DOCSIS-AQMMay2014.pdf


Controlled Delay (CoDel)
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Recovering from congestion?
● NO:  count =  historical value
● YES: count = 1 

if queue_delay > TARGET?
● DROP the first packet
● UPDATE dropNext time

○ dropNext: wait time before dropping next packet
● Until dropNext time

○ Increment count for subsequent packets

codel_init() function

codel_update() function

codel_init() function depends 
on historical count values



Does existing programmable switch-based CoDel design 
effectively solve Bufferbloat?
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P4-CoDel1 : Queue delay for 10 parallel TCP flows

Queue delay > TARGET

Average Queue delay = 8.3 ms
Does not maintain historical state!



CoDel-ACT’s Key Idea

(Re)Design CoDel AQM 

● Adapt packet drop rate 
○ based on historical packet drop count
○ RFC-compliant

● Operates at line rates
○ Runs entirely in the data plane 

● Amenable to be implemented on Intel Tofino switch
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Design challenge I
“Same register cannot be accessed across different switch pipeline stages”
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Design challenge II
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“A packet can access a single register only once (either read/write/ RegisterAction)”

codel_init() function



Design challenge III
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“High error rate for dropNext computation.”

Error rate: 42% to 58%



CoDel-ACT design
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Register State Synchronization
● First delay violation

○ Sync after codel_init()
● Congestion cycle ends

○ Sync after codel_update() 

Shadow Registers 
● Within single stage :

○ count
○ dropNext

Shadow registers 
● Across stages:

○ count 
○ dropNext



Evaluation Questions

1. How does CoDel-ACT perform compared to state-of-the-art?

2. How aggressive is CoDel-ACT compared to state-of-the-art?

3. What is the impact of packet recirculation on switch resource utilization?
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Experiment setup
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Setup:
● AMD Ryzen 9 5950X
● Aurora 610 Intel Tofino switch
● Congestion emulated by rate 

limit on Tofino’sTM

Workload/Tofino configuration:
● Parallel TCP flows using “iperf3”
● Emulated flow RTT using “tc”
● Total packet rate =  90% of bottleneck bandwidth

CoDel parameters:
● TARGET = 5 ms
● INTERVAL = 100 ms



CoDel-ACT vs. P4-CoDel performance

Varying RTT:
Average queue delay

● CoDel-ACT < TARGET
● P4-CoDel > TARGET

Varying number of flows:
Average queue delay 

● CoDel-ACT < TARGET
● P4-Codel exceeds TARGET 

○ Up to 43 %. 13

Varying: Flow RTT
Parallel TCP flows = 10

Bottleneck bandwidth = 100 Mbps

Varying: Number of Flows
Bottleneck bandwidth = 100 Mbps



How aggressive is CoDel-ACT compared to P4-CoDel?

CoDel-ACT drops more packets 
=> more aggressive 
=> Quick congestion recovery

Number of parallel TCP flows = 10
Bottleneck bandwidth = 100Mbps
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Conclusion

● Implemented RFC-compliant CoDel on Intel Tofino switch

● Compared to state-of-the-art
○ Average queue delay (⬇52%)

○ Worst-case bandwidth wastage (4%)

Future work
● Reduce state synchronization delays
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