Implementing ChaCha Based Crypto Primitives on Programmable SmartNICs

Shaguftha Zuveria Kottur

Krishna Kadiyala, Praveen Tammana, and Rinku Shah

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

ACM SIGCOMM Workshop on

Formal Foundations and Security of Programmable Network Infrastructures (FFSPIN) August 22, 2022

Datacenter control applications offloaded to PDPs

•	•	
٠	•	
	•	
٠	•	
٠	•	
٠	•	

Datacenter

Datacenter control applications offloaded to PDPs

Applications offloaded to PDPs

- reduce latency
- increase server CPU savings

PDP - Programmable Data Plane

Example: Dispatcher in Serverless computing¹

[1] Nilanjan Daw et.al Speedo: Fast Dispatch and Orchestration of Serverless Workflows. In Proceedings of SoCC '21.

Dispatcher in Serverless computing

Dispatcher in Serverless computing - Offloaded

Dispatcher in Serverless computing - Offloaded

Dispatcher in Serverless computing - Offloaded

Other offloaded applications

Ming Liu et.al Offloading Distributed Applications onto SmartNICs Using IPipe. In Proceedings of the ACM SIGCOMM 2019..
Ming Liu et.al E3: Energy-Efficient Microservices on SmartNIC Accelerated Servers. In USENIX ATC 2019.
Naga Katta et.al Clove: Congestion-Aware Load Balancing at the Virtual Edge. In Proceedings of CoNEXT 2017.
Tomasz Osiński et.al Achieving End-to-End Network Visibility with Host-INT. In Proceedings of ANCS 2021.
Huynh Tu Dang et.al Partitioned Paxos via the Network Data Plane. arXiv:1901.08806 http://arxiv.org/abs/1901.08806

Existing in-network crypto processing solutions

Focus is primarily on AES!

[1] S. VenkataKeerthy et. al. Packet Processing Algorithm Identification using Program Embeddings. In APNet 2022.

- [2] Duckwoo Kim et. al. A Case for SmartNIC-accelerated Private Communication. In APNet 2020
- [3] Boris Pismenny et. al. Autonomous NIC Offloads. In Proceedings of ASPLOS 2021.
- [4] Xiaoqi Chen. Implementing AES Encryption on Programmable Switches via Scrambled Lookup Tables. In ACM SIGCOMM SPIN 2020.

Are there other cipher suites?

TLS 1.3 supports TWO ciphersuites

- AES GCM
- ChaCha20 Poly1305

ChaCha stream cipher

- Processor friendly Add-Rotate-XOR operations
- Resistant to side channel cache timing attacks¹

Offload ChaCha based crypto primitives to smartNIC without using accelerators/co-processors

- 1. Identification of applications that benefit from offloaded crypto primitives
- 2. Implementation of ChaCha based crypto primitives on **Netronome smartNIC**
- 3. Performance evaluation of proposed implementation

ChaCha Overview

ChaCha Stream Cipher: State Initialization

ChaCha Stream Cipher: ChaChaN block

State Initialisation

ChaChaN Block

ChaCha Stream Cipher: ChaChaN block

32b

0

key

4

key

8

12

ChaCha Stream Cipher: ChaChaN block

ChaChaN Block

ChaCha Stream Cipher: Keystream

ChaCha Stream Cipher: Encryption/Decryption

Design Challenges

Netronome NFP-4000 Flow Processor Block Diagram

Netronome NFP-4000 Flow Processor Block Diagram

Solution 1: Use core ID as Initial Nonce

Challenge 2: Nonce Generation

25

Solution 2: Use previous keystream

Implementation

Implementation

Ο

- Implemented on Netronome Agilio smartNIC
- Crypto primitives offered:
 - ENC Encryption ChaCha10
 - DEC Decryption
 - AUTH_set
 - AUTH test custom crc32 + ChaCha10
 - Compound primitives
 - ENC+AUTH_set
 - DEC+AUTH_test

Implementation

Host SmartNIC in a data center network

Implementation: ENC + AUTH_set

Implementation: ENC + AUTH_set

Implementation: ENC + AUTH_set

Evaluation

SmartNIC offload Setup

AMD Ryzen 9 5950X (3.4 GHz, 16 cores, 32 threads) processor and 32GB RAM Netronome Agilio CX 40 Gbit/s dual-port SmartNIC

AMD Ryzen 9 5950X (3.4 GHz, 16 cores, 32 threads) processor and 32GB RAM Netronome Agilio CX 40 Gbit/s dual-port SmartNIC

- 1. How does our implementation perform compared to the baselines?
- 2. Which applications will benefit by leveraging these crypto primitives?
- 3. How much memory is available to offload other applications?

Throughput: ChaCha based crypto primitive vs. Baseline

Latency: ChaCha based crypto primitive vs. Baseline

- Implemented in-network ChaCha crypto without using co-processor
- Solution meets crypto processing requirements of control applications

Future Work

- Implementing Poly-1305 authentication algorithm
- Crypto processing for MTU-sized messages
- Crypto primitive APIs for P4/C programmers