Leveraging Programmable Dataplanes for a High
Performance 5G User Plane Function

Abhik Bose , Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale, Rinku Shah, Mythili
Vutukuru

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

5t Asia-Pacific Workshop on Networking (APNet 2021)
June 24-25 2021, Shenzhen, China

Traditional telecommunication network

e Specialised hardware

Control Plane
N\ A - e Control and User plane
1 . ttachment, Authentication,)
((41 Session Management .. in same box

/ Data
User/Data Plane Network
Forwards user data (Internet)

Users Base Station
(gNB/RAN)

Core Network
Radio Network
Including user
equipments and base
station

e Not Scalable
e Not flexible

Control plane traffic
User/Data plane
traffic

5G architecture, CUPS and NFV

e Control and User plane
Separation (CUPS)

| AMF e Virtual Network Function (VNF)
| on commodity server
SMF .
L = | e CP NFs:

o AMF: Mobility
o SMF: Session

------------------- CP, DP Separation o Other NFs: Authentication,
\ olicy etc
‘/ Data e User Plane Function (UPF):
UPF Network o Forwards user data
Usor (Internet) o Forwarding rules
s Base Station 5G User Plane configured by SMF
(gNB/RAN)
Radio Network 5G Core Network

Pros: Lower cost, No specialised hardware, scalable.

Control plane traffic . o
User/Data plane Cons: Low performance when using traditional network stack

traffic e.g. Linux Kernel network stack.

5G data plane requirements and use cases

//f: @)
m ° ((

High forwarding throughput Low processing latency Low-cost internet access
e.g. HD video streaming e.g. Autonomous vehicles e.g. Internet in rural areas
(~10 Gbps/km?) (~1 ms)

How to meet UPF’s stringent 5G requirements?

Can state of the art UPF meet stringent 5G requirements?

— oror 4
Custom hardware » High performance software » Offload to Programmable
NF architecture Hardware

Kaloom?®
Mavenir?

Metaswitch'
Intel / SK telecom?

e What are all possible UPF functions that can be offloaded?
e What are the benefits of such offloads?
e No comparison across all possible offload solutions

[1] Lighting Up the 5G Core with a High-Speed User Plane on Intel Architecture. (2019).

[2] DongJin Lee, JongHan Park, Chetan Hiremath, John Mangan, and Michael Lynch. Towards achieving high performance in 5G mobile packet core’s user plane function. (2018).
[3] The Kaloom 5G User Plane Function (UPF). (2019)

[4] Optimizing UPF performance using SmartNIC offload. (2020).

Our contributions

..

. DPDK UPF + DPDK UPF + data DPDK UPF + Control
Pure software Z:> offloaded packet Z:> plane forwarding Z:> plane communication
DPDK UPF ; steering to UPF offloaded to offloaded to
: cores to NIC programmable NIC programmable NIC

Programmable dataplane aided UPFs

..

High performance,
Flexibility, easy < > challenging
implementation implementation

e Evaluation of performance of all UPFs and comparison
o Metrics: throughput, latency, cost/power efficiency
e Discussion of challenges in offloading UPF functionality
e Preliminary design of comprehensive offloaded UPF design

Background: 5G User Plane Function (UPF)
5G Control
[:P'a“e e Control Plane communication

\ o Install session rules

4 (‘ 1\
\/, Data e Forwards user data
UPF ("I‘ettWOF:‘) o Match packets against session
nterne
Use Base Station GTP tunnel rules
for Mobilit
r (GNB/RAN) (for Mobility) o Forward, drop or buffer
(T A) 4 A
Data Data .
UDP — UbP e GTP en/decapsulation
L IP) (" Data) IP
UDP — e QoS enforcement
P o Rate limit per session
GTP .)
Outer UDP e Policy and Charging
\ Outer IP

Forwarding capacity ~Tbps. Critical for ultra low latency.

Control plane traffic
User/Data plane

traffic UPF performance is critical to future 5G success

Programmable data plane overview

e P4 Programmable hardware

Control Plane

(SDN controller like) ° Features
7y o Custom Header parsing, custom match action
o On-NIC programmable memory
Prolz;am > fZ‘lJ.i‘ZTp'ZL'.ﬁ; o Custom computation
Populate rules, o Device specific features
fetch statistics
A (U?.'"g e P4 runtime or other APIs to configure custom
Install paruntime or . i
compiled Thrift like API) match action tables at runtime
firmware
\/ \
4 I Pros: Offloading application processing to
. | st Meth Custom Acton programmable hardware is cost effective
rogrammabple .
Memory and improves performance

Match-Action table
_ J Limitations: Limited expressiveness, limited

Programmable Hardware memory

Experimental setup for comparing UPF designs

Server -1 Server - 2 Server -3
(24 core Intel Xeon) (24 core Intel Xeon) (24 core Intel Xeon)
RAN +
Users Control UPF Data Network
(Load Plane (user space) (sink + downlink
NFs traffic generator)
generator)
NIC with UPF
functions
N NIC J _| offloaded | / _ NIC %
f 10 or 40 Gbps Link f f 10 or 40 Gbps Link f
Control (PFCP) + Data traffic Data traffic

e Agilio CX 2x10GbE programmable NIC for dataplane offloaded UPF
e XL710i40e 40 Gbps NIC for packet steering offloaded UPF
e Load generator simulates control+data traffic from multiple users

Pure software DPDK UPF design

CP worker core

PaCK_et Processes CP traffic
steering and install rules
Master
Cores DP worker cores
(Forwarding, Buffering,
Poll GTP, QoS)
NIC I

|
+ Push packets
to NIC

Network Hardware (NIC)

DPDK framework for high performance

Multi-core scalable
o Master cores poll NIC, worker cores process packets

Purely software based
o Packet steering to worker cores, CP and DP
processing

Packet steering
o Packets from same UE steered to same core,
lockless

Pros: Scalable

Cons: High CPU usage. Higher cost.

Software UPF Serves as performance baseline

Packet Steering Offload (SteerOffload) UPF design

CP worker core

Processes CP traffic and install
rules e Regular NIC steer packets based on regular

TCPI/IP headers

o Packets of a user can go to different
DP worker cores cores or must be steered in software
(Forwarding, Buffering,
GTP, QoS) e With programmable NIC, can parse user
' identifiers and redirect traffic of a user to
Push packets .gu . R
\T l to NIC specific core in hardware itself
Packet
steering

Programmable NIC

SteerOffload: Forwarding throughput and latency improvement

SoftUPF Throughput ==z SoftUPF latency ==X
SteerOffload Throughput = SteerOffload latency zzz2a
8 . | . 300
@ T { 250
Q
Q 6 r w
S 5| 1200 2
3 4 1150 &
Ny 3 | o
=2 4 100 ®
°© 2} —
o1 1 50
0 0
64B IMIX 1400B
Payload size

Pros: Offloading packet steering yields up to 45% higher throughput and up to

37% lower latency
- Avoiding packet steering offload in software

Is offloading packet steering always good?

SteerOffload: Effect on dynamic scaling

Cons: Less flexible. NIC needs to be restarted for UE reassignment

e Experiment: increase incoming

6000 | '"°bm29ﬂ%32 —_—— ' ' ' ' ' IL?::: suddenly, dynamically scale
%) 0 = e
& 5000 - steerOffload = == -
> @ @ 9 » . 2 s J . .
= 4000 F e e SoftUPF scaled with no downtime
_g- 3000 B - - = = Q= == @ - '¢']
S 2000 ¢ - - o Easily spawn worker
£ 1000 | . threads

Ooq = . - 0 o e SteerOffload U_PF needs a NIC

B 3 3 3 3 restart for scaling
)

Time (in secs o Need to configure hardware

queues

e SteerOffload took ~500 ms to
scale

SteerOffload: Effect on heavy hitter UE

800 rrvrrryrrrrrreryrryrrrrrrrrreryrrrrrerr e e rrerre e rrrrr e T T e rrerrreda . Experiment: Single heavy
700 | Traffic burst 1 hitter UE
’u? 600 N — ewm e e mme G sem cwmm s WEC e cmm R Wme G Sew cwm s WmC e e cwm e e
=2 ! . . .
g 288 i : SOftUPF —e— | e SoftUPF quickly re-distributes
% 300 | SteerOffload - - - | load among worker cores
© i d
- ?88 o . - IR | e SteerOffload lacks ability to
o Lo b v reconfigure packet steering
e B 28 2 v L8 g8 23 Q2 8 based on load
0 wn O O ((o] (o] (o]

e SteerOffload had 7 times more

Time (in secs
() latency for the heavy hitter UE

Conclusion: SteerOffload NOT suitable under dynamic and skewed workload

Data Plane offload (DPOffload) UPF design and benefits

e Offloaded:

CP worker core o Session rule matching and forwarding
Packet Processes CP traffic | *- o GTP en/decapsulation
steering and install rules : o Incoming rate verification using P4 meter
Master Install e Oversubscribed flows are processed at
Cores DP worker cores ules into user space
(Buffering, QoS) - NIC
Poll ;
NIC ; o packet's : UPF 64B IMIX 1400B
to NIC 4 Design packet | Packet | packet
Programmable NIC SoftUPF 138uS | 176 uS | 294 uS

(DP: GTP, Rate checking)

DPOffload 130 uS 140 uS | 222 uS

Pros: DPOffload UPF has up to 24% lower latency

Control Plane performance penalty in DPOffload design

Is offloading packet steering always good?

CP worker core
PaCK_et Processes CP traffic "I Install
steering and install rules . session
rules into
Master - NIC
Cores DP worker cores :
(Buffering, QoS)
Poll
NIC | T .
+ Push packets .
to NIC 4

Programmable NIC
(DP: GTP, Rate checking)

Data forwarding rules in hardware configured by
controller software in userspace

Slow control plane mediated session rule
installation

Bottleneck: Hardware - user space communication

Performance SoftUPF DPOffload
metric

Throughput 5.1K 666
(messages/sec)

Latency (pS) 113 1646

DPOffload Cons: 86% lower control plane throughput and 15X higher control plane latency

Control Plane offload (CPOfHoad) design prototype

Solution:
CP worker core e Process signaling messages from control
s':::ﬁ; Processes CP traffic plane also in hardware
and install rules e Install data forwarding rules from hardware
Master itself

Cores DP worker cores

(Buffering, QoS) Challenges:
I I e Complex signaling packet format (variable

* Pusth ;:\lalcékets length, recursive structure)
(0]

Buffering, Process CP messages, Our assumptions:
QoS install forwarding rules e Fixed packet format

GTP, data rate verification

Poll
NIC

Prototype design:
Programmable NIC e Session rules in dataplane registers

Control Plane offload (CPOfHoad) design prototype

Performance SoftUPF | DPOffload @CP Offload

metric

Throughput 5.1K 666 205M
(messages/sec)

Latency (pS) 113 1646 26

Pros:

1. 402X and 3000X higher throughput compared to SoftUPF and DPOffload
respectively

2. 77% and 98% control plane latency reduction compared to SoftUPF and
DPOffload respectively

e UPF optimization is critical to 5G success.

e Offloading UPF functions to programmable hardware improves performance but
decreases flexibility.

e Offloading data plane forwarding alone hurts capacity to process signaling
messages that configure forwarding rules.

e Future work: Comprehensive UPF design that offloads both data plane
forwarding and control plane communication processing to hardware.

Thank You!

