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Traditional telecommunication network
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5G architecture, CUPS and NFV
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Pros: Lower cost, No specialised hardware, scalable.

Control plane traffic . o
User/Data plane Cons: Low performance when using traditional network stack

traffic e.g. Linux Kernel network stack.



5G data plane requirements and use cases
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High forwarding throughput Low processing latency Low-cost internet access
e.g. HD video streaming e.g. Autonomous vehicles e.g. Internet in rural areas
(~10 Gbps/km?) (~1 ms)

How to meet UPF’s stringent 5G requirements?



Can state of the art UPF meet stringent 5G requirements?
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e What are all possible UPF functions that can be offloaded?
e What are the benefits of such offloads?
e No comparison across all possible offload solutions

[1] Lighting Up the 5G Core with a High-Speed User Plane on Intel Architecture. (2019).

[2] DongJin Lee, JongHan Park, Chetan Hiremath, John Mangan, and Michael Lynch. Towards achieving high performance in 5G mobile packet core’s user plane function. (2018).
[3] The Kaloom 5G User Plane Function (UPF). (2019)

[4] Optimizing UPF performance using SmartNIC offload. (2020).



Our contributions
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High performance,
Flexibility, easy < > challenging
implementation implementation

e Evaluation of performance of all UPFs and comparison
o Metrics: throughput, latency, cost/power efficiency
e Discussion of challenges in offloading UPF functionality
e Preliminary design of comprehensive offloaded UPF design



Background: 5G User Plane Function (UPF)
5G Control
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Forwarding capacity ~Tbps. Critical for ultra low latency.
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traffic UPF performance is critical to future 5G success



Programmable data plane overview
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Experimental setup for comparing UPF designs

Server -1 Server - 2 Server -3
(24 core Intel Xeon) (24 core Intel Xeon) (24 core Intel Xeon)
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Users Control UPF Data Network
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e Agilio CX 2x10GbE programmable NIC for dataplane offloaded UPF
e XL710i40e 40 Gbps NIC for packet steering offloaded UPF
e Load generator simulates control+data traffic from multiple users



Pure software DPDK UPF design

CP worker core

PaCK_et Processes CP traffic
steering and install rules
Master
Cores DP worker cores
(Forwarding, Buffering,
Poll GTP, QoS)
NIC I

|
+ Push packets
to NIC

Network Hardware (NIC)

DPDK framework for high performance

Multi-core scalable
o Master cores poll NIC, worker cores process packets

Purely software based
o Packet steering to worker cores, CP and DP
processing

Packet steering
o Packets from same UE steered to same core,
lockless

Pros: Scalable

Cons: High CPU usage. Higher cost.

Software UPF Serves as performance baseline



Packet Steering Offload (SteerOffload) UPF design

CP worker core

Processes CP traffic and install
rules e Regular NIC steer packets based on regular

TCPI/IP headers

o Packets of a user can go to different
DP worker cores cores or must be steered in software
(Forwarding, Buffering,
GTP, QoS) e With programmable NIC, can parse user
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Packet
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SteerOffload: Forwarding throughput and latency improvement
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Pros: Offloading packet steering yields up to 45% higher throughput and up to

37% lower latency
- Avoiding packet steering offload in software

Is offloading packet steering always good?



SteerOffload: Effect on dynamic scaling

Cons: Less flexible. NIC needs to be restarted for UE reassignment
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SteerOffload: Effect on heavy hitter UE
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e SteerOffload had 7 times more

Time (in secs
( ) latency for the heavy hitter UE

Conclusion: SteerOffload NOT suitable under dynamic and skewed workload



Data Plane offload (DPOffload) UPF design and benefits

e Offloaded:

CP worker core o  Session rule matching and forwarding
Packet Processes CP traffic | *- o  GTP en/decapsulation
steering and install rules : o Incoming rate verification using P4 meter
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Pros: DPOffload UPF has up to 24% lower latency



Control Plane performance penalty in DPOffload design

Is offloading packet steering always good?

CP worker core
PaCK_et Processes CP traffic "I Install
steering and install rules . session
rules into
Master - NIC
Cores DP worker cores :
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NIC | T .
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Data forwarding rules in hardware configured by
controller software in userspace

Slow control plane mediated session rule
installation

Bottleneck: Hardware - user space communication

Performance SoftUPF DPOffload
metric

Throughput 5.1K 666
(messages/sec)

Latency (pS) 113 1646

DPOffload Cons: 86% lower control plane throughput and 15X higher control plane latency



Control Plane offload (CPOfHoad) design prototype

Solution:
CP worker core e Process signaling messages from control
s':::ﬁ; Processes CP traffic plane also in hardware
and install rules e Install data forwarding rules from hardware
Master itself
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QoS install forwarding rules e Fixed packet format
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Prototype design:
Programmable NIC e Session rules in dataplane registers




Control Plane offload (CPOfHoad) design prototype

Performance SoftUPF | DPOffload @CP Offload

metric

Throughput 5.1K 666 205M
(messages/sec)

Latency (pS) 113 1646 26

Pros:

1. 402X and 3000X higher throughput compared to SoftUPF and DPOffload
respectively

2. 77% and 98% control plane latency reduction compared to SoftUPF and
DPOffload respectively



e UPF optimization is critical to 5G success.

e Offloading UPF functions to programmable hardware improves performance but
decreases flexibility.

e Offloading data plane forwarding alone hurts capacity to process signaling
messages that configure forwarding rules.

e Future work: Comprehensive UPF design that offloads both data plane
forwarding and control plane communication processing to hardware.
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