
                      

 Packet Processing Algorithm         
   Identification using Program Embeddings

S. VenkataKeerthy, Yashas Andaluri, Sayan Dey,

Rinku Shah, Praveen Tammana, Ramakrishna Upadrasta

2nd July, 2022
6th Asia-Pacific Workshop on Networking (APNET)

  



Introduction: Overall theme

Fact: CPU packet-processing speeds ⋘ network speeds

2

Control plane

   
----------------------------------------------------------------------------------------------------------------------------------------
----------------------

Data plane

CPU

NIC

CPU

SmartNIC

ASIC/FPGA/SOC

Fixed functionality
Programmable,
More packet 
processing 
features,
Accelerators

High packet 
communication

Low packet 
communication

High CPU load Low CPU 
load

SmartNICs: High speed programmable hardware for packet processing



● Generic cores for packet processing specified by Network Function (NF) program

SmartNICs

3

Significant performance improvements

● Latency, throughput and power
IPipe1: IPSec program achieved 22.9 Gbps on 25GbE 
SmartNIC

IPIPE1: Offloading Distributed Applications onto SmartNICs Using IPipe: Ming Liu, Tianyi Cui, Henry Schuh, Arvind 
Krishnamurthy, Simon Peter, and Karan Gupta (ACM Special Interest Group on Data Communication 2019)

Generic cores



● Hardwired logic for frequently used operations and algorithms

SmartNICs

4

Generic cores

Goal: Offloading NF programs from CPUs to SmartNIC accelerators

Look up 
operations

Accelerators

Cryptography

Regex

Hash

CRC AES

Lower latency; 
Higher throughput



Accelerators available on SmartNICs

5

Algorithms with Accelerator Support

Hash AES RSA IPSec LPM

Netronome Agilio CX

Nvidia Bluefield 3 DPU

Cavium LiquidIO

Marvell OCTEON 10

Pensando DSC-100

SmartNIC model

...



Network Functions and Associated Algorithms

6

Algorithms used

Hash AES RSA IPSec LPM

L3 router

Stateful firewall

VPN gateway

Intrusion Detection System

5G network functions

Distributed data stores

Network Function 
program

SmartNIC 
AcceleratorsNF Programs



Difficulties in Mapping

7

Identifying + Mapping NF to SmartNIC is a tedious and laborious process

Can this process be simplified?

● Identification of regions of code suitable for accelerators

○ Same algorithm can be implemented in multiple ways
● Porting to SmartNICs needs analysis and multiple rounds of manual tuning

○ Tune program by utilizing SmartNIC accelerators



Problem Statement

8

● Need a workflow to simplify the cross-platform porting process

● Automatic identification of regions in Network Functions 

AES_Encrypt(){
      ...
} 

CRC(){
      ...
}

Network Function

Accelerators Figure Source: Netronome NFP-4000 Flow Processor Product Brief



Approach

Our view: This is a ML classification problem.

Our approach:

● Use Compilers to aid developers to map NF program to SmartNIC

● Use ML to identify code regions performing a specific task (algorithm)

● Create realistic dataset of packet processing algorithms

9



Why ML?
● Undecidability

○ It is hard to identify algorithms in a program

● Laborious
○ Manually assigning accelerators for functions in a large NF program is tedious 

● Scale of variation
○ Diverse algorithms and SmartNIC architectures

10



Challenges

1. Represent algorithms and programs as input to ML model

2. Create dataset of packet processing algorithms
○ Realistic
○ Diverse
○ Wide range of applicability

11



Challenge #1: Representations of Programs

12



Background: LLVM IR

LLVM IR: LLVM IR is the Intermediate Representation (IR) of the LLVM compiler 
toolchain. 

13

Front-endC LLVM IR

int sum(int a, int b) 

{

   return (a+b);

}

define i32 @sum(i32 %a, i32 %b) #0 {

entry:

 %a.addr = alloca i32, align 4

 %b.addr = alloca i32, align 4

 store i32 %a, i32* %a.addr, align 4

 store i32 %b, i32* %b.addr, align 4

 %0 = load i32, i32* %a.addr, align 4

 %1 = load i32, i32* %b.addr, align 4

 %add = add nsw i32 %0, %1

 ret i32 %add

}



Background: Program Representations

Various techniques in use

14

Information captured

Collecting features using domain expertise

Programs as tokens of natural languages

Abstract Syntax Tree representations

IR-based representations

Specific task (Domain expertise)

Syntactic

Syntactic +  Limited Semantic

Syntactic +  Semantic + 
Generalized



Background: IR2Vec: IR based Program Embeddings

15
IR2Vec: LLVM IR based Scalable Program Embeddings: S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra 
Sankar Desarkar, Ramakrishna Upadrasta, Y. N. Srikant (ACM Transactions on Architecture and Code Optimization 
2020)

store i32 %a, i32* %a.addr, align 4

Seed embedding vocabulary

Training

Instruction encodings



Proposed Methodology 

● Identify appropriate accelerators for the program
○ Use ML based techniques

● Utilize IR2Vec embeddings
○ Encodes syntactic and semantic information of the program

● Predict accelerator label for each function

16



Proposed Methodology (contd.)

ML classifier

void 
AES_Encrypt()
{
  int k = 2;
      …
} 

void 
AES_CBC_Encrypt()
{
    …
 AES_Encrypt()
    …
}

define void 
@AES_CBC_Encrypt()
{
    …
 call AES_Encrypt()
    …
}

define void 
@AES_Encrypt()
{
  %k = alloca i32
     …
} 

Source code
LLVM IR

…
VAR=alloca INT 

…

…
call 

AES_Encrypt()
…

Caller: 
AES_CBC_Encrypt()

Callee: AES_Encrypt()

IR2Vec
Module

17



Challenge #2: Generation of Dataset

18



● ML needs more data
○ ImageNet - 14 million images

○ COCO -  330K images
● Lack of availability of sufficient real world NF programs

○ Earlier datasets [Clara]: only around 7.5k programs

● Need to create a custom dataset
○ using programs from NF domain

Dataset Creation

19Clara: Automated SmartNIC Offloading Insights for Network Functions: Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, 
Srinivas Narayana, Ang Chen (ACM Symposium on Operating Systems Principles 2021)



Initial Steps: Seed Dataset Collection

Seed dataset: Collected functions for algorithms used in cryptography 
libraries

AES 8 7 8 6 2 6 5 42

DES 13 13 8 4 4 2 4 48

RSA 5 7 4 5 0 7 3 31

Total 26 27 20 15 6 15 12 121
20

OpenSS
L (v1.1)

OpenSSL 
(v3)

CryptoPP 
(v8.6)

Botan
(v2.19)

Nettle 
(v3.7)

WolfCrypt 
(v5.1)

MbedTLS 
(v3.1) Tot

al

Algorith
m

Library



Dataset Expansion using Compiler Transformations

Method: Apply compiler transformations on original (seed) NF programs

● Adds diversity to dataset
○ Code size of the program
○ Latency
○ Throughput
○ Power usage

● Semantics of original codes are preserved

Result: Produces sufficient data for training a ML model
21



● Apply random permutations of LLVM transformations to programs
AES_encrypt(){
%1 = alloca i32

…
}

Dataset Expansion using Compiler Transformations

Processed dataset
~ 37K programs

-O1, -O2, 
-O3, -Os, 

-Oz
Sequence 1 Sequence i Sequence n

-const-prop -dce -loop-simplify -instcombine… Original 
IR

Standard 
optimization
sequences

p1 pi pn pstd

305 Transformed equivalent programs

300 permutations

22



Experimentation & Implementation details

Experimentation
● Detection of CRC algorithm

○ Classifying CRC and non-CRC programs

● Detection of cryptography algorithms
○ CRC, AES, DES/3DES, RSA, non-NF programs

Implementation
● Manually labelled functions for classification
● Used IR2Vec embeddings of programs compiled to LLVM IR (v12.0)
● Compared results from our approach with Clara

23
Clara: Automated SmartNIC Offloading Insights for Network Functions: Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, 
Qiao Kang, Ming Liu, Srinivas Narayana, Ang Chen (ACM Symposium on Operating Systems Principles 2021)



Results: Precision

Model
CRC CRC + Cryptography

Clara IR2Vec Clara IR2Vec

Gradient Boosted Decision Tree 0.992 0.974 0.664 0.949

Decision Tree 0.983 0.994 0.661 0.969

Multi-layer Perceptron 0.983 0.997 0.666 0.959

Support Vector Machine 0.992 0.999 0.646 0.898

k-Nearest Neighbour 0.980 0.999 0.596 0.976

AutoML 0.980 0.999 0.661 0.979
24



Results: Recall

Model
CRC CRC + Cryptography

Clara IR2Vec Clara IR2Vec

Gradient Boosted Decision Tree 0.435 0.997 0.594 0.947

Decision Tree 0.488 0.995 0.622 0.968

Multi-layer Perceptron 0.437 0.999 0.590 0.958

Support Vector Machine 0.484 0.995 0.604 0.894

k-Nearest Neighbour 0.486 0.999 0.630 0.974

AutoML 0.487 0.999 0.621 0.978
25



Results: F1 Score

Model
CRC CRC + Cryptography

Clara IR2Vec Clara IR2Vec

Gradient Boosted Decision Tree 0.605 0.985 0.627 0.948

Decision Tree 0.652 0.994 0.641 0.968

Multi-layer Perceptron 0.605 0.998 0.626 0.958

Support Vector Machine 0.651 0.997 0.624 0.896

k-Nearest Neighbour 0.650 0.999 0.613 0.975

AutoML 0.651 0.999 0.640 0.978
26IR2Vec can capture semantics of the algorithm



Summary & Future Work

Contributions

● Using embedding techniques (IR2Vec) to represent programs from network domain

● Modeling algorithm identification problem with a scalable ML approach

● Realistic dataset collection and generation of semantically equivalent programs

Future Work

● Applying to real-world network functions

● Identifying other algorithms

27



Authors 

28

S. VenkataKeerthy
PhD student, IITH

Yashas Andaluri
MTech student, IITH

Sayan Dey
MTech student, IITH

Rinku Shah
Asst. Professor, 
IIITD

Praveen Tammana
Asst. Professor, IITH

Ramakrishna Upadrasta
Asst. Professor, IITH



29


	Slide 1
	Introduction: Overall theme
	SmartNICs
	SmartNICs
	Accelerators available on SmartNICs
	Network Functions and Associated Algorithms
	Difficulties in Mapping
	Problem Statement
	Approach
	Why ML?
	Challenges
	Challenge #1: Representations of Programs
	Background: LLVM IR
	Background: Program Representations
	Background: IR2Vec: IR based Program Embeddings
	Proposed Methodology
	Proposed Methodology (contd.)
	Challenge #2: Generation of Dataset
	Dataset Creation
	Initial Steps: Seed Dataset Collection
	Dataset Expansion using Compiler Transformations
	Dataset Expansion using Compiler Transformations
	Experimentation & Implementation details
	Results: Precision
	Results: Recall
	Results: F1 Score
	Summary & Future Work
	Authors
	Slide 29

