
Rinku Shah
Mythili Vutukuru
Purushottam Kulkarni

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

ICNP 2018
September 26, 2018

Cuttlefish: Hierarchical SDN Controllers with
Adaptive Offload

Traditional network vs Software-defined networkWhat is Software-defined networking?

2

❏ Software-Defined Network
❏ Decouple Control plane and Data plane

SDN BENEFITS

❏ Network state is logically centralized
❏ Central network configuration and

management possible

❏ Network programmability
❏ Custom protocols on hardware switches

SDN CHALLENGES

❏ Scalability

❏ Security

❏ ...

Traditional network vs Software-defined networkWhat is Software-defined networking?

3

❏ Software-Defined Network
❏ Decouple Control plane and Data plane

SDN BENEFITS

❏ Network state is logically centralized
❏ Central network configuration and

management possible

❏ Network programmability
❏ Custom protocols on hardware switches

SDN CHALLENGES

❏ Scalability

❏ Security

❏ ...

Traditional network vs Software-defined networkSDN Scalability Problem: Bottleneck Domains

4SDN controller Scalability is a vital requirement to reap SDN benefits

Controller
Bottleneck

Switch-Controller
Communication

Bottleneck

Data-plane
Bottleneck

Traditional network vs Software-defined networkSDN Scalability Problem: OUR FOCUS

5

Controller
Bottleneck

Switch-Controller
Communication

Bottleneck

Data-plane
Bottleneck

SDN controller Scalability is a vital requirement to reap SDN benefits

SDN controller scaling techniquesHorizontal Scaling

Onix[1]

Hyperflow[2]

Beehive[3]

[1] Teemu Koponen and others. Onix: A Distributed Control Platform for Large-scale Production Networks. In Proc of the Conference on OSDI, 2010.
[2] Amin Tootoonchian and Yashar Ganjali. HyperFlow: A Distributed Control Plane for OpenFlow. In Proc of the Internet Network Management Conference on Research on Enterprise Networking, 2010.
[3] S. H. Yeganeh and Y. Ganjali, “Beehive: Simple distributed programming in software-defined networks,” in Proc. of the Conference on SoSR 2016. 6

❏ Single physical controller to multiple
controllers

❏ Each controller manages subset of
the network topology

❏ Need for synchronization between
controllers

❏ Application state examples
❏ Topology information
❏ Flow statistics at each switch

SDN controller scaling techniquesHierarchical Scaling

Devoflow[1]

Kandoo[2]

FOCUS[3]
[1] Andrew R. Curtis and others. DevoFlow: Scaling Flow Management for High-performance Networks. In Proc of the SIGCOMM, 2011.
[2] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A Framework for Efficient and Scalable Offloading of Control Applications. In Proc of the Workshop on HoTSDN, 2012.
[3] Ji Yang and others. FOCUS: Function Offloading from a Controller to Utilize Switch Power. In Proc of IEEE Conference on NFV-SDN, 2016. 7

Limited Applicability

❏ Split computations amongst
root and local controller

❏ Application state classified as
❏ GLOBAL
❏ LOCAL

❏ GLOBAL state example:
❏ Network topology

❏ LOCAL state example :
❏ Flow statistics

8

Our Key Idea

Increase in amount of computation offload => Improved performance

PARTITIONED STATE

❏ Increase extent of computation at
local controllers

❏ Achieved via increased amount of
state offload
❏ Break strict barrier between local

and global state
❏ Partitioned state

9

Partitioned state example: LTE packet core

❏ Definition
❏ Subset of global state
❏ Accessed at one network location

at any point of time (like local state)
❏ Pros

❏ Can be cached at local controllers
temporarily

❏ Cons
❏ Must be periodically synchronized

with root controller
❏ Partitioned state examples

❏ Any application specific session
state

❏ Route state like flow-id : tunnel-id

1010

SDN Controller modes: Centralized mode

CENTRALIZED MODE

 CONS: Single compute resource
10

All Application
Control messages

1111

SDN Controller modes: Offload mode (Proposed)

CENTRALIZED MODE

 CONS: Single compute resource
11

OFFLOAD MODE

PROS: Compute resource increases
CONS: Synchronization Overhead

All Application
Control messages

1212

SDN Controller modes

CENTRALIZED MODE

 CONS: Single compute resource

Which mode is better?

12

OFFLOAD MODE

PROS: Compute resource increases
CONS: Synchronization Overhead

All Application
Control messages

13

Which Controller mode is better?

 Amount of Synchronization traffic generated

Use case: SDN based application that performs subset of
cellular network functionality
(SDN based LTE Evolved Packet core (EPC))

❏ A to D: Offload mode

❏ E to H: Centralized mode

❏ Offload mode performance depends on
synchronization cost incurred

14

Which Controller mode is better?

 Amount of Synchronization traffic generated

Use case: SDN based application that performs subset of
cellular network functionality
(SDN based LTE Evolved Packet core (EPC))

❏ A to D: Offload mode

❏ E to H: Centralized mode

❏ Offload mode performance depends on
synchronization cost incurred

Need for SWITCH between controller MODES, based on TRAFFIC MIX

15

Cuttlefish: Adaptive Offload (Use case - KV store)

PUT @ Root (Non offloadable) : GET @ Local (Offloadable)

Cuttlefish matches the
 BEST

Non-Adaptive mode

Cuttlefish Design: Developer input

16

Developer
Input

Cuttlefish Design: Developer input example

17

Developer
Input

Example LTE-EPC Messages msg_Id Offloadable

Authentication Step 1 1 false

Authentication Step 3 2 false

NAS Step 2 3 false

Send APN 4 false

Send UE TeID 5 true

UE Context Release 6 true

UE Service Request 7 true

Context Setup Response 8 true

Detach Request 9 false

 Example -
 SDN Mobile Packet

Core application

Cuttlefish Design: API

18

Developer
Input Root

Controller

Cuttlefish API

Local
Controller

Cuttlefish API

Network application
using Cuttlefish API

Network application
using Cuttlefish API

GET/PUT/DEL

GET/PUT/DEL

Synchronize
partitioned state

updates

Cuttlefish Design: Adaptation module

19

Developer
Input Root

Controller

Cuttlefish API

Local
Controller

Cuttlefish API

Network application
using Cuttlefish API

Network application
using Cuttlefish API

GET/PUT/DEL

GET/PUT/DEL

Cuttlefish Adaptation Module

Synchronize
partitioned state

updates

Sync Cost1

2Configure switch
(on mode switch)2

Ingress

Configure
controllers
(on mode
switch)

Cuttlefish Design

20

Developer
Input Root

Controller

Cuttlefish API

Local
Controller

Cuttlefish API

Network application
using Cuttlefish API

Network application
using Cuttlefish API

GET/PUT/DEL

GET/PUT/DEL

Cuttlefish Adaptation Module

Synchronize
partitioned state

updates

Sync Cost1

2Configure switch
(on mode switch)2

Ingress

Configure
controllers
(on mode
switch)

Switch configuration

21

Root
Controller

Local
Controller

Ingress

All application
messages

Application
traffic

CENTRALIZED MODE OFFLOAD MODE

Root
Controller

Local
Controller

Ingress

Non offloadable
messages

Application
traffic

Offloadable
messages

Cuttlefish Design

22

Developer
Input Root

Controller

Cuttlefish API

Local
Controller

Cuttlefish API

Network application
using Cuttlefish API

Network application
using Cuttlefish API

GET/PUT/DEL

GET/PUT/DEL

Cuttlefish Adaptation Module

Synchronize
partitioned state

updates

Sync Cost1

2Configure switch
(on mode switch)2

Ingress

Configure
controllers
(on mode
switch)

Synchronizing Partitioned State: Offload Mode

23

Root
Controller

Local
Controller

 SYNC
immediately

Partitioned State

Update to partitioned state at
root controller

PUT/DEL
1.1

1.2

1.1

Synchronize the partitioned state
update immediately to the local
controller

1.2

Root
Controller

Local
Controller

Batch SYNC
updates

PUT/DEL
2.1

2.2
Update to partitioned state at local
controller

2.1

Synchronize partitioned state
updates in batches to root
controller

2.2

Assumption:
Partitioned state Get API is called only at Local controller

During mode migration
❏ Synchronize all local controller state
❏ Gracefully transit to Centralized mode

Synchronizing Partitioned State: Centralized Mode

24

Root
Controller

Local
Controller

During mode migration
❏ Synchronize all local hashmap state
❏ Gracefully transit to Offload mode

Partitioned State
Synchronized hashmap Local hashmap

PUT/DEL

3.1

3.2
Sync before

transit

Partitioned state updates are done on
local hashmap for better performance

3.1

Synchronize partitioned state updates
from local hashmap to synchronized
hashmap before mode switch

2.2

Application
traffic

Cuttlefish Design

25

Developer
Input Root

Controller

Cuttlefish API

Local
Controller

Cuttlefish API

Network application
using Cuttlefish API

Network application
using Cuttlefish API

GET/PUT/DEL

GET/PUT/DEL

Cuttlefish Adaptation Module

Synchronize
partitioned state

updates

Sync Cost1

2Configure switch
(on mode switch)2

Ingress

Configure
controllers
(on mode
switch)

Adaptation Module

26

Benchmark Parameters
❏ sync CPU budget
❏ key-value size

Root
Controller

Local
Controller

Sync
immediately2

● Monitor the frequency of partitioned
state updates by non offloadable
messages at the root controller

● This frequency acts as a PROXY to
estimate the synchronization cost

○ #Updates/sec

● Switch the controller mode if
#Updates/sec crosses the threshold

○ Threshold value is determined using our
benchmark

Non offloadable msg
updates state

1

Application
traffic

Partitioned
State

● Use cases
○ Key-value store
○ SDN based LTE EPC
○ Stateful Load Balancer

● Controller modes
○ Centralized mode
○ Offload mode
○ Cuttlefish adaptive offload mode

● Metrics measured
○ Average throughput - Average number of control plane messages processed per sec
○ Average response latency - Average time between request initiation and completion

27

Cuttlefish Evaluation

1. How does Cuttlefish perform compared to Centralized and Offload modes?

2. What is Cuttlefish efficacy?

a. Can it take correct switching decision?

b. How much time is required to implement the decision?

Questions to be answered?

28

Performance of Adaptive Offload: Key value store

2929

 Cuttlefish
Throughput

 Cuttlefish
Latency

Reduction

Centralized 0.99x to 2x 0% to 50%

Offload 0.99x to 6.4x -0.04% to 80%

 PUT @ Root (Non offloadable) : GET @ Local (Offloadable)

Cuttlefish matches the
 BEST

Non-Adaptive mode

30

Cuttlefish Efficacy: Key Value store

 Cuttlefish switches between controller modes to
MATCH the BEST PERFORMING mode

31

 Cuttlefish takes 20-30 secs to switch
between modes after traffic switch

Cuttlefish Efficacy: Key Value store

 Cuttlefish switches between controller modes to
MATCH the BEST PERFORMING mode

● New design of Hierarchical Controller Framework
○ Concept of Partitioned State

● Design and Implementation of Adaptive Controller
○ Evaluation shows that Cuttlefish applications achieve 2x higher control plane throughput

and 50% lower control plane latency as compared to the traditional SDN design.

● Cuttlefish source code is made available at
○ https://github.com/networkedsystemsIITB/cuttlefish

Summary

32

https://github.com/networkedsystemsIITB/cuttlefish

