
Leveraging Programmable Dataplanes for a High
Performance 5G User Plane Function

Abhik Bose , Diptyaroop Maji , Prateek Agarwal, Nilesh Unhale, Rinku Shah, Mythili
Vutukuru

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

5th Asia-Pacific Workshop on Networking (APNet 2021)
June 24-25 2021, Shenzhen, China

Traditional telecommunication network

● Specialised hardware

● Control and User plane
in same box

● Not Scalable
● Not flexible

Control Plane
Attachment, Authentication,

Session Management ..

User/Data Plane
Forwards user data

Data
Network
(Internet)

Radio Network
Including user

equipments and base
station

Core Network

Control plane traffic
User/Data plane
traffic

Users Base Station
(gNB/RAN)

5G architecture, CUPS and NFV

AMF ----

SMF

UPF
Data

Network
(Internet)

5G Control Plane

CP, DP Separation

Radio Network 5G Core Network

User
s Base Station

(gNB/RAN)
5G User Plane

● Control and User plane
Separation (CUPS)

● Virtual Network Function (VNF)
on commodity server

● CP NFs:
○ AMF: Mobility
○ SMF: Session
○ Other NFs: Authentication,

policy etc

● User Plane Function (UPF):
○ Forwards user data
○ Forwarding rules

configured by SMF

Cons: Low performance when using traditional network stack
e.g. Linux Kernel network stack.

Pros: Lower cost, No specialised hardware, scalable.

Control plane traffic
User/Data plane
traffic

5G data plane requirements and use cases

How to meet UPF’s stringent 5G requirements?

HD

High forwarding throughput
e.g. HD video streaming

(~10 Gbps/km2)

Low processing latency
e.g. Autonomous vehicles

(~1 ms)

Low-cost internet access
e.g. Internet in rural areas

Can state of the art UPF meet stringent 5G requirements?

High performance software
architecture

Metaswitch1

Intel / SK telecom2

● What are all possible UPF functions that can be offloaded?
● What are the benefits of such offloads?
● No comparison across all possible offload solutions

[1] Lighting Up the 5G Core with a High-Speed User Plane on Intel Architecture. (2019).
[2] DongJin Lee, JongHan Park, Chetan Hiremath, John Mangan, and Michael Lynch. Towards achieving high performance in 5G mobile packet core’s user plane function. (2018).
[3] The Kaloom 5G User Plane Function (UPF). (2019)
[4] Optimizing UPF performance using SmartNIC offload. (2020).

BB

Custom hardware
NF

Offload to Programmable
Hardware

Kaloom3

Mavenir4

Programmable dataplane aided UPFs

Our contributions

Pure software
DPDK UPF

DPDK UPF +
offloaded packet
steering to UPF

cores to NIC

DPDK UPF + data
plane forwarding

offloaded to
programmable NIC

DPDK UPF + Control
plane communication

offloaded to
programmable NIC

● Evaluation of performance of all UPFs and comparison
○ Metrics: throughput, latency, cost/power efficiency

● Discussion of challenges in offloading UPF functionality
● Preliminary design of comprehensive offloaded UPF design

Flexibility, easy
implementation

High performance,
challenging
implementation

Background: 5G User Plane Function (UPF)

5G Control
Plane

UPF
Data

Network
(Internet)

Use
r Base Station

(gNB/RAN)

GTP tunnel
(for Mobility)

● Control Plane communication
○ Install session rules

● Forwards user data
○ Match packets against session

rules
○ Forward, drop or buffer

● GTP en/decapsulation

● QoS enforcement
○ Rate limit per session

● Policy and Charging

Forwarding capacity ~Tbps. Critical for ultra low latency.

UPF performance is critical to future 5G success
Control plane traffic
User/Data plane
traffic

Data
UDP
IP

GTP
Outer UDP

Data
UDP
IP

GTP

Data
UDP
IP

Data
UDP
IP

Outer IP

Programmable data plane overview

Custom Match Custom Action

Match-Action table

Programmable
Memory

P4 compiler
(Device specific)

P4
Program

Install
compiled
firmware

Control Plane
(SDN controller like)

Populate rules,
fetch statistics

(Using
p4runtime or

Thrift like API)

Programmable Hardware

● P4 Programmable hardware

● Features
○ Custom Header parsing, custom match action
○ On-NIC programmable memory
○ Custom computation
○ Device specific features

● P4 runtime or other APIs to configure custom
match action tables at runtime

Limitations: Limited expressiveness, limited
memory

Pros: Offloading application processing to
programmable hardware is cost effective
and improves performance

Experimental setup for comparing UPF designs

RAN +
Users
(Load

generator)

Control
Plane
NFs

NIC

UPF
(user space)

NIC with UPF
functions
offloaded

Data Network
(sink + downlink
traffic generator)

NIC

Control (PFCP) + Data traffic Data traffic

10 or 40 Gbps Link10 or 40 Gbps Link

Server - 1
(24 core Intel Xeon)

Server - 2
(24 core Intel Xeon)

Server - 3
(24 core Intel Xeon)

● Agilio CX 2x10GbE programmable NIC for dataplane offloaded UPF
● XL710 i40e 40 Gbps NIC for packet steering offloaded UPF
● Load generator simulates control+data traffic from multiple users

Pure software DPDK UPF design

Network Hardware (NIC)

Master
Cores

Packet
steering

Poll
NIC

CP worker core
Processes CP traffic

and install rules

DP worker cores
(Forwarding, Buffering,

GTP, QoS)

Push packets
to NIC

● DPDK framework for high performance

● Multi-core scalable
○ Master cores poll NIC, worker cores process packets

● Purely software based
○ Packet steering to worker cores, CP and DP

processing

● Packet steering
○ Packets from same UE steered to same core,

lockless

Cons: High CPU usage. Higher cost.

Pros: Scalable

Software UPF Serves as performance baseline

Packet Steering Offload (SteerOffload) UPF design

Programmable NIC

Packet
steering

CP worker core
Processes CP traffic and install

rules

DP worker cores
(Forwarding, Buffering,

GTP, QoS)

Push packets
to NIC

● Regular NIC steer packets based on regular
TCP/IP headers

○ Packets of a user can go to different
cores or must be steered in software

● With programmable NIC, can parse user
identifiers and redirect traffic of a user to
specific core in hardware itself

SteerOffload: Forwarding throughput and latency improvement

Is offloading packet steering always good?

Pros: Offloading packet steering yields up to 45% higher throughput and up to
37% lower latency

- Avoiding packet steering offload in software

SteerOffload: Effect on dynamic scaling

Cons: Less flexible. NIC needs to be restarted for UE reassignment

● Experiment: increase incoming
load suddenly, dynamically scale
UPF

● SoftUPF scaled with no downtime

○ Easily spawn worker
threads

● SteerOffload UPF needs a NIC
restart for scaling

○ Need to configure hardware
queues

● SteerOffload took ~500 ms to
scale

SteerOffload: Effect on heavy hitter UE

● Experiment: single heavy
hitter UE

● SoftUPF quickly re-distributes
load among worker cores

● SteerOffload lacks ability to
reconfigure packet steering
based on load

● SteerOffload had 7 times more
latency for the heavy hitter UE

Conclusion: SteerOffload NOT suitable under dynamic and skewed workload

Data Plane offload (DPOffload) UPF design and benefits

Programmable NIC
(DP: GTP, Rate checking)

Master
Cores

Packet
steering

Poll
NIC

CP worker core
Processes CP traffic

and install rules

DP worker cores
(Buffering, QoS)

Push packets
to NIC

Install
session
rules into
NIC

● Offloaded:
○ Session rule matching and forwarding
○ GTP en/decapsulation
○ Incoming rate verification using P4 meter

● Oversubscribed flows are processed at
user space

UPF
Design

64B
packet

IMIX
Packet

1400B
packet

SoftUPF 138 uS 176 uS 294 uS

DPOffload 130 uS 140 uS 222 uS

Pros: DPOffload UPF has up to 24% lower latency

Control Plane performance penalty in DPOffload design

Slow

Is offloading packet steering always good?

● Data forwarding rules in hardware configured by
controller software in userspace

● Slow control plane mediated session rule
installation

● Bottleneck: Hardware - user space communication

Performance
metric

SoftUPF DPOffload

Throughput
(messages/sec)

5.1K 666

Latency (μS) 113 1646

DPOffload Cons: 86% lower control plane throughput and 15X higher control plane latency

Programmable NIC
(DP: GTP, Rate checking)

Master
Cores

Packet
steering

Poll
NIC

CP worker core
Processes CP traffic

and install rules

DP worker cores
(Buffering, QoS)

Push packets
to NIC

Install
session
rules into
NIC

Programmable NIC

GTP, data rate verification

Buffering,
QoS

Process CP messages,
install forwarding rules

Push packets
to NIC

Master
Cores

Packet
steering

Poll
NIC

CP worker core
Processes CP traffic

and install rules

DP worker cores
(Buffering, QoS)

Control Plane offload (CPOffload) design prototype

Solution:
● Process signaling messages from control

plane also in hardware
● Install data forwarding rules from hardware

itself

Challenges:
● Complex signaling packet format (variable

length, recursive structure)

Our assumptions:
● Fixed packet format

Prototype design:
● Session rules in dataplane registers

Control Plane offload (CPOffload) design prototype

Performance
metric

SoftUPF DPOffload CP Offload

Throughput
(messages/sec)

5.1K 666 2.05 M

Latency (μS) 113 1646 26

Pros:
1. 402X and 3000X higher throughput compared to SoftUPF and DPOffload

respectively
2. 77% and 98% control plane latency reduction compared to SoftUPF and

DPOffload respectively

Summary

● UPF optimization is critical to 5G success.

● Offloading UPF functions to programmable hardware improves performance but
decreases flexibility.

● Offloading data plane forwarding alone hurts capacity to process signaling
messages that configure forwarding rules.

● Future work: Comprehensive UPF design that offloads both data plane
forwarding and control plane communication processing to hardware.

Thank You!

