
Hierarchical Control Plane Designs to

Scale SDN Applications

A Thesis
Submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
by

Rinku Mahendrakumar Shah
(Roll No. 134053001)

Supervisors:
Prof. Mythili Vutukuru

and

Prof. Purushottam Kulkarni

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai 400076 (India)

9 February 2021

In memory of my loving brother, Videet

Acceptance Certificate

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

The thesis entitled “Hierarchical Control Plane Designs to Scale SDN Applications” sub-

mitted by Rinku Mahendrakumar Shah (Roll No. 134053001) may be accepted for being

evaluated.

Date: 9 February 2021 Prof. Mythili Vutukuru

Approval Sheet

This thesis entitled “Hierarchical Control Plane Designs to Scale SDN Applications” by

Rinku Shah is approved for the degree of Doctor of Philosophy.

Examiners

Supervisor (s)

Chairman

Date:

Place:

Madhu N. Belur, EE Dept, IITB

8th Feb 2021

Mumbai

Prof. Vinayak Naik, BITS Pilani, Goa

KWWSV���DPV�LLWE�DF�LQ�G������<%9��=�$8(*(&3�(

Digital Signature
Purushottam Kulkarni (i06166)

09-Feb-21 04:44:43 PM

Digital Signature
Varsha Apte (i02020)
09-Feb-21 03:16:20 PM

Digital Signature
Mythili Vutukuru (i13124)

09-Feb-21 01:31:03 PM

https://ams.iitb.ac.in/d/8731-YBV96Z7AUEGECP3E

KWWSV���DPV�LLWE�DF�LQ�G������<%9��=�$8(*(&3�(

https://ams.iitb.ac.in/d/8731-YBV96Z7AUEGECP3E

Declaration

I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the

original sources. I declare that I have properly and accurately acknowledged all sources

used in the production of this report. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in my submission. I understand that any violation of the above will

be a cause for disciplinary action by the Institute and can also evoke penal action from

the sources which have thus not been properly cited or from whom proper permission has

not been taken when needed.

Rinku Mahendrakumar Shah

Date: 9 February 2021 (Roll No. 134053001)

ix

Abstract

Software-defined networking (SDN) proposes the decomposition of the control and data

planes in network elements, with the control plane running in a logically centralized con-

troller and the data plane running on simple SDN switches. While the SDN-based design

of networks confers many benefits like increased flexibility, traditional centralized SDN

controllers are known to su↵er from scalability issues. There are two general approaches

to scaling: (1) a horizontal SDN scaling architecture uses distributed systems principles to

maintain consistency amongst the various controller replicas, and (2) a hierarchical SDN

scaling architecture o✏oads a subset of control plane computations to local controllers

located close to (or on) the data plane switches (switch-local CPU). The horizontal ar-

chitecture scales sub-linearly since synchronization overhead increases with more repli-

cation, and can significantly increase control plane latencies. In hierarchical architecture,

the control tra�c that depends on global network state is handled by the centralized SDN

controller, while the control plane tra�c interacting only with the switch-local state is

handled by the local controllers. These architectures have di↵erent tradeo↵s. Horizontal

scaling works well when the majority of control plane tra�c requires computations on the

global network state. In contrast, the hierarchical approach works well when most control

plane tra�c requires only access to switch-local state. Also, while the former design can

o✏oad any control plane computation to any replica (after proper state synchronization),

the latter can only o✏oad a subset of control plane computations that local controllers can

process correctly. These two approaches are complementary and can independently scale

the control tra�c that requires the global network state and switch-local state. This thesis

proposes new techniques to improve performance and scalability for a hierarchical SDN

architecture.

Prior work on the hierarchical scaling of SDN controllers was limited to o✏oading

computations based on the local switch-specific state alone. We develop hierarchical

scaling solutions that o✏oad computations to local controllers or programmable hardware

switches based on a subset of global application state as well, thereby improving the state-

of-the-art in hierarchically scaled SDN controller design. The key idea of our work is

i

ii Abstract

that a subset of the global network-wide state that is accessed from only one network

location at any time can be o✏oaded to (and accessed/updated at) local controllers or

switches, with suitable synchronization from time to time. By o✏oading such state (and

the computation that depends on this state) away from the centralized SDN controller and

close to the end-user, the control plane capacity of SDN applications can be significantly

improved and response times can be significantly reduced.

There are several challenges to realizing this idea. One such challenge is the iden-

tification of application computations that can be o✏oaded to the local controllers and

programmable hardware switches. Also, o✏oading of state and the subsequent synchro-

nization of the state between the local and central controllers must be performed in a

manner that ensures application correctness under all modes of failures and other network

events. Further, o✏oading must only be performed when the relative gains of o✏oad

outweigh the cost of synchronizing this state across controllers. Finally, o✏oading must

be done in a manner that is transparent to application developers. Our work addresses all

these challenges comprehensively.

In this thesis, we have built two systems. The first system, the Cuttlefish SDN con-

troller framework, helps SDN applications adaptively o✏oad state and computation to

local controllers running on switch CPU, based on whether the o✏oad improves appli-

cation performance or not. CuttleFish is a generic framework that can be used by any

SDN control plane application via the CuttleFish APIs. The second system, TurboEPC,

is a specific implementation that demonstrates that it is possible to accelerate a mobile

packet core SDN control plane application by o✏oading both state and computation to

the hardware programmable dataplane. With programmable switches and languages such

as P4 that can program such switches gaining popularity, we observe that o✏oading SDN

application computation to the switches can lead to better performance gains than those

seen with o✏oading computation to local software controllers alone.

We have prototyped and evaluated our ideas for both systems using several real-

world applications, such as the SDN-decomposed mobile packet core, and demonstrated

significant performance improvements over the status quo. The observed throughput was

up to 2⇥ and 12⇥ the traditionally centralized SDN design for Cuttlefish and TurboEPC,

respectively. Besides, the response latency was observed to be up to 80% and 97% lower

than the traditionally centralized SDN design for Cuttlefish and TurboEPC, respectively.

Table of Contents

Abstract i

List of Figures vii

List of Tables xi

1 Introduction 1
1.1 Limitations of traditional SDN controller design 3

1.2 SDN scalability solutions . 5

1.3 Key ideas . 6

1.4 Challenges . 9

1.5 Thesis contributions . 11

1.6 Summary . 12

2 Background and Related Work 15
2.1 Software-defined networking . 15

2.2 SDN control plane scalability . 18

2.3 Dataplane programming . 25

2.3.1 A step towards dataplane generalization 26

2.3.2 Dataplane programming tools — P4 and P4Runtime 28

2.3.3 In-network application computation 32

2.3.4 Can we o✏oad any application to programmable hardware data-

plane? . 34

2.4 The mobile packet core . 36

2.4.1 The mobile packet core architecture 36

2.4.2 The LTE EPC procedures . 39

2.4.3 Scalability solutions for the mobile packet core 48

2.5 Summary . 49

iii

iv Table of Contents

3 State Taxonomy of SDN applications 51
3.1 Application state taxonomy . 51

3.1.1 State taxonomy proposed by existing hierarchical solutions 52

3.1.2 Our state taxonomy proposal . 53

3.1.3 Proposed hierachical o✏oad design 56

3.2 What application computations can be o✏oaded? 57

3.2.1 Guide to identify o✏oadable messages 57

3.2.2 Identify o✏oadable messages for LTE EPC application 58

3.2.3 Identify o✏oadable messages for stateful load balancer 61

3.3 Summary . 64

4 Adaptive O✏oad of SDN Applications to Local Controllers 67
4.1 Problem description . 67

4.2 Key idea, challenges, and contributions 68

4.3 Cuttlefish design and implementation 72

4.3.1 Developer input . 72

4.3.2 The Cuttlefish API . 74

4.3.3 Cuttlefish API implementation 76

4.3.4 The adaptation approach . 79

4.3.5 Enforcing the o✏oad mode . 83

4.3.6 Transition between controller modes 83

4.3.7 Implementation of use cases . 85

4.4 Evaluation . 86

4.4.1 Experimental setup . 86

4.4.2 E�cacy of adaptive o✏oad . 88

4.4.3 Convergence of adaptive o✏oad 90

4.4.4 Summary of results . 95

4.5 Summary . 96

5 O✏oad of SDN Applications to Programmable Switches 97
5.1 Motivation and problem description . 97

5.2 Key idea and challenges . 99

5.3 TurboEPC design . 101

5.3.1 Design overview . 101

5.3.2 Partitioning for scalability . 104

5.3.3 Replication for fault tolerance 106

5.4 TurboEPC implementation . 108

Table of Contents v

5.5 Evaluation . 111

5.5.1 TurboEPC software prototype 112

5.5.2 TurboEPC hardware prototype 118

5.5.3 Summary of results . 122

5.6 Summary . 122

6 Comparison of Control Plane Scaling Approaches 123
6.1 SDN control plane scaling approaches 123

6.1.1 Comparison of control plane scaling approaches 126

6.2 Implementation . 127

6.3 Experimental setup . 130

6.4 Evaluation . 131

6.4.1 Performance comparison of scaling designs 131

6.4.2 Impact of distance of the root controller from the end-user 136

6.5 Choosing the right scalability design . 137

6.5.1 Checklist to determine o✏oad to programmable hardware 137

6.5.2 Choice of the scalability design 139

6.6 Summary . 140

7 Future Work 141
7.1 TurboEPC extensions for 5G mobile packet core 141

7.2 Three-tier adaptive hierarchical design 143

7.3 Summary . 145

8 Conclusion 147

References 149

List of Publications 161

Acknowledgements 163

List of Figures

1.1 A software-defined network. 2

1.2 Performance of traditional SDN controllers [1–3]. 4

1.3 Contributions. 11

2.1 Traditional SDN architecture . 16

2.2 Classification of SDN control plane scalability approaches. 19

2.3 Centralized, multithreaded controller design. 20

2.4 Horizontally distributed controller design 20

2.5 Hierarchical controller design . 22

2.6 The abstract forwarding model. 26

2.7 P4 is a language to configure switches. 28

2.8 Programming a target with P4. 29

2.9 P4Runtime reference architecture. 31

2.10 Classification of literature on in-network application computation. 33

2.11 Traditional EPC architecture with unified control and data planes. 36

2.12 Traditional CUPS-based EPC architecture. 38

2.13 The 5G mobile packet core architecture. 39

2.14 Encapsulated GTP packet. 40

2.15 UE’s connections and states in the EPC network. 41

2.16 The attach procedure. 42

2.17 The S1 release procedure. 44

2.18 Connections and states in the EPC network after S1 release processing. . 44

2.19 The service request procedure. 45

2.20 The detach procedure. 46

2.21 The inter-SGW handover procedure. 47

3.1 Hierarchical control plane scaling. 52

3.2 Proposed hierarchical control plane scaling. 55

3.3 Hierarchical SDN-based stateful load balancer. 62

vii

viii List of Figures

4.1 SDN operation modes. 68

4.2 Performance with di↵erent controller modes 69

4.3 The Cuttlefish architecture. 72

4.4 Cuttlefish API functions. 77

4.5 Switch from o✏oad mode to centralized mode. 84

4.6 Switch from centralized mode to o✏oad mode. 85

4.7 Experimental setup for the key-value store application. 87

4.8 Experimental setup for the SDN-based EPC application. 87

4.9 Key-value store: control plane throughput. 88

4.10 Key-value store: control plane latency. 88

4.11 LTE EPC: control plane throughput. 89

4.12 LTE EPC: control plane latency. 89

4.13 Throughput with varying tra�c mix for the key-value store application. . 91

4.14 Latency with varying tra�c mix for the key-value store application. . . . 91

4.15 Key-value store: adaptation metric for mode switch. 91

4.16 Throughput with varying tra�c mix for the LTE EPC application. 92

4.17 Latency with varying tra�c mix for the LTE EPC application. 92

4.18 LTE-EPC: adaptation metric for mode switch. 92

4.19 Throughput with bursty tra�c for the LTE EPC application. 94

4.20 Latency with bursty tra�c for the LTE EPC application. 94

4.21 LTE-EPC bursty tra�c: adaptation metric for mode switch (epoch = 30s). 94

5.1 TurboEPC Design. 101

5.2 Handover message processing in TurboEPC. 103

5.3 User context distributed over set of switches connected in series. 104

5.4 User context distributed over set of switches on parallel network paths. . . 105

5.5 Fault tolerance in TurboEPC. 106

5.6 TurboEPC implementation. 108

5.7 Message processing at the TurboEPC hardware switch. 109

5.8 Packet processing pipeline in TurboEPC. 111

5.9 TurboEPC software evaluation setup. 112

5.10 TurboEPC vs. traditional EPC: Throughput. 113

5.11 TurboEPC vs. traditional EPC: Latency. 113

5.12 Throughput with varying distance to core, and varying number of data-

plane switches. 115

5.13 Latency with varying distance to core, and varying number of dataplane

switches. 115

List of Figures ix

5.14 Series vs. parallel partitioning. 117

5.15 TurboEPC throughput during failover. 118

5.16 TurboEPC latency during failover. 118

5.17 TurboEPC hardware evaluation setup. 119

5.18 TurboEPC-hardware vs. traditional-EPC throughput. 120

5.19 TurboEPC-hardware vs. traditional-EPC response latency. 120

5.20 TurboEPC throughput vs. number of users 121

5.21 TurboEPC throughput with data tra�c interference. 121

6.1 SDN control plane scalability approaches. 124

6.2 Experimental setup diagram for all scaling designs. 128

6.3 Throughput for SDN-based EPC application. 131

6.4 Throughput for SDN-based EPC application without hardware o✏oad re-

sults. 132

6.5 Response latency of o✏oadable EPC messages. 134

6.6 Response latency of non-o✏oadable EPC messages. 134

6.7 Response latency of all EPC messages. 135

6.8 Response latency with varying distance to the root controller. 136

7.1 5G components with corresponding 4G components. 142

7.2 Three-tier adaptive hierarchical design. 144

List of Tables

2.1 Fields recognized by the OpenFlow standard [4]. 25

2.2 Programmable dataplane hardware limitations. 35

2.3 LTE EPC control plane procedures. 42

3.1 Classification of LTE EPC state. 59

3.2 Classification of LTE EPC control messages. 60

3.3 Classification of stateful load balancer state. 63

3.4 Classification of stateful load balancer messages. 64

4.1 Sample developer input for LTE EPC. 74

5.1 Sample EPC load statistics [5, 6]. 98

5.2 Size of state stored at TurboEPC switches. 100

5.3 LTE-EPC tra�c mix used for experiments. 113

5.4 Average end-to-end latency for typical LTE-EPC tra�c distribution (in ms).116

6.1 Comparison of SDN control plane scaling approaches. 126

xi

Chapter 1

Introduction

Traditional network architectures are unable to meet the requirements of today’s data

center networks [7]. Network requirements are evolving, and therefore there is a need

to re-evaluate traditional network architectures. Let us look at the evolving network use-

cases and their impact on the network load and behavior.

• Increase in tra�c demand. Modern network applications like big data process

large amounts of data. Internet-of-Things (IoT) is yet another technology that adds

enormous tra�c to the network [8]. For example, huge amounts of video tra�c

is generated by surveillance cameras deployed widely for security purposes. With

mobility support, users can request network services practically from anywhere,

i.e., services are available from the o�ce, home, or in transit. The ease of access to

services adds to the increase in tra�c trends. The network tra�c dynamically in-

creases, so there is a requirement for on-demand addition of network resources [7].

• Unpredictable load on network devices and links. With the advent of virtual-

ization, a traditional physical server hosts multiple virtual machine (VM) instances

across the data center network [9]. The users exchange tra�c with any of these

servers, and the servers exchange tra�c with each other to maintain a consistent

application state [9]. The physical locations of these VMs can change due to VM

migrations that data centers pursue to optimize resources [10]. It is incredibly chal-

lenging to predict the amount of link tra�c within the network, and hence static

network resource provisioning fails.

• Vendor-specific device interfaces. To cope with the dynamic network demands,

network designers continuously evolve the hardware capacities, network capabili-

ties, and network protocols. They produce a variety of hardware and protocols. All

of these devices have closed, vendor-specific interfaces for access, management,

1

2 Introduction

Figure 1.1: A software-defined network.

and configuration [11]. The only people who can innovate such equipment are the

corresponding vendors, which introduces substantial delays for the addition of new

features.

• Manual network management. If a network administrator wants to add or move

any device, she must reconfigure multiple devices like the switches, routers, fire-

walls, and authentication servers. The network has to adhere to the security, privacy,

and policy norms; therefore, the ACLs, VLANs, and other policies also have to be

updated. Not to forget that the underlying devices have di↵erent interfaces; hence

the device management commands are di↵erent. There is massive growth in the

physical network size due to the increase in tra�c demands, and manual network

management is challenging [7].

The conventional network architectures are unable to respond to the rapid changes

in the network demands. There is a need to provide network abstractions for devices and

protocols to make networks programmable. Network programmability aids automation

of complex network tasks like device configuration, forwarding, and monitoring. It eases

the job of network administrators and promotes innovation.

Software-Defined Networking (SDN) is a step towards making the networks man-

ageable. Software-defined networking [12] is a design paradigm of separating the control

and data planes of network elements (see Figure 1.1). A software-defined network con-

sists of a software-managed, logically centralized controller, and light-weight switches

that are programmed with forwarding rules by the controller. Any data plane tra�c for

which the rules do not exist at the switching device, or signaling messages that require

control plane processing, are directed to the controller by the switches. SDN applications

1.1 Limitations of traditional SDN controller design 3

running at the controller process these messages and install corresponding forwarding

rules on the data plane switches.

The SDN-based design of networks confers many benefits [11]. The SDN paradigm

advocates the use of standard abstractions and interfaces for communication between the

SDN controller and the vendor-specific devices. Standard abstractions and interfaces

help the network administrator automate the configuration and management of the en-

tire network remotely via the application running at the logically centralized SDN con-

troller. Since all the network devices o↵er standard interfaces, addition or modification of

vendor-specific network hardware does not require changes to the network management

applications running at the controller. SDN supports the management of physical and

virtual switches from a single centralized controller. The centralized view of the entire

network o↵ered by the SDN design helps in better management of network tra�c. The

controller monitors the network tra�c by periodically fetching the load counters at the

switch using the controller-device standard interfaces. The tra�c engineering applica-

tion running at the SDN controller decides the route modifications to balance the network

tra�c. As per these decisions, the controller application dynamically updates the route

entries at the network switches. The amount of manual intervention for tasks like network

configuration, debugging, and management reduces, thereby resulting in lower operating

expenses (OPEX). With the changes in network requirements, we do not have to replace

the existing network hardware. We can re-purpose the current network hardware to follow

the instructions of the SDN controller. The reuse of existing equipment helps to reduce

capital expenditures (CAPEX).

1.1 Limitations of traditional SDN controller design
With increasing tra�c demands, the centralized controller that runs as a software compo-

nent can become a scalability bottleneck [13–26]. The control plane is split and pushed

away from the data plane, which leads to delayed control plane decisions and a↵ects the

control plane application performance in terms of throughput and latency. The central-

ized controller becomes a single point of failure and introduces reliability and security

challenges.

To understand the SDN control plane scalability problem, let us observe the perfor-

mance of the traditionally centralized SDN controllers. Figure 1.2 (a) and Figure 1.2 (b)

show the control plane throughput and flow setup latency for centralized SDN controllers,

respectively [1–3]. Note that the evaluation metrics are based on the flow setup throughput

and latency. In addition, these numbers heavily depend on the evaluation environment pa-

4 Introduction

(a) Control plane throughput. (b) Flow setup latency.

Figure 1.2: Performance of traditional SDN controllers [1–3].

rameters such as workload and network topology considered during the individual exper-

iment. Keeping this context in mind, we observe the maximum control plane throughput

is 0.5M control plane messages per second, and the minimum flow setup latency is 8ms.

Are these centralized (single machine) SDN controllers fast enough? If not, how faster

do they need to get? Following are the requirements of some of the existing datacenter

application deployments.

• Key-value (KV) stores play an important role in enterprises such as social networks,

online retail, and risk analysis. Atikoglu et. al [27] have studied Facebook data

center’s Memcached (key-value store) application. The analysis of tra�c charac-

teristics demonstrated a peak load of more than 140M requests per sec.

• There is enormous growth in the number of mobile subscribers over the years. Stud-

ies [28] have shown that India had 1 billion mobile subscribers in 2016 and is ex-

pected to reach 1.7 billion by the end of 2021. Using the tra�c characterization

studies [5, 6], we derive that the mobile control plane tra�c will reach up to 460M

requests/sec by the end of 2021. Further, the latency targets for these control plane

messages in future 5G networks [29–31] is as low as 1ms. The high control plane

load at the mobile backbone network with the centralized control plane makes it

challenging to satisfy application SLAs.

• The increase in data generation has raised the demand for data centers globally.

Kachris et. al [32] state that data center ingress tra�c (user to the data center) was

around 1200 Exabytes per year in the year 2016. Datacenter tra�c measurement

studies [33] suggest that 80% of the flows are smaller than 10KB in size. Using

these measurements and tra�c characterization studies, we infer the ingress control

tra�c rate at typical datacenters will reach up to 3.2 Million packets per sec. Note

that the datacenter tra�c doubles every 12–15 months [34]. Datacenter applications

such as load balancers, security applications (for example, DDOS attack detection

1.2 SDN scalability solutions 5

and firewall), network tra�c monitoring, tra�c engineering, and failure detection

require to process such high rate incoming and outgoing tra�c.

Traditional SDN controllers fail to process such high-intensity control plane tra�c. They

also fail to satisfy application SLAs because of high response latencies. The control

packet processing involves packet traversal from the switch to the SDN controller, which

adds few milliseconds to the response latency. The SDN controller scalability problem

can result in serious repercussions. For example, on a network link failure if the failure

detection application does not react quickly (slow convergence), there could be more

than 60K retransmissions per second [35]. We address the SDN control plane scalability

problem in this thesis.

1.2 SDN scalability solutions
Traditional centralized SDN controllers are known to be not scalable [13–26]. Prior re-

search has identified several scalability problems with centralized SDN controllers and the

communication path between the data plane switches and controllers. There are proposed

solutions to fix the same.

One set of solutions [13, 14, 18–20] develop horizontally scalable SDN controllers

that scale the centralized SDN controller by instantiating multiple homogeneous instances

of the centralized controller and distributing the control load with techniques like net-

work topology partitioning or state partitioning. The controller instances use standard

synchronization techniques to distribute application state between themselves to maintain

a logically centralized view. For example, we can divide the entire network topology

into smaller subsets and assign a subset to each controller instance for routing applica-

tions. Each controller instance takes the routing decision for the packets that arrive in its

topology subset. The controller instance can also determine the route for a destination

outside the topology subset since each replica is synchronized to maintain a consistent

network-wide view.

Other solutions [15–17, 21–26] propose hierarchical SDN controllers which o✏oad

computation that does not require network-wide view to local controllers. A local con-

troller is a replica of the centralized SDN controller, and it resides at (or close to) the

switch. For example, some tra�c engineering applications detect flows that comprise a

large number of packets or huge packet sizes (elephant flows) before calculating optimal

routes. These applications can o✏oad the task of detecting large flows to local controllers.

The local controllers maintain the local state of switch flow statistics, while the central-

ized root controller only runs route computations that require a network-wide view (global

6 Introduction

state). This decoupled computation setup results in a lower computation load at the root

controller and reduces the network tra�c between the switches and the root controller.

Hierarchical SDN controller scalability solutions like Difane [21] o✏oad management

tasks like access control, measurement, and routing to the intelligent switches. The con-

troller dynamically generates a set of rules to satisfy network policies and o✏oads them

to the switches. The data plane switches processes the incoming packets by applying the

o✏oaded rules, and the load at the centralized root controller reduces.

The two design options — horizontally distributed controllers and hierarchical con-

trollers — are complementary ideas, with their strengths and drawbacks. While the former

design can o✏oad any control plane computation to any replica (after proper state syn-

chronization), the latter can o✏oad only a subset of control plane computation that local

controllers can process correctly. However, horizontally distributed controller frameworks

incur a performance overhead due to the synchronization of network-wide state across

replicas, while hierarchical controller designs have no such associated costs because the

local switch-specific state does not require synchronization.

Our proposal to scale the SDN control plane extends the concept of hierarchical

controller design. Existing hierarchical scaling solutions o✏oad computations based on

local switch-specific state. Our key insight is that we can improve the performance gains

by an additional o✏oad of computations. We discuss the details of our proposal in the

next section.

1.3 Key ideas
Prior work implicitly classifies an SDN application’s state into global network-wide state

(that pertains to, or is concurrently accessed by, multiple switches/entities in the network)

and local switch-specific state. The local state can be maintained at local controllers, and

control plane messages that depend on such state can be o✏oaded to local controllers. The

global state must be maintained at the root controller (or with tight synchronization across

distributed controllers). The control plane messages that access the global state must

necessarily be processed at the centralized root controller (or its synchronized instances).

1. New taxonomy of application state
The key observation of our work is that, beyond the dichotomy of the local and

global state, there is a third type of state that we refer to as o✏oadable state. We

classify the application states as o✏oadable and non-o✏oadable.

The global network-wide state that can be accessed concurrently from multiple net-

work locations is called the non-o✏oadable state. SDN applications such as routing

1.3 Key ideas 7

protocols and failure handling algorithms use the network topology state. Such a

global state should be consistent over the network. Therefore, the network topology

state is an excellent example of a non-o✏oadable state.

We define o✏oadable state as the state that is accessed from a single network lo-

cation, i.e., all control plane tra�c that accesses this state should traverse through

the common network edge switch. O✏oadable state includes switch-local state and

some types of session-specific application state. The tra�c engineering applica-

tion uses switch counters that maintain per-flow length, and such a state is a good

example of a switch-local o✏oadable state. The per-flow (or per-session) tunnel

identifier state used for encapsulation of data packets is an excellent example of a

session-specific o✏oadable state.

As the non-o✏oadable state can be concurrently accessed from multiple network

locations, we maintain this state at the centralized root controller and assure a con-

sistent view across network locations. Any computation that depends on such states

should be processed at the centralized controller and are called non-o✏oadable

messages. The control plane messages that access the o✏oadable state and do not

require concurrent access to any other non-o✏oadable state can be processed lo-

cally (switch-CPU or local controller) are called o✏oadable messages. The updates

to the cached o✏oadable state at the local nodes are lazily synchronized with the

state’s master copy at the centralized root controller; that is, the cached state is syn-

chronized only when the non-o✏oadable message requests access to the o✏oadable

state. We describe the detailed state taxonomy with the help of real-life examples

and guide classification of application messages in §3.2.1, §3.2.2, and §3.2.3.

2. Adaptive o✏oad of subset of control plane computations to local controllers
The key idea of our first work, Cuttlefish, is that, by synchronizing the o✏oadable

state from the centralized root controller to specific local controllers, the messages

that access the o✏oadable state (o✏oadable messages) can be o✏oaded to local

controllers (close to the user). The o✏oad to local controllers can lower the compu-

tation overhead at the centralized root controller, resulting in higher control plane

capacity and lower latency for the SDN application.

Performing computation based on o✏oadable state at local controllers is beneficial

only if the state cached at the local controller needs to be synchronized with the

master copy at the centralized root controller infrequently. If the tra�c characteris-

tics entail frequent updates to the o✏oadable state, there is frequent synchronization

between the root and local controllers. This synchronization cost may outweigh the

8 Introduction

benefit of computation o✏oad, and a traditional design that does not o✏oad such

a state might work better. With tra�c characteristics being dynamic, our SDN

controller framework, Cuttlefish supports o✏oading of o✏oadable state, and asso-

ciated computation, adaptively between the traditional centralized design and the

Cuttlefish o✏oad design based on the cost of synchronization, to optimize system

performance.

3. O✏oad subset of control plane computations to programmable hardware
switches
We observe significant scalability and latency benefits when the subset of control

plane computations are o✏oaded from the centralized root controller to the local

controllers (close to the user). To increase the benefits further, we take inspiration

from the recent advances in data plane technologies. The data plane switches are

evolving from fixed-function hardware towards programmable components that can

forward tra�c at line rate while being highly customizable [36, 37].

We can significantly increase the throughput and latency gains compared to our

first work, Cuttlefish, if the control plane computations can be programmed and

o✏oaded to the programmable edge switches (close to the end-user). We see per-

formance improvements because the packet processing at the switch eliminates the

traversal of the local controller’s network stack and application layer stack. Pro-

gramming the o✏oadable computations is made easy by the protocol independent,

target-independent programming language, P4 [4].

The key idea of our second work, TurboEPC, is to demonstrate that we can accel-

erate the control plane of the mobile packet core SDN application by o✏oading

the processing of o✏oadable messages at the programmable hardware switches,

close to the end-user. The o✏oadable message processing also requires caching of

o✏oadable state at the programmable hardware switches and appropriate state syn-

chronization with the master copy of the o✏oadable state stored at the centralized

controller, to avoid access to the stale state at the root controller by non-o✏oadable

messages.

We implement a variety of use-cases like the mobile packet core, stateful load balancer,

and the simple key-value cache to demonstrate the e↵ectiveness of our proposals.

1.4 Challenges 9

1.4 Challenges
There are several challenges in realizing our Cuttlefish and TurboEPC ideas. We list the

challenges and describe the overview of the approaches taken to handle them.

• Classification of application state and computations
An application designer who wishes to use our computation o✏oad approach has

to classify the application state. Our proposed state taxonomy classifies the ap-

plication state as o✏oadable or non-o✏oadable (§3.1.2). If the control message

processing requires access to the o✏oadable states alone, then we can process the

message locally, at local controllers or programmable hardware switches. Other-

wise, if the control message processing requires access to some non-o✏oadable

state, we must process the message at the centralized root controller. We describe

the detailed state taxonomy with real-world examples and guide the classification

of application messages.

• Inconsistency of o✏oadable state
Our proposed o✏oad design comprises of two copies of the o✏oadable state. The

centralized root controller has a master copy of the o✏oadable state. This state is

cached locally, at the local controllers or programmable hardware switches. Of-

floadable messages are processed locally, and they modify the cached copy of the

o✏oadable state that is lazily synchronized with the master copy. O✏oadable mes-

sage processing causes the o✏oadable state to diverge from the master copy result-

ing in stale o✏oadable state at the centralized root controller. The non-o✏oadable

messages are processed at the centralized root controller and can sometimes ac-

cess the stale o✏oadable state, leading to incorrect application behavior. Cuttle-

fish implements an automated state synchronization framework to manage o✏oad-

able state consistency. Cuttlefish uses batching mechanism to reduce the state syn-

chronization costs. In TurboEPC, the programmable switch piggybacks the cached

o✏oadable state values with the non-o✏oadable message and forwards it to the

centralized root controller (on-demand state synchronization).

There is one more reason for the inconsistency of the o✏oadable state. The Cut-

tlefish framework automatically switches from the o✏oad design to the traditional

centralized design when the o✏oadable state synchronization costs increase. The

incoming packets are processed even during the migration between the SDN de-

signs. We need to ensure that the state accessed by these packets is consistent and

also ensure the correctness of the application. Cuttlefish framework implements a

migration protocol to ensure state consistency during SDN design migration.

10 Introduction

• High state synchronization costs
The updates to the o✏oadable state at the centralized root controller are immedi-

ately synchronized with the local cache copy to maintain strong consistency. The

state synchronization cost increases if the o✏oadable state is updated frequently

at the centralized root controller, and the benefits of o✏oad are lost. The Cuttle-

fish framework determines the state synchronization cost and dynamically switches

between the proposed o✏oad design and the traditional centralized SDN design to

reduce the state synchronization costs. TurboEPC implements the o✏oad concepts

for the mobile packet core application, where the current tra�c distribution trend

is such that the synchronization costs are within limits. In case the tra�c distribu-

tion changes in the future, we should not o✏oad computations of the mobile users

whose state requires frequent state synchronization (e.g., users with high mobility

rate) and thereby control the state synchronization cost.

• State losses due to o✏oad node failure
Failure of local nodes where the o✏oadable state is cached can lead to loss of the

latest version of the o✏oadable state. Such losses can result in state inconsistencies

and incorrect application behavior. TurboEPC overcomes this challenge by repli-

cating the o✏oadable state across the programmable switches at the data plane,

and the SDN controller implements a failover mechanism to tackle switch failures.

Note that, Cuttlefish does not implement any unique failure management technique

since SDN controller frameworks have inbuilt mechanisms for state replication and

fault management. Cuttlefish relies on these mechanisms instead of reinventing the

wheel.

• Limited memory to store o✏oadable state
Programmable hardware switches have limited memory (few 10’s of MBs) for stor-

ing application states. The o✏oadable state size can be large enough to not fit into

the limited switch memory—for example, the mobile packet core application man-

ages millions of active users ([5, 38]), and it requires 100’s of MBs of memory. It

is not possible to accommodate the context of so many users within a single switch.

To overcome this challenge, TurboEPC partitions the o✏oadable state across mul-

tiple switches, which increases the probability of storing the o✏oadable state for

all users at the data plane. TurboEPC also implements tra�c steering mechanisms

to forward the incoming control messages to the switch where the required state is

stored. This challenge does not apply to Cuttlefish since the o✏oadable state is

stored at the local controllers, and they run in software and have enough memory.

1.5 Thesis contributions 11

Figure 1.3: Contributions.

Note that, given the fixed and limited amount of storage in the programmable hard-

ware dataplanes, the goals of scalability and fault tolerance are conflicting. TurboEPC

prioritizes fault tolerance over scalability since we require the user context to be consis-

tent and available. We address the question of how best to partition user contexts across

multiple programmable switches in §5.3.2.

1.5 Thesis contributions
We now describe our contributions (illustrated in Figure 1.3).

1. Classification of application state
We introduce a new taxonomy of state for SDN applications beyond the existing

notions of global network-wide and local switch-specific states. We classify the

application state either as an o✏oadable state or a non-o✏oadable state. The appli-

cation programmers who wish to use our scalability framework have to classify the

messages (or packets) as o✏oadable and non-o✏oadable. We describe the detailed

state taxonomy with the help of complex real-world applications like the mobile

packet core and guide the classification of application messages in Chapter 3.

2. Cuttlefish: Adaptive computation o✏oad to local controllers
Cuttlefish o✏oads a subset of control plane computations (o✏oadable messages) to

the local controllers, close to the user. This framework manages the synchronization

of the o✏oadable state across the centralized root and local controllers. Further, our

12 Introduction

framework continuously monitors the cost of state synchronization across the cen-

tralized root and local controllers. It dynamically switches between the traditional

centralized and our proposed o✏oad SDN designs to maximize the application per-

formance, in a manner that is transparent to the application. The implementation

and evaluation of the benefits of our design are discussed in Chapter 4.

3. TurboEPC: Computation o✏oad to programmable hardware switches
TurboEPC redesigns the SDN-based mobile packet core, and o✏oads a signifi-

cant fraction of signaling procedures from the control plane to the programmable

data plane (hardware switches), thereby improving the performance significantly.

We implement TurboEPC over P4-based programmable software and hardware

switches, to demonstrate the feasibility of our design. Further details about the

TurboEPC design and implementation are discussed in Chapter 5.

4. Comparison of proposed controller scalability designs with the status quo
We present the quantification of performance gains of our o✏oad frameworks Cut-

tlefish and TurboEPC over traditional centralized design (single-core and multi-

core) and the horizontal scaling SDN design. We also provide a guide for the choice

of the SDN design based on the application and tra�c characteristics. The detailed

performance comparison of all SDN designs is presented in Chapter 6. The code-

base of our work is open-source [39, 40] and is available for innovation.

1.6 Summary
In this chapter, we discussed the evolution of traditional networks to software-defined

networks and introduced the SDN concept along with the benefits and limitations. We

explained the reason for the existence of the SDN control plane scalability problem. We

discussed the existing solution approaches and their limitations. We introduced our ideas

and proposals for a scalable SDN control plane, along with the challenges that we have

addressed, and listed our contributions towards solving the SDN control plane scalability

problem.

The organization of the rest of the thesis is as follows — Chapter 2 provides a com-

prehensive discussion on the SDN control plane scalability background and related work.

Chapter 3 describes the proposed state taxonomy for SDN application, presents a guide

to classify SDN messages, and applies the guide to classify the state of some real-world

applications like the mobile packet core. Chapter 4 presents the design, implementation,

and evaluation of the Cuttlefish framework. Chapter 5 presents the design, implemen-

1.6 Summary 13

tation, and evaluation of the TurboEPC framework. Chapter 6 presents the empirical

performance comparison of the SDN controller designs—the traditional centralized de-

sign, horizontal scaling design, Cuttlefish design (o✏oad to local controllers), and the

TurboEPC design (mobile packet core SDN application o✏oaded to edge programmable

hardware switches). We also provide insights into the choice of an appropriate SDN de-

sign based on the application and tra�c characteristics. Chapter 7 provides insights on

how this work applies to the future 5G mobile packet core and other real-world applica-

tions, and Chapter 8 concludes this thesis.

Chapter 2

Background and Related Work

This chapter covers all the concepts, technologies, and use cases that are the fundamentals

of this thesis. We discuss software-defined networking, which is a new paradigm that

introduces control plane programmability. We also discuss the recent advances that enable

data plane hardware programmability. We describe the mobile packet core use-case since

we will use it to demonstrate the benefits of our proposed ideas. While discussing the

concepts, we also provide related work and di↵erentiate our work from the existing works.

2.1 Software-defined networking
The traditional networking model advocates a tightly coupled control plane and data

plane. The term data plane refers to the commodity network switches that perform the

function of packet forwarding, and the term control plane refers to the program that con-

figures the forwarding rules at the switch tables. The routing protocols like Routing Infor-

mation Protocol (RIP), Open Shortest Path First (OSPF), and Border Gateway Protocol

(BGP) are examples of control plane programs. Due to the tightly coupled design, tradi-

tional networks are unable to satisfy the new generation network requirements. Following

are some of the challenges faced by the traditional networks-

1. Add/upgrade network services. With traditional networks, it is challenging to

write code for new network services or upgrade the existing ones. Along with the

implementation of the network service functionality, the programmer has to man-

ually ensure the compliance of the new service with the existing network policies.

With the increase in the number of services in the network, network application

programming in the traditional networking model becomes very complicated. It

requires enormous time and e↵ort leading to poor revenue models [7].

15

16 Background and Related Work

2. Network device configuration for large-scale networks. Network management

involves configuration and monitoring of vendor-specific network devices that are

physically distributed across the network. Traditional networks either manually

configure the network devices or use vendor-specific interfaces. But, in order to use

vendor-specific interface alone, all the devices should be manufactured by the same

vendor, which may not be true for large networks [7].

3. Real-time network monitoring and control. The traditional networks are not

well-designed to automatically perform network operations like adapting to net-

work load changes or solve network faults in large-scale networks [41]. Traditional

network applications are distributed, and hence they are slow and fail to make real-

time decisions.

Figure 2.1: Traditional SDN architecture

Software-Defined Networking (SDN) is a new networking paradigm that fixes the

challenges of traditional networks. With SDN, the traditional fully distributed networking

control plane model moves towards a centralized model (shown in Figure 2.1). The SDN

control plane is a software capable of running on commodity servers, which makes the

control plane programmable. This software control plane component is known as an SDN

controller. The controller installs the forwarding rules on switches using a South-bound

API like OpenFlow [42], to enable appropriate packet forwarding. All the incoming data

2.1 Software-defined networking 17

packets for which the forwarding rules do not exist at the switch or the control messages

that require control plane processing, are directed to the SDN controller by the switches.

The communication between the SDN controller and the switches helps in maintaining

consistent network visibility at the controller. The applications are written on top of the

SDN controller, and they could utilize the global network view, using the North-bound

APIs.

SDN paradigm proposes a logically centralized control plane that maintains the

global network view, and advocates the use of network abstractions and the standard-

ization of network interfaces. The network-wide view comprises of statistics about the

flows, switches, and the network links for the entire topology. SDN design confers many

benefits [11].

• Centralized network provisioning. SDN applications are o↵ered a unified per-

spective of the entire network. Such abstractions help the programmers to write

centralized network applications that provide services like enterprise management

and resource provisioning.

• Abstraction of networking infrastructure. Network elements like the network

devices, virtual networks (an organizational network provisioned in the cloud with

the hosts as VMs), and network service chains (logical chain of VMs) use the stan-

dard device interfaces for centralized and dynamic configuration and management.

• Granular security. Modern data centers have replaced the typical physical server

machines by virtual machines that run over commodity servers. The use of virtual

machines poses an additional challenge for firewalls and content filters. SDN pro-

vides a central control point for regulating enterprise security and privacy policies.

• Low operational costs. SDN benefits like centralized network administration and

management help cut operating costs. Most services like network configuration,

debugging can be automated using the global network view at the SDN controller.

The amount of manual intervention reduces, thereby resulting in lower operating

expenses (OPEX).

• Low capital infrastructure costs. SDN is implemented using open standards like

OpenFlow, and the SDN controller provides an abstraction for network devices

from multiple vendors, so we do not have to be constrained to a specific vendor

(vendor neutrality). With the increase in network capacity demands, we do not have

to replace the existing network hardware. Existing hardware can be repurposed to

18 Background and Related Work

follow the instructions of the SDN controller. The reuse of existing equipment helps

to reduce the capital expenditures (CAPEX).

• Consistent and timely content delivery. One of the important benefits of SDN is

the ability to quickly, automatically, and dynamically configure the routes for data

tra�c; based on the load on network devices and links. This SDN benefit helps

improved user experience and quality of service (QoS) for real-time applications

like the Voice over Internet Protocol (VoIP).

Along with all the above benefits, SDN-based design has its limitations. With the

increasing tra�c demands, the centralized controller that runs as a software component

can become a scalability bottleneck [13–20, 22–25]. The control plane is split and pushed

away from the data plane, which leads to delayed control plane decisions and a↵ects the

control plane application performance in terms of throughput and latency. The central-

ized controller becomes a single point of failure and introduces reliability and security

challenges. We address the SDN control plane scalability problem in this thesis.

2.2 SDN control plane scalability
The SDN-based networking design can be easily adopted if it can handle the scalability,

throughput, and latency demands of SDN applications. There are three kind of bottlenecks

in an SDN-based network —

• Data plane. The network switches that forward the data packets could become

the bottleneck under high network load. The solution is to increase the number of

switching hardware devices or replace the current switches with a higher capacity

switch.

• SDN controller. The SDN controller is a piece of software running on commodity

servers. The amount of control tra�c that the traditional SDN controller can process

is limited. The control packet that arrives at the controller after saturation is either

dropped or the packet processing latency increases. Researchers have proposed a

variety of controller scalability designs [13–20, 22–25] to solve the SDN controller

capacity problem.

• Switch to controller communication. The control tra�c between the network

switch and the controller can fill the network pipe during heavy control tra�c. Re-

searchers have proposed solutions that avoid frequent tra�c to the centralized con-

troller by processing a subset of the control plane requests at the local controllers

2.2 SDN control plane scalability 19

Figure 2.2: Classification of SDN control plane scalability approaches.

that run at (or close-to) the switches [15–17, 22–25], which reduces the communi-

cation bottleneck.

The focus of our work is to scale the control plane of software-defined networks,

so we discuss the solutions that deal with — (1) SDN controller bottleneck and the (2)

switch to controller communication bottleneck. The existing literature on SDN control

plane scalability can be classified as follows (refer Figure 2.2) —

1. Centralized, multithreaded controller design. Traditionally, SDN controllers

were single-threaded. The most intuitive step towards scalability is to design the

controller as a multithreaded program, to parallelize control tra�c processing (see

Figure 2.3). Beacon [43], Floodlight [44], NOX [45], Maestro [46] are some of the

popular multithreaded SDN controllers. They improve the flow processing capabil-

ities using multiple thread pipelines and shared queues.

Even with the thread parallelism, there is a hard limit up to which a single physi-

cally centralized controller can scale. For large networks, the centralized controller

could be far from the ingress switches—switches through which the tra�c enters

the network. The distance between the ingress switch and the controller is directly

proportional to the control plane response latency.

20 Background and Related Work

Figure 2.3: Centralized, multithreaded controller design.

Figure 2.4: Horizontally distributed controller design

2. Horizontally distributed controller design. The capacity of the centralized con-

troller can exhaust with high-frequency control plane tra�c. One of the solutions is

to horizontally distribute the control plane load over multiple homogeneous con-

troller replicas running at commodity servers (see Figure 2.4). Each controller

replica manages the control tra�c that arrives at a subset of network topology

switches. The SDN control plane becomes scalable and provides better control

plane throughput as compared to the centralized controller design. The controller

replicas should implement strict synchronization mechanisms to maintain the con-

sistent network-wide state, which increases the computation overheads at the repli-

cas. The horizontally distributed controllers can be further classified based on how

the network state is managed, as follows —

2.2 SDN control plane scalability 21

Horizontal distribution without state replication. Devolved Controllers [18] follow

a horizontal distribution where each controller replica manages the subset of the

network, but none of the controllers have a complete network-wide view. This class

of controllers is useful when none of the control applications require a network-

wide view.

Horizontal distribution with state replication. SDN controller designs like

Onix [13], Hyperflow [14], ONOS (Open Networking Operating System) [19], and

Beehive [20] replicate the controller state. All ONOS controller replicas maintain

a consistent network-wide view so that any controller replica can serve any control

plane request. In contrast, Onix, Hyperflow, and Beehive maintain the state that

pertains to the assigned topology subset and implement replication to ensure failure

recovery. Onix is a robust and scalable distributed control platform. It provides

a programmable data structure (Network Information Base (NIB)) for application

programmers to store controller state. Onix o↵ers two kinds of data stores, repli-

cated transactional database, and distributed hash tables (DHT), to support horizon-

tal distribution and hierarchical distribution, respectively. Hyperflow uses multiple

physically distributed NOX controllers, and a subset of data plane requests is as-

signed to each NOX controller. The NOX controllers use Hyperflow’s publish/sub-

scribe messaging system for inter-controller communication. ONOS has evolved

from centralized Floodlight [44] SDN controllers. ONOS supports multiple physi-

cally distributed SDN controller replicas that are logically centralized. The ONOS

framework implements state replication services and consensus techniques to en-

sure a consistent network-wide view and solve the single point of failure problem.

Beehive comes closest to our work, Cuttlefish. Beehive transforms a centralized

controller application into a distributed system. In the case of Beehive, the appli-

cation state is stored at any of the distributed controllers. Every controller runs an

expensive synchronization protocol to maintain a consistent map for the application

state. Beehive applications must query a globally synchronized index to determine

the location of the state required for a particular computation. Locating the appli-

cation state and packet migration requires multiple network stack and application

stack traversals, leading to an increase in packet response times. In contrast, Cuttle-

fish routes messages by identifying the designated controller (where the application

state is available) at the data plane switch itself, which reduces routing delays.

3. Hierarchical controller design. In horizontal distribution, the control plane load

is distributed amongst multiple homogenous, physically distributed, and logically

22 Background and Related Work

Figure 2.5: Hierarchical controller design

centralized controller replicas. However, the control plane requests have to travel

from the switch to the controller, resulting in higher control plane response times.

Hierarchical controller techniques like [15–17, 21–26] scale controllers by o✏oad-

ing certain computations from the centralized root controller to local controllers

that run at (or close to) the ingress switch. Researchers have observed that not

all control plane messages require network-wide state for processing; certain mes-

sages only need local switch-specific state. Applications such as tra�c engineering

require network-wide statistics like flow type, cumulative queue length for each

network path, and link utilization. These statistics are obtained from local switch

counters like the number of active flows, per-flow sizes, average queue length, and

average time spent by the packet at each queue; these statistics change frequently.

In a hierarchical scaling approach (see Figure 2.5), we assign the tasks that require

the network-wide state to the centralized root controller and the tasks that require

the local switch-specific state to the local controllers (close to the switch). This re-

sults in reduced response latencies for o✏oaded computations and switch-controller

network bandwidth savings.

Devoflow [15] and Kandoo [16] propose scalable flow management using a hierar-

chical distribution approach. The key idea is to o✏oad some computations to local

controllers or switches. These proposals expose the APIs for sampling, invoking

triggers, and collection of approximate counters, which can be used by SDN pro-

grammers for applications like elephant-flow detection, multi-path forwarding, and

fault-detection running at the centralized root controller. We now explain the ap-

proach using the tra�c engineering application example from Kandoo. This appli-

2.2 SDN control plane scalability 23

cation implements elephant-flow detection. A flow with a large number of packets

or many huge-sized packets is called an elephant flow. Such flows can lead to star-

vation of the other flows that follow the same path and require special treatment.

The tra�c engineering application comprises two components—(1) Detection of

elephant flows, which requires flow-specific state like average per-flow packet size

and flow length. This state is available at the switch (local state), (2) Reroute the

flows, which requires the complete network topology state (global state). Hence,

the tra�c engineering application can o✏oad the task of elephant flow detection

to local controllers (close to the switch). The centralized root controller computes

network routes when the local controller identifies an elephant flow and triggers

the centralized controller. This decoupled computation setup results in a lower

computation load at the root controller and reduces the network tra�c between the

switches and the root controller.

FOCUS [17] o✏oads a subset of local functions to the switch instead of local con-

trollers. SDN application is written as a set of FOCUS rules that uses FOCUS APIs.

A FOCUS rule comprises of a tuple <trigger, action-list> which is similar to Open-

flow’s <match, action> paradigm. The FOCUS agent sits in between the switch

OS and the Openflow agent and executes actions when the corresponding trigger

is invoked. Like FOCUS, Eden [25] distributes the processing of control packets

partially at the switch and the rest at the end host. Eden tags the packets with

the message type, and the data plane switch decides whether the message is pro-

cessed using the switch match+action tables, or the message should be forwarded

to the host application for processing. Difane [21] controller dynamically gener-

ates a set of rules to satisfy network policies, and caches pre-computed forwarding

rules across a subset of local switches, to avoid expensive communication with the

controller when new flows arrive. The pre-installed rules comprise management

tasks like access control, measurement, and routing at the intelligent switches. The

data plane switch processes the incoming packets by applying the o✏oaded rules,

reducing the load at the centralized root controller, and reducing response latency.

Hierarchical controller proposals like D-SDN [22] and B4 [23] provide additional

services at the local controllers. D-SDN implements mechanisms for security and

fault-tolerance for local controllers. B4 is a hierarchical controller for the tra�c

engineering (TE) application, where the ONOS-based local controllers collect local

network information and pass this information to the global centralized controller.

B4 implements fault tolerance at both the local and centralized controllers and ap-

plies Paxos for failure detection and recovery. Expresso is Google’s hierarchical

24 Background and Related Work

controller framework that allows Google to dynamically choose the server location

from where the content for individual users must be served. This decision is based

on real-time measurements of end-to-end network connections.

Hybrid design. The hierarchical scaling approach is useful only when the control plane

application performs frequent computations based on switch-specific local state. If appli-

cations require the network-wide state alone, then the horizontal scaling approach should

be used. Proposals like Orion [47], SPARC [48], and MARS [49] implement hybrid

scaling techniques to experience the best of both horizontal and hierarchical scaling tech-

niques. Orion scales the routing application by o✏oading the static component to the

local controllers. SPARC defines a high-level language for dynamic o✏oad of policy pro-

cessing between the horizontal and hierarchical controllers. MARS implements adaptive

network management. It uses machine learning to allocate the load to the horizontal and

hierarchical controllers.

Our proposals, Cuttlefish and TurboEPC, advocate a modified version of the hi-

erarchical scaling framework. Apart from o✏oading the computations that require lo-

cal switch-specific state, we also o✏oad computations based on a subset of the global

state, which we call o✏oadable state (defined at §1.3) to local controllers (Cuttlefish)

or hardware programmable switches (TurboEPC). We call such computations as o✏oad-

able. The computations that are processed at the centralized root controller are called

non-o✏oadable. The amount of computation o✏oad is a lot more than the existing hi-

erarchical controller proposals; therefore, many computations are taken away from the

centralized controller, which leads to control plane scaling and a significant reduction in

response latencies. Since our design o✏oads computations based on a subset of the global

state to the local controller, we require synchronization of o✏oadable state between the

root and local controllers.

State distribution frameworks. Some of the control plane scalability designs that we

have discussed in this section require to maintain a consistent network-wide view. To do

so, we require a framework for state distribution and management. The techniques used

in our proposal (Cuttlefish) to manage distributed state across root and local controllers

are similar to ideas used in frameworks [50–53] that manage the distributed state in net-

working applications. Split/merge [50] provides a state management API to applications

for managing scale-up and scale-down operations. The state is transparently split between

the middlebox (a network function VM) replicas for scale-up and merged to one replica

for scale-down. OpenNF [51] improves split/merge by providing options for loss-free,

and ordered state updates between the middlebox replicas. On the other hand, the goal of

Pico replication [52] is to provide a low overhead, high availability framework for mid-

2.3 Dataplane programming 25

Table 2.1: Fields recognized by the OpenFlow standard [4].

Version Date Header fields
OF 1.0 Dec 2009 12 fields (Ethernet, TCP/IPv4)
OF 1.1 Feb 2011 15 fields (MPLS, inter-table metadata)
OF 1.2 Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)
OF 1.3 Jun 2012 40 fields
OF 1.4 Oct 2013 41 fields

dleboxes. To dynamically grow or shrink the number of SDN controllers, Elasticon [53]

proposes a switch migration protocol and enables load shifting between controllers. Some

ideas of Cuttlefish, including the state management API and the protocol to guarantee or-

dered message delivery when migrating between controller modes, have been inspired by

this body of literature.

2.3 Dataplane programming
The data plane is a forwarding element that processes packets. It takes a packet as an

input, matches the packet header fields with the forwarding table rules to derive the cor-

responding action (forward/modify/drop), and decides where to send the packet. A tradi-

tional data plane hardware device (e.g., fixed-function switches) comprise of a dedicated

ASIC (Application-Specific Integrated Circuit) with the packet forwarding logic fixed at

design time and has configurable forwarding tables. A typical ASIC is designed to process

standard packet headers like Ethernet, IP, VLAN, and GRE. The packet header structure

and the stages of the packet processing pipeline are also fixed at design time. The action

to be taken on a rule match is chosen from the fixed set of actions defined at design time.

The data plane programmer may want to define a custom wire protocol, or a cus-

tom packet header structure, or a custom encapsulation technique, or add more packet

processing actions to the fixed-function devices. For such customizations, the data plane

programmer must approach the hardware vendor who would take a few months to provide

you with the new device. Such upgrades to fixed-function devices lead to wastage of both

the time and resources, and lacks flexibility. We want the data plane programmer to have

the ability to define the packet processing logic independent of the underlying hardware.

The programmer should also have the ability to reprogram with a di↵erent logic on the

same device.

26 Background and Related Work

Figure 2.6: The abstract forwarding model.

2.3.1 A step towards dataplane generalization

Software-defined networks introduce network programmability with the use of the

OpenFlow [42] API to configure and program the data plane devices. The OpenFlow

standard explicitly specifies the set of protocol headers that can be configured for the data

plane device. Table 2.1 depicts that the set of header fields defined by OpenFlow standard

has been growing over the years (from 12 to 41 fields), thereby increasing the complex-

ity of the OpenFlow specification. The OpenFlow standard improves the flexibility as

compared to fixed-function devices, but does not provide the flexibility to the program-

mer to add new fields to the OpenFlow specification. The requirement of new headers

and header fields is increasing. For example, the data centers continuously evolve their

packet encapsulation techniques (e.g. NVGRE [54], VXLAN [55], and STT [56]), and

these techniques may not be supported by the existing data plane switches. Therefore,

data centers fall back to the software switches like Open vSwitch [57], OVS-DPDK [58],

BESS [59], VPP [60], and VALE [61]. These switches are unable to run at line-rate of

100s/1000s of Gbps hence become a performance bottleneck for simple data plane for-

warding.

The networking research community has proposed programmable switches [4], and

Figure 2.6 depicts the abstract model for such switches. Now, we describe the work-

flow of the abstract forwarding model. The packet incident at the switch ingress is first

handled at the parser. The packet body is assumed to be stored in the device bu↵ers

and is unavailable for matching. The parser extracts the fields from the packet headers

2.3 Dataplane programming 27

as defined by the programmable parser. The extracted header fields are then passed to

the ingress and egress match+action tables. The match+action tables perform matching

with the rules in the table, and the corresponding action is processed. Both the ingress and

egress match+action modify the packet header, but the ingress determines the egress (out-

put) port and the output queue for the packet. The match+action tables can be arranged

in series, parallel, or combination of both. The next stage of the packet is determined

by the output of the previous match+action table. Based on the ingress processing, the

packet may be forwarded, dropped, replicated, or recirculated. Packets can carry addi-

tional information between stages, called metadata, which is treated identically to packet

header fields. Some examples of metadata include the ingress port, timestamp that can be

used for packet scheduling, and user-defined data that the user wishes to pass between the

tables.

Two types of operations control the forwarding model: Configure and Popu-

late. Configure operations include programming the device parser, setting the order of

match+action stages, and specifying the header fields processed by each stage. Con-

figuration determines which protocols are supported and how the switch may process

packets. Populate operations add (and remove) the entries to the match+action tables that

were specified during the configuration. Match+action table entries determine the policy

applied to packets at any given time.

In contrast with OpenFlow, the abstract forwarding model generalizes the

following— (1) OpenFlow assumes a fixed parser, whereas this abstract model supports

a programmable parser that allows new header/protocol definitions. (2) OpenFlow as-

sumes match+action tables in series, whereas this abstract model provides flexibility. (3)

The abstract model allows the definition of new actions that are protocol-independent and

supported by the switch. The abstract model generalizes how packets are processed in dif-

ferent forwarding devices like Ethernet switches and routers. These devices can be either

fixed-function switch ASICs, Network Processor Unit (NPU), reconfigurable switches,

Field-Programmable Gate Array (FPGA), or the software switches.

The abstract forwarding model forms the basis for recent programmable hardware

switches [36, 37] that can forward tra�c at terabit speeds while being highly customiz-

able. Programming the hardware is not easy since each hardware executes the low-level

machine language. But, the generalization provided by the abstract forwarding model

is useful in designing a high-level language for programming the data plane devices, P4

(Programming Protocol-independent Packet Processors) [4].

28 Background and Related Work

Figure 2.7: P4 is a language to configure switches.

2.3.2 Dataplane programming tools — P4 and P4Runtime

P4 is a domain-specific language that defines the data plane pipeline formally. P4

can be used to program network devices like the programmable hardware ASIC (Intel

Flexpipe [62], Cisco’s Doppler [63], Cavium’s Xpliant [64], Barefoot Tofino [36]), NPU

(Netronome Agilio CX [37], EZchip [65]), FPGA (Xilinx [66], Altera [67]), and CPU-

based software switches (Open Vswitch [57], eBPF [68], DPDK [69], VPP [60]). P4

can describe fast pipelines for hardware data plane targets (or devices) and slow pipelines

for software data plane targets. It can be used to program both programmable devices

and fixed-function devices. Figure 2.7 shows how P4 and Openflow can program the

data plane targets [4]. A user writes the data plane program for the target in P4 language

that specifies both packet processing and the initial match+action table configurations. In

contrast, the vendor-specific or open APIs like OpenFlow are designed to populate the

forwarding tables alone, since the packet processing logic is fixed at design time. The

data plane components that can be customized using P4 are as follows —

• The packet processing pipeline. The programmer can define the lifecycle of any

packet by specifying a custom set of match+action stages that a packet has to pass

through.

• The packet parser. The programmer can define a new packet header format and

define a packet parser for the same.

2.3 Dataplane programming 29

Figure 2.8: Programming a target with P4.

• The match+action tables. A traditional switch has configurable forwarding tables.

But with the programmable switch hardware, the programmer can define custom

tables that are used to match packet metadata.

• The actions. The programmer can define custom actions beyond typical ‘forward’

and ‘drop’.

P4 has three main goals—

• Reconfigurability. The data plane programmer should be able to reconfigure the

data plane packet parsing and processing via the controller.

• Protocol independence. The switch should not restrict itself to a fixed set of pro-

tocols and packet formats. The programmer should be able to define custom packet

formats, custom actions, and custom match+action tables via the controller.

• Target independence. The data plane P4 program should be agnostic to the un-

derlying programmable hardware target (or device), i.e., the same P4 program can

be compiled for di↵erent data plane targets. The vendor-defined compiler should

consider the capabilities of the target switch, and convert a target-independent de-

scription (written in P4) into a target-dependent program (used to configure the

switch).

Figure 2.8 shows a typical workflow when programming a device using P4. Devices

vendors provide the software runtime framework for dynamic communication between

the control and data plane (example, p4Runtime), the architecture definition, and a P4

compiler that translates the P4 code to the target-specific binary code and configuration.

30 Background and Related Work

P4 programmers write the data plane programs (with the target capabilities and limitations

in mind) that describe the working of the P4-programmable device components, and their

external data plane interfaces.

The P4 compiler compiles a set of P4 programs and generates two artifacts [70] —

(1) A data plane configuration like the packet parser and match+action table configura-

tion. (2) An API to manage the data plane state from the control plane. The API is used to

insert, update, or delete table entries, provide serialized packet transfer between control

and data plane (packet-in/packet-out), and modify vendor-specific extern objects.

Compared to the traditional fixed-function packet processing systems, P4 provides

the following benefits [70] —

• Flexibility. P4 makes many packet forwarding policies expressible as programs.

• Expressiveness. P4 can express sophisticated, hardware-independent packet pro-

cessing algorithms using basic operations and table look-ups. Such programs are

portable across hardware targets that implement the same architectures (assuming

su�cient resources are available).

• Resource mapping and management. P4 programs define the storage resources

abstractly as variables (e.g., source MAC address). The compilers map such user-

defined fields to available hardware resources and manage low-level details such as

allocation and scheduling.

• Software engineering. P4 programs provide important benefits such as type check-

ing, information hiding, and software reuse.

• Component libraries. Component libraries supplied by manufacturers can be used

to wrap hardware-specific functions into portable high-level P4 constructs.

• Decoupling hardware and software evolution. Programmable device manufac-

turers may use abstract architectures to decouple further the evolution of low-level

architectural details from high-level processing.

• Debugging. Manufacturers can provide software models of the architecture to aid

in the development and debugging of P4 programs.

P4Runtime: a control plane API to configure the data plane.
We have discussed the utility of the P4 programming language. It helps in describing

the working of the data plane components at a higher level of abstraction. We now de-

scribe P4Runtime [71], a target-independent and architecture-independent control plane

2.3 Dataplane programming 31

Figure 2.9: P4Runtime reference architecture.

API that enables the communication between the control plane and the data plane. The

P4Runtime API is used to configure the packet processing pipeline of the data plane,

initialize the data plane entities like the match+action tables, and update the data plane

entities at runtime from the controller. We now discuss the components of the P4Runtime

reference architecture, as shown in Figure 2.9.

The P4-enabled (programmable) switch can be controlled by one or more con-

trollers, using the multi-controller protocol implemented by P4Runtime. This multi-

controller feature helps to build distributed and high-availability P4Runtime controller

designs. To avoid the race conditions, we can have only one controller authorized with

write access to any data plane entity (e.g., tables, counters, and meters), and the switch

pipeline configuration. This controller is called the master controller. The rest of the

controllers have read-only access and are called slave controllers. If the master controller

fails, one of the slave controllers is elected as the master. A role-based arbitration scheme

is implemented by P4Runtime to manage controller roles.

The P4Runtime API defines the messages and semantics of the interface between the

client(s) (controller) and the server (switch target). The client-server communication uses

the General Purpose RPC (gRPC) [72] protocol. The P4Runtime API is specified by the

Protobuf file, p4runtime.proto, which is available on GitHub as part of the standard [73].

The p4runtime.proto file is compiled using the Protobuf compiler to produce both client

32 Background and Related Work

and server implementation stubs for a variety of languages. It is the responsibility of target

implementers to instrument the server. Server implementations for some of the P4 target

devices that support P4Runtime are available at the p4lang/PI GitHub repository [74].

We now discuss the necessary components to configure a P4-enabled switch. P4

compiler backends are developed for each unique target by the device vendors. The P4

compiler compiles the user-defined set of P4 programs. It ensures that the code is com-

patible with the specified target and rejects the incompatible code. The P4 compiler gen-

erates as output, the P4 device configuration (device-specific), and the metadata (target-

independent as well as architecture-independent). The metadata describes the overall

program as well as all entity instances (tables and extern instances) derived from the P4

program. The P4 compiler assigns each entity instance unique numeric ID. This identi-

fier is used as a “handle” by the P4Runtime API calls to access and manage the entity

instances. The map of the entity IDs with the P4Runtime entity messages is referred to as

the “P4Blob”.

The ForwardingPipelineConfig captures data needed to realize a P4 forwarding-

pipeline and map various IDs passed in P4Runtime entity messages.

P4Runtime controller takes the output of the P4 compiler for the initial configura-

tion of the data plane target. A P4Runtime controller chooses a configuration appropriate

to a particular target device and installs it via a SetForwardingPipelineConfig RPC. A

controller can also query the device configuration from the target via the GetForwarding-

PipelineRequest RPC. The pipeline configuration obtained from a running device helps

to synchronize the controller to its current state. We can also use P4Runtime API with

fixed-function devices. The controller does not program the target with the device config-

uration but uses the P4info file that describes the P4Runtime API messages to configure

the device. As part of the business requirement, some device vendors may want to keep

the P4 source code private. In such cases, the controller only needs a P4info file to render

the correct P4Runtime API, and remotely configure the target device.

We have seen that the P4Runtime API provides a flexible architecture for commu-

nication between the control and data planes. P4Runtime is currently in its adolescent

phase and is likely to provide many more exciting features in the future.

2.3.3 In-network application computation

The focus of in-network computing is to compute tasks within the network, using

the existing network forwarding devices. The recent research on programmable network

hardware (ASICs, NPUs, and FPGAs) allows the programmer to implement and accel-

erate the user-space applications by o✏oading application computations to the hardware.

2.3 Dataplane programming 33

Figure 2.10: Classification of literature on in-network application computation.

High-level languages like P4 can be used to write the application code that can be com-

piled for the programmable forwarding hardware. The availability of high-level program-

ming language and compilers for the target hardware acts as a catalyst to attract program-

mers to explore in-network computing. Next, we discuss the existing body of work (see

Figure 2.10) where applications achieve significant performance benefits by o✏oading

the computations to programmable data plane hardware.

One of the popular applications is the In-band Network Telemetry (INT) [75]. INT is

an abstraction where the data packets at the switch query the switch state, such as queue

size, link utilization, and queuing latency. This switch state is appended to the packet by

every switch on the network route. When the packet reaches the designated destination,

the network switch state appended to the packet is forwarded back to the monitoring node.

Such real-time state monitoring can help the evolution of use-cases like network conges-

tion control, tra�c engineering, link failure detection, and verification of network flows.

Marple [76], an alternative to INT, presents a query language with familiar constructs like

map, filter, group-by, and zip for network performance monitoring. The query is compiled

and run at the data plane, and the statistics are sent back to the controller. Another popular

use-case implemented at the data plane is the heavy-hitter flow detection [77–79]. Flows

with large tra�c volumes are called as heavy-hitters. Identification of heavy-hitters is

essential for several applications like flow-size aware routing, DoS detection, and tra�c

engineering.

Data centers typically employ hundreds or thousands of servers to load-balance in-

coming tra�c over application servers. Some researchers implement the stateful load-

balancers [80–82] within the data plane, which reduces the latency and saves server re-

sources. Some researchers [83, 84] have implemented the slow consensus algorithms

34 Background and Related Work

like Paxos to the data plane to accelerate them. Solutions like Netcache [85] and KV-

Direct [86] accelerate the access to the key-value store by caching the hottest key-value

entries at the data plane switches. The high-speed switches process the high frequency

read queries for these entries at line-rate, and the load on the key-value servers reduces

significantly. Solutions like Blink [35] and Wharf [87] detect link failures at the data plane

to quickly detect major tra�c disruptions and early failure recovery. AccelTCP [88] im-

plements a portion of the TCP stack on the data plane switches to accelerate the stateful

processing of TCP flows. SwitchML [89] saves the network bandwidth by o✏oading the

task of workflow aggregation to the data plane switches for machine learning applications.

Few proposals [90, 91] o✏oad the GTP header encapsulation and decapsulation process-

ing to the data plane edge switch of the mobile packet core. Molero.E [92] demonstrates

the possibility of accelerating the control plane functions like failure detection/notifica-

tion via o✏oad to the programmable data plane. We observe that data plane programming

research has provided acceleration benefits to a wide range of applications.

Our work TurboEPC takes this line of work one step further and proposes the o✏oad

of frequent and o✏oadable signaling mobile packet core procedures to the programmable

switches. We provide a guide that helps identify the o✏oadable computations in Chap-

ter 3.

2.3.4 Can we o✏oad any application to programmable hardware
dataplane?

After observing the benefits obtained by the existing literature, you may want to

ask the question — Can I o✏oad my application computations to the data plane hard-

ware? To answer this question, we present Table 2.2 that lists the limitations (based on

the hardware constraints) [70, 77] on the type of computations that can be processed on

the programmable data plane device. If we can program (and compile) the application

considering these limitations, we can o✏oad it.

To get the sense of what application computations can be o✏oaded, let us understand

the constraints faced by some of the existing o✏oaded applications (Figure 2.10).

• Applications that o✏oad the key-value store operations (Netcache [85] and KV-

direct [86]) observe limited memory constraints. The data center comprises billions

of key-value items, but we have on-switch storage for about 64K entries [85]. Also,

the system is limited by the number of write operations due to low switch table

update rates (point 9, Table 2.2). These systems use intelligent algorithms to utilize

the limited resources optimally.

2.3 Dataplane programming 35

Programmable dataplane hardware constraints

1. The programmable dataplane hardware has memory limitations.

(a) There is limited amount on-switch memory (10s of MB [36, 37, 93]).

(b) There a limit on number of per-packet accesses to memory storing state at each pipeline stage (typically just one
read-modify-write).

(c) There is a limit on amount of memory available per pipeline stage.

(d) Register memory in one stage cannot be accessed by a packet at other stages, to avoid hazards caused by concur-
rent accesses by packets at di↵erent stages [94].

2. There is a limit on the number of packet processing pipeline stages.

3. There is a limit on the time budget (1 ns [95]) to manipulate state and process packets at each stage. This is to ensure
line-rate performance.

4. There can be no stalls during packet processing since the data plane switch commits to line-rate performance, i.e., the
packet cannot wait at any stage for data or completion of other tasks, it has to move from one stage to the other at every
clock tick.

5. We can move most packets just once through the each pipeline to avoid stalls and reduced throughput.

6. The code should not have any loops, and it cannot be recursive. This constraint ensures a deterministic number of pipeline
stages and hence adheres to the line-rate performance commitment.

7. The match field items within the parsed packet should not be encrypted.

8. The application state can be stored at the switch tables or registers, but they have a limit on the maximum width.

9. The update rate at the commodity switches is much lower compared to the commodity servers. For example, Noviflow
switches [93] support table update rates of 10K entries per second.

10. The target may not support all possible arithmetic operations. For example, operations such as multiplication, divi-
sion, polynomials or logarithms may not be supported. Some architectures may only support multiplication with small
constants, or shifts with small values due to operand constraints.

11. Floating point arithmetic is not supported.

12. Arithmetic operations may be supported on an integer number of bytes due to alignment and padding constraints.

Table 2.2: Programmable dataplane hardware limitations.

• O✏oad of heavy-hitter detection requires the switch to maintain state over multiple

packets at line-rates of 10-100 Gbps. The application needs to maintain the state

for millions of flows, and the state manipulations are pipelined over multiple stages

(points 1–4, Table 2.2). Hashpipe [77] proposes new algorithms and data structures

to o✏oad the heavy-hitter application with an acceptable compromise for accuracy.

• Machine learning computations are di�cult to o✏oad as they require complex

arithmetic such as multiplication, polynomials, and logarithms; they operate over

floating-point data. An example machine learning component, feature extraction,

requires the packet to iterate through the pipeline. These constraints refer to points

1, 5,10, and 11 of Table 2.2). Some machine learning solutions [89, 96] design

intelligent techniques and o✏oad selective computations to the dataplane. For ex-

36 Background and Related Work

Figure 2.11: Traditional EPC architecture with unified control and data planes.

ample, switches do not support logarithm operations, but we can easily compute

log(x * y) if log(x) and log(y) are known.

• TCP flow processing functions can be broadly classified as follows, based on the

complexity. (1) Complex functions such as reliable data transfer (handling ACKs),

packet retransmission on inferring losses, tracking received data for flow reassem-

bly, enforcing congestion/flow control, and detecting errors. (2) Functions such

as checksum o✏oad, connection setup/teardown, and blind relaying of packets be-

tween two connections requiring no application-level intervention. The second set

of functions are either stateless with a fixed processing cost or somewhat stateful.

AccelTCP [88] selectively o✏oads the latter.

2.4 The mobile packet core
This section describes the use-case, the 4G LTE EPC (Long Term Evolution Evolved

Packet Core) [97], which we have used to demonstrate the benefits of our control plane

scaling designs, Cuttlefish and TurboEPC. We have chosen EPC because it is an example

of a popular and complex SDN application covering all the state and compute patterns

found in other applications too.

2.4.1 The mobile packet core architecture

Figure 2.11 shows the architecture of the traditional 4G mobile packet core. The

“access network” is the part of a telecommunications network that gives the mobile user

access to the telecommunications services. Multiple such access networks are connected

together via the backbone which is known as the “core network”. The core network also

provides the gateway to the other networks. The mobile network core connects the radio

2.4 The mobile packet core 37

access network, consisting of user equipments (UEs) and the base stations (eNBs) with

other packet data networks, including the Internet. The main components of the mobile

network core and their basic functions are described below —

Home Subscriber Server (HSS). HSS is a global database that contains subscriber re-

lated information like the subscriber identifiers, the security keys for confidentiality and

integrity, and the current subscriber location. HSS also provides support for mobility

management, call and session setup, user authentication, and access authorization.

Mobility Management Entity (MME). MME is the control plane component of the EPC

architecture. It is responsible for signaling between the eNBs and the core network. MME

authenticates UEs using the subscriber security state stored with the HSS. MME keeps

track of the UE’s location and state, which helps handover of UEs between the eNodeBs.

MME is also involved in bearer (user plane connection) activation and its deactivation

procedures. It also chooses the SGW for a UE during UE registration, or relocation (han-

dover). MME generates and allocates temporary UE identities, GUTI (Globally Unique

Temporary Identifier), authorizes the UE, and enforces UE roaming restrictions if there

are any. MME can also support Lawful Interception (LI) of user signaling.

Serving Gateway (SGW). SGW connects the radio (wireless) mobile network with the

core network. It deals with the data plane function of forwarding the IP data tra�c be-

tween the UE and the packet data network. It is also the anchor point in case of handover

between the eNodeBs. The IP data tra�c is encapsulated within the core network us-

ing the GPRS Tunneling Protocol (GTP). Since SGW is the component on the packet

forwarding path within the core network, it has to implement GTP-based packet forward-

ing. For GTP implementation, SGW has to assign a unique identifier for each UE flow

—Tunnel End-point Identifier (TEID), and also configure the forwarding, encapsulation,

and decapsulation rules for the UE tunnels at the network switches. The TEID assignment

and rule configuration operations require the SGW to intercept and process the signal-

ing messages sent by the UE during the session establishment (or termination) process.

Therefore, SGW implements both the control plane as well as the data plane functions.

Packet data network Gateway (PGW). PGW is the point of interconnection between the

mobile core network and the external IP networks (a.k.a, Packet Data Network (PDN)).

The functions of PGW are the same as that of the SGW. Additionally, the PGW also per-

forms the functions of allocation of IP address and IP prefix, policy control, and charging.

Similar to SGW, PGW also implements both the control plane as well as the data plane

functions.

To enable independent scaling of the control and data plane logic in the S/PGWs,

the later releases of 4G LTE espoused the Control and User Plane Separation (CUPS)

38 Background and Related Work

Figure 2.12: Traditional CUPS-based EPC architecture.

principle. The concept of the split of the control plane components from the data plane

hardware switches is termed as software-defined networking in IP networks, whereas the

telecom domain terms it as CUPS. Therefore, the CUPS-based EPC design benefits from

the advantages of SDN design that we have seen in §2.1. Figure 2.12 shows the LTE

EPC architecture with CUPS; the S/PGWs are separated into control and data plane enti-

ties, which communicate using a standardized protocol called PFCP (Packet Forwarding

Control Protocol [98]). The eNB communicates with the SGW over the S1 interface in

the user (or data) plane. The MME and the SGW communicate over S11 interface in the

control plane, whereas the SGW and the PGW communicate over S5 interface in the user

and control planes using GTP-U and GTP-C protocol respectively.

The upcoming 5G standard fully embraces the CUPS principle, as shown in Fig-

ure 2.13. In the 5G core, the Access and Mobility Management Function (AMF), Session

Management Function (SMF), and other components handle signaling tra�c in the con-

trol plane. In contrast, the User Plane Function (UPF) forwards tra�c in the data plane.

The control and data plane components once again communicate via PFCP.

In this thesis, we base our discussion of Cuttlefish, and TurboEPC on the CUPS-

based EPC architecture shown in Figure 2.12. We assume that the MME and the control

plane components of the S/PGWs are implemented atop an SDN controller, and the data

plane of the S/PGWs is implemented in SDN switches. Our ideas easily generalize to the

5G architecture, as well as other CUPS-based EPC implementations, e.g., if the control

plane components were to be standalone applications.

2.4 The mobile packet core 39

Figure 2.13: The 5G mobile packet core architecture.

2.4.2 The LTE EPC procedures

We first describe the process of forwarding the IP data packets between the UE and

the packet data networks (Internet) in a mobile network. The packet routing from the UE

up to the packet data network is the responsibility of the components that implement the

data plane of the cellular network, viz., eNB, SGW, and PGW. The mobile network uses

the GTP protocol that encapsulate the user data packets between the mobile core entities

when passing through the mobile packet core.

GTP over traditional IP-based routing. GTP is used over traditional IP-based routing

since it provides several benefits —

• It is hard to handle user mobility using IP-based routing since the IP address

changes with the location, and the data packets on the route are dropped. In con-

trast, in the case of GTP, when the UE is mobile, its IP address remains the same

as it is not used for forwarding. The packets are forwarded using GTP tunnel iden-

tifiers provided between the PGW and eNB via the SGW. Hence, GTP provides

mobility.

• A single UE can use multiple tunnels to obtain di↵erent network QoS.

• UE’s IP address remains hidden, so tunneling provides security.

GTP-based tunneling in mobile networks. GTP packets can be of three types, GTP-C,

GTP-U, and GTP’. GTP-C is the control part of the GTP, and it is used for core network

signaling like bearer activation, deletion, or modification. GTP-U is used in the user

40 Background and Related Work

Figure 2.14: Encapsulated GTP packet.

plane to carry user tra�c in mobile networks. GTP’ has the same structure as GTP-C and

GTP-U, but it is used to carry charging (billing) information within the mobile network.

We describe the GTP packet (refer Figure 2.14) to further understand the process of

tunneling data packets within the mobile network. The GTP header consists of Tunnel

Endpoint Identifiers (TEIDs) that uniquely identify the path of a user’s tra�c through the

core. The S/PGWs in the core network route the data plane tra�c based on the TEID

values. Separate TEIDs are generated for both the datapath links (eNB-SGW and SGW-

PGW), and for both the directions of tra�c (uplink and downlink). When a user’s IP data

packet arrives from the wireless network at the eNB (uplink), it is encapsulated into a

GTP packet, which is then transmitted over UDP/IP, first between the eNB and the SGW

uplink tunnel, and then between the SGW and PGW uplink tunnel. The egress, PGW,

decapsulates the GTP header before forwarding the user’s data to external networks. The

downlink packets destined for the UE that arrive at the PGW follow the reverse process.

User (UE) control and user plane connections. Note that we have simplified certain

EPC-specific terms, for easier understanding of concepts. Figure 2.15 shows the con-

nections established in user/control planes and the states maintained in the corresponding

planes. To support tra�c transmission between the user and the network (UE through

PGW), the bearer (user plane) and signaling (control plane) connections are established.

The radio bearer is the user plane tunnel (GTP-U) between the UE and the eNB, which

is identified using bearer identifiers for both uplink and downlink communications. The

S1 bearer is the user plane tunnel between the eNB and SGW that identified by the tunnel

identifiers S1 SGW-TEID (uplink) and S1 eNB-TEID (downlink). The S5 bearer is the

user plane tunnel between the SGW and PGW that is identified by the tunnel identifiers

S5 PGW-TEID (uplink) and S5 SGW-TEID (downlink). The mobile network establishes

the signaling connections for control plane communication between; (1) UE and MME

using radio+S1 connection, (2) SGW and MME using S11 connection, and (3) SGW and

PGW using S5 connection.

Connection states at the UE and MME. We now discuss the connection states at the UE

and the MME under the active and idle UE conditions. When the UE is registered with

2.4 The mobile packet core 41

Figure 2.15: UE’s connections and states in the EPC network.

the network and is active, the UE and the MME are in Registered and Connected state,

while the UE and eNB are in Radio-Connected state. If the UE does not send any data for

a few seconds (inactive), the UE is considered to be idle. Under idle conditions, the radio

and S1 bearer resources are released. The UE and the MME are now in Registered, but

Idle state. The UE and eNB are in the Radio-Idle state.

LTE EPC control plane procedures. A mobile user (UE) requires multiple services

from the mobile network like network accessibility and seamless mobility. A procedure

is a logical task or a service that the user needs from the EPC network. For example, after

the UE is switched ON, it has to register with the network to access network services, and

this is done using the “attach” procedure. In this section, we briefly discuss the LTE EPC

control plane procedures listed in Table 2.3. We have not described the policy control

functions carried out by the PCRF (Policy and Charging Rules Function), since we do

not implement the PCRF function in our prototype. Note that the core network performs

several other procedures beyond those discussed here; however, this description su�ces

to understand our work.

Attach procedure. When a UE connects to an LTE network for the first time, the initial

message sent from the UE via the eNB triggers the attach procedure in the mobile packet

42 Background and Related Work

Table 2.3: LTE EPC control plane procedures.

Procedure Description Workflow
Attach UE registers with the mobile network Figure 2.16
S1 release Deactivates the data channel (S1) when UE is idle Figure 2.17
Service req Activates the data channel (S1) when UE becomes active Figure 2.19
Detach UE is de-registered from the network Figure 2.20
Handover Manage the UE’s connection when UE changes its location Figure 2.21

Figure 2.16: The attach procedure.

core. Figure 2.16 shows the components of the attach procedure, and the solid circles at

each component indicate the EPC nodes that are involved in the processing.

1. The MME identifies the UE using the global identifier, IMSI (International Mobile

Subscriber Identity), and learns about the security algorithms supported by the UE,

and proceeds to the next step, authentication.

2. The UE and the network mutually authenticate each other using the user state

stored in the HSS. The authentication procedure consists of the following two steps:

(1) Authentication Vector (AV) acquisition (2) mutual authentication between the

MME and the UE. AV comprises of (a) RAND, a random number used as a seed

to the security algorithms, (b) AUTN (Authentication Token) used by the UE to

authenticate the network, (c) XRES (eXpected Response) used by the mobile net-

work to authenticate the UE, and (d) KAS ME (ASME: Access Security Management

2.4 The mobile packet core 43

Entity) is an intermediate master key used to derive the rest of the security keys.

The HSS generates an AV by using the LTE master key in the IMSI, and sends

it to the MME. The MME sends RAND and AUTN to the UE, but keeps XRES

and KAS ME for user authentication and security key derivation, respectively. The

UE generates the AV using the RAND, authenticates the network by comparing the

generated AUTN with the AUTN sent by MME, and sends the generated response

(RES) to the MME. The MME compares the XRES value with the RES sent by

the UE to authenticate the user. The UE and the mobile network are now mutually

authenticated.

3. In the NAS security setup phase, the MME selects ciphering and integrity algo-

rithms and informs the UE about the choice of algorithms. Both the UE and MME

independently derive the integrity key and the encryption key from KAS ME.

4. The MME sends UE’s IMSI, and MME identifier to the HSS, to notify UE’s suc-

cessful registration and obtain UE’s subscription information. The HSS registers

the UE’s location, and replies to MME with the message that includes: (1) The

Access Point Name (APN) that the UE subscribes to, i.e., the data network name.

(2) The subscribed PGW ID which determines the PGW through which the UE can

access the subscribed APN. (3) Subscribed QoS profiles that contain UE’s informa-

tion like the minimum and maximum uplink/downlink bandwidth that the UE can

have.

5. Finally, the MME sets up the state required to forward user tra�c through the core

at the eNB, SGW, and PGW that are on the path from the user to the external

packet data network The MME allocates the network/radio resources such that the

user’s subscribed QoS is satisfied. The eNB, SGW, and the PGW set up the radio

bearer, S1 bearer, and S5 bearer, uplink and downlink channels. PGW allocates

an IP address to the UE to access the external network. All the connection states

at the UE and MME are set to be active, i.e., Registered, Connected, and Radio-

Connected. The UE is now successfully registered with the core network, and the

UE’s data channel is functional.

S1 release procedure. If the UE goes idle without sending data for a certain duration

(usually 10-30 seconds [99]), a S1 release procedure is invoked to release the unused

resources. Figure 2.17 shows the components of the S1 release procedure.

1. The SGW releases the S1 bearer, with all the uplink/downlink S1 bearer resources

associated with the UE, but retains the uplink S1 SGW-TEID state. So, when the

44 Background and Related Work

Figure 2.17: The S1 release procedure.

Figure 2.18: Connections and states in the EPC network after S1 release processing.

uplink packets arrive, the eNB can obtain the uplink S1 SGW-TEID from the MME

(Service Request procedure), and deliver the packets through the S1 bearer without

delay. After the release of eNB resources at the SGW, if downlink packets destined

to the UE arrive, the SGW bu↵ers them and delivers them only after the downlink

S1 bearer is re-established.

2. The eNB deletes all UE context and releases the radio bearer channels.

3. The MME deletes all eNB related information (address and TEIDs) for the UE, but

retains the rest of the UE’s MME context, including the uplink S1 SGW-TEID. The

MME updates the UE’s connection state as Idle. With this, the S1 release procedure

2.4 The mobile packet core 45

is successfully completed. Figure 2.18 shows UE’s state and its connection state

after the processing of the S1 release procedure.

Service request procedure. During the S1 release procedure, the UE resources related

Figure 2.19: The service request procedure.

to data communication are released at the eNB and SGW of the core network. Later,

when the UE becomes active (UE-initiated service request), or the network wants to send

data to the UE (Network-initiated service request), we need to reassign the previously

released bearer resources. In this thesis, we have implemented the UE-initiated service

request. The details of network-initiated service request procedure are available at [97].

Figure 2.19 shows the components of UE-initiated service request procedure.

1. The MME and eNB perform the optional security setup procedures. An uplink path

is set up from the UE up to the PGW, which includes the radio and S1 bearer.

2. eNB allocates downlink radio and S1 tunnel identifiers, and the downlink bearer is

established. This allows delivery of downlink tra�c from the PGW up to the UE.

3. The MME and the UE updates the UE’s connection state as active (Connected).

This marks the successful completion of the service request procedure.

Detach procedure. The detach procedure disconnects the UE from the network.

46 Background and Related Work

Figure 2.20: The detach procedure.

1. The detach procedure can be either initiated by the MME, or the HSS, or the UE.

The MME initiates a detach procedure under the following conditions: (1) operator

maintenance process, (2) authentication failure, (3) lack of resource availability, or

(4) poor radio link quality. The HSS initiates a detach procedure if: (1) the user

profile stored at the HSS has changed, so the profile at the MME has to be changed,

(2) the operator is trying to restrict access to an illegal UE (stolen UE). The UE can

initiate the detach procedure due to the following cases: (1) if UE is turned o↵, (2)

if the USIM card is removed from UE, or (3) if UE is attempting to use a non-EPS

service (e.g., SMS). Figure 2.20 shows the UE-initiated detach procedure.

2. The UE, MME, and the eNB release all the resources allocated to the UE, including

the control and data connections and the UE context.

Handover procedure. When a UE moves from one network location to another, it trig-

gers a handover procedure (refer Figure 2.21) in the core. The handover procedure is

invoked under multiple cases: (1) eNB changes, but the SGW is the same (intra-SGW

handover), (2) SGW changes, but the MME is the same (inter-SGW handover), and (3)

MME changes (inter-city handover). We describe the inter-SGW handover callflow in

Figure 2.21 as we have implemented this handover case. The other handover cases and

their details are available at [97].

1. The UE measures the signal strength of its serving cell and neighbor cells. The mea-

surement value is either periodically reported to the eNB, or when a measurement

event is triggered. When the signal strength of a neighbor cell becomes higher than

2.4 The mobile packet core 47

Figure 2.21: The inter-SGW handover procedure.

that of the UE’s serving cell, and the di↵erence is higher than the handover margin,

the handover procedure is triggered by the eNB. The handover margin is used to

avoid the ping-pong e↵ect, and is calculated using hysteresis by the EPC network.

The ping-pong e↵ect refers to repeated handovers between the same two cells.

2. During the handover preparation phase, the source eNB and the target eNB prepare

for a handover. The source eNB sends the UE’s context to the target eNB. If the

target eNB is capable of satisfying the service quality, it establishes a downlink

packet forwarding bearer.

3. During the handover execution phase, the handover process is carried out. The UE

disconnects the radio link from the source eNB and connects to the target eNB. The

resources are allocated for packet forwarding between (1) the two eNBs, and (2)

new resources for the UE are allocated at the target eNB for radio and downlink S1

bearer. The downlink packets for the UE are forwarded to the target eNB and are

bu↵ered there until UE successfully completes the handover.

4. The MME determines that the SGW is relocated and selects a new SGW. The target

SGW allocates S1 SGW-TEID and S5 SGW-TEID, for the uplink and downlink

tra�c respectively. The MME confirms the path switch to the target eNB, and it

starts using the new SGW’s address for forwarding subsequent uplink packets. The

target eNB informs the success of the handover to source eNB. The source eNB and

MME release the resources associated with the old path.

48 Background and Related Work

5. The new UE location information is updated with the HSS. The UE is now success-

fully connected to the target location.

2.4.3 Scalability solutions for the mobile packet core

We have briefly introduced the mobile packet core application in §2.4.2. With the

SDN (or CUPS) paradigm, a logically centralized software control plane of the mobile

packet core can potentially become a performance bottleneck. We observe that the sig-

naling tra�c in the mobile network is growing rapidly [100, 101], fueled by smartphones,

IoT devices, and other end-user equipment that frequently connect to the network in short

bursts. In fact, the signaling load in LTE is 50% higher than that of 2G/3G networks [100],

and would grow much more with the adoption of the 5G technology. This high signaling

load puts undue pressure on the packet core, making it di�cult for operators to meet the

signaling tra�c SLAs [102]. The research community has suggested several approaches

to solve this control plane scalability challenge. We classify and explain the existing

approaches and di↵erentiate our work from them.

Horizontal scaling of mobile packet core. Some controllers like SCALE [103], Mo-

bileStream [104], and MMLite [105] use the technique of horizontal scaling, where the

incoming control plane tra�c is distributed amongst multiple homogeneous SDN con-

trollers, which cooperate to maintain a consistent view of the shared global network-wide

state amongst themselves using standard consensus protocols.

Optimizations to the EPC protocol. Mobile control plane scalability solutions like

DPCM [106], CleanG [107], Pozza et al. [108], and Raza et al. [109] modify the EPC

protocol, such that they reduce the number of messages exchanged between the UE and

the core network, or some of the EPC messages that were processed sequentially, are

now parallelized. Such optimizations reduce the overall turn-around time for EPC control

plane message processing, and thereby improves EPC throughput and scalability. Solu-

tions like the PEPC [110] and Heikki et al. [111] refactor the EPC state to reduce the

interprocedural communication and the overhead of state transfer costs, to scale the mo-

bile packet core.

Hierarchical scaling of the mobile packet core. All of the above scalability solutions

run at the mobile core network, which is a few tens of milliseconds away from the user. All

the mobile control plane messages have to travel to the core network, resulting in higher

response time delays. To cope with this, DMME [112] and Balakrishnan et.al [113], use

hierarchical scaling to o✏oad the attach and handover control plane procedures to local

SDN controllers that are located close to the eNB and the UE. Therefore, the response

latencies for the o✏oaded functions are reduced by several orders of magnitude. Soft-

2.5 Summary 49

cell [114] proposes the solution to accelerate the 4G data plane forwarding via the o✏oad

of the packet route installation task to the edge switch. They further minimize the for-

warding table size by aggregating the flow rules within the switch. While this work is

primarily focused on optimizing the data plane processing, our work TurboEPC acceler-

ates the control plane via the o✏oad of signaling message processing to the edge switch.

Our proposal, TurboEPC is inspired by hierarchical SDN controllers. TurboEPC

proposes refactoring of the mobile core intending to o✏oad a subset of the control plane

processing to programmable data plane switches closer to the end-user. However, it is

quite di↵erent from them. First, we apply the idea of o✏oading computation from SDN

controllers to data plane switches in the CUPS-based mobile packet core. Second, the

traditional hierarchical SDN controllers o✏oad the computations based on local switch-

specific state, whereas TurboEPC also o✏oads computations that depend on specific type

of global state. We classify the signaling procedures of the mobile packet core into two

classes, based on the type of state accessed during the processing. For example, attaching

a user to the network entails authenticating the user using a network-wide subscriber

database, and setting up the forwarding path of the user under mobility requires access

to the global network topology. The signaling procedures like the S1 release and service

request access the user context of a single subscriber, and do not access any network-

wide global state. The S1 release and service request procedures comprise ~63–90% of

the total EPC tra�c distribution. Hence, TurboEPC o✏oads the control plane processing

of the frequent S1 release and service request procedures to the programmable switches,

thereby providing significant throughput and latency benefits. This existing body of work

is orthogonal and complementary to our work, and TurboEPC can leverage these control

plane optimizations for the processing of non-o✏oadable messages at the root controller.

2.5 Summary
We have described the concepts of software-defined networking, data plane programming,

and the mobile packet core. SDN concepts are necessary to understand all of our work,

whereas the data plane programming concepts are necessary to understand our TurboEPC

work. The mobile packet core application is the use-case that we use to demonstrate the

e↵ectiveness of both our ideas, Cuttlefish and TurboEPC.

While describing the basic concepts, we have also discussed the research problems

and the solution approaches that prior work has considered. We have provided a clear

di↵erentiation of our work from the existing solution approaches in this chapter.

Chapter 3

State Taxonomy of SDN applications

We have discussed the SDN control plane scalability designs in Chapter 2. Our proposed

designs are based on the hierarchical scaling approach, where we o✏oad subset of the

application computations and the corresponding state from the centralized root controller

to the local controllers or switches. The programmer has to identify the application com-

putations and states that can be o✏oaded to the local controllers, to achieve application

scalability. The o✏oad of the application state should not introduce state inconsistencies

at the centralized root controller, and the application’s correctness should not be compro-

mised. So, it is necessary to have guidelines on what application states and computations

can be o✏oaded locally.

In this chapter, we describe the application state classification proposed by the ex-

isting hierarchical scaling designs, but we believe that the classification is not complete.

So, we propose a new state taxonomy for SDN applications and illustrate the state classi-

fication process for real-life examples. We also provide a comprehensive guide that helps

the programmers to classify the application state.

3.1 Application state taxonomy
The hierarchical control plane scaling techniques like Devoflow [15], Difane [21], Kan-

doo [16], Eden [25], and FOCUS [17] o✏oad the subset of the application computations

from the centralized controller to the local controllers or switches, close to the user. Fig-

ure 3.1 shows the typical hierarchical scaling design where the control plane computations

that require local state alone are processed locally, and the ones that depend on the global

state are forwarded to the centralized controller for processing. This additional o✏oad

of control plane computations close to the user increases the control plane capacity and

reduces the response latency.

51

52 State Taxonomy of SDN applications

Figure 3.1: Hierarchical control plane scaling.

3.1.1 State taxonomy proposed by existing hierarchical solutions

To incorporate the hierarchical scaling approach in SDN control applications, the

application programmer should identify the computations that can be o✏oaded to local

controllers. For this purpose, the existing hierarchical solutions classify the application

state as follows —

• Local state. The state that is either available at the network switches or can be

derived from the switch state is called the local state. Let us take the example of the

tra�c engineering application that we discussed in §2.2. Among the other tasks,

the tra�c engineering application detects elephant flows. An elephant flow is a

long-lived flow with a large number of packets or consists of many huge-sized pack-

ets. The network flows arrive into the network through the ingress switch, and the

switch maintains the state for each flow. Some examples of the flow-specific state

maintained at the switch include the flow length counters, average packet size, and

counters for packets whose size is above a particular threshold (huge-sized packets).

This flow-specific state is the local state for the tra�c engineering application, and

the application detects the elephant flows when one of the flow counters exceeds

a threshold value. Therefore, the computations required to detect elephant flows

require local state alone and can be o✏oaded to the local controllers or switches.

3.1 Application state taxonomy 53

• Global state. The state that has a network-wide scope, and can be accessed concur-

rently from any network location is called the global state. For example, in case of

the tra�c engineering application discussed above, new routes are computed once

an elephant flow is detected. The route computation process requires the global net-

work topology information (global state). Such computations cannot be o✏oaded

locally, so they run at the centralized controller. In case of LTE-EPC application

discussed in §2.4, the application uses the global security key database, HSS, for

mobile user authentication, confidentiality, anonymity, and integrity. The mobile

user can be authenticated from any network location, and this state can be accessed

concurrently from multiple network locations during the handover process. So, the

HSS state is also an example of a global state, and the computations that depend on

this state cannot be o✏oaded.

3.1.2 Our state taxonomy proposal

The control plane scalability designs proposed in this thesis, Cuttlefish and Tur-

boEPC, are based on the hierarchical control plane scaling approach. Existing hierarchi-

cal scaling solutions o✏oad computations based on the local state alone; while we take a

step forward and o✏oad computations based on some global state too. We propose a new

state taxonomy for SDN applications as follows —

Non-o✏oadable state. The global network-wide state that can be accessed concur-

rently from multiple network locations is called the non-o✏oadable state. As the non-

o✏oadable state can be concurrently accessed from multiple network locations (multiple

edge switches), we maintain this state at the centralized root controller and assure the

consistent view across locations. Any computation that depend on such state should be

processed at the centralized controller. For application scalability, the non-o✏oadable

state should be replicated consistently across horizontally scaled centralized controller

replicas. The network topology state for the tra�c engineering application and the HSS

state of the EPC application that we discussed in the existing state taxonomy are examples

of non-o✏oadable state.

O✏oadable state. We observe that apart from the o✏oad of computations that depend

on the local switch-specific state, we can also o✏oad certain computations that depend

on the particular type of global state (e.g., session specific state), to the local controllers

or switches. We define o✏oadable state as the state that is accessed from only a single

network location (edge switch) That is, all the control plane messages access this state

from the same network edge at a particular time. Examples of such state include switch-

local state and some types of session-specific application state. The switch state like the

54 State Taxonomy of SDN applications

local counters (switch-specific) used by the tra�c engineering application, is one of the

examples of the o✏oadable state. We will now discuss more examples of o✏oadable state

that are not just switch-local state.

The Open Networking Foundation (ONF) advocates deployment of the virtual (soft-

ware) network functions controlled by a software-defined network [115]. We describe a

few network functions that can benefit from SDN and also comprise of o✏oadable state.

The Network Address Translation (NAT) application allows multiple connections of the

private network to access the Internet through a small set of public addresses. The NAT

application processes any new outgoing client connection (flow) from the private network.

NAT application assigns a public address (IP+port) to this connection. The assigned pub-

lic address replaces the private address (IP+port) of the outgoing packet, and the address

map (private address, public address) is inserted into the NAT table. After this, when a

response packet for this flow enters the private network, the public address is replaced by

the private address by looking up into the NAT table. Similarly, when the subsequent flow

packets leave the private network, the NAT table is used to replace the private address

by the public address. The client NAT table entry is valid for the lifetime of the flow.

The NAT application can use hierarchical scaling as follows. The centralized controller

partitions the public IP addresses from the global address pool and o✏oads them to the

local controllers or gateway switches. The local controller or the gateway switches run the

NAT application to create and maintain the flow-specific NAT table state to perform ad-

dress translation of network flows. The NAT table state cannot be accessed concurrently

from multiple network locations (packets of a flow enter/leave via the same gateway).

Hence, it is an example of an o✏oadable state.

Next, let us look at the virtual private network (VPN) tunneling protocols like Open-

VPN, which build a secure tunnel for the users accessing the private network from the

outside. The tunneling protocols use robust encryption techniques to prevent the user’s

data from being intercepted at the public network. During the connection setup process,

the VPN application at the user and the network agrees upon the security keys and algo-

rithms. After the connection is successful, all the packets communicated between the user

and the private network are encrypted using the user’s security state. Since all user packets

enter the network through a single ingress gateway, we can correctly o✏oad the per-user

security state, and computations like tunnel encapsulation, decapsulation, encryption, and

decryption to the local controllers/edge switches. The centralized controller maintains the

global master keys and the policy state (non-o✏oadable state) for all the network users

to create the user security state during the initial handshake. The connection-specific

3.1 Application state taxonomy 55

Figure 3.2: Proposed hierarchical control plane scaling.

security state is an example of an o✏oadable state as it cannot be accessed or updated

concurrently from multiple locations.

In case of 4G LTE-EPC application (discussed in §2.4), the session-specific state of

the UE like the forwarding state (tunnel identifiers like S1 SGW-TEID) and the connection

state (Connected or Idle) are good examples of o✏oadable state. The UE forwarding state

comprises of the tunnel identifiers (TEIDs) that are valid until a change in UE location or

connection release. The UE connection state identifies if the UE is idle or connected to

the network. The UE accesses and updates these states from a single network location;

hence these states are o✏oadable. We discuss the detailed state taxonomy for the EPC

application, and few other SDN applications in §3.2.2 and §3.2.3.

We have to be careful when we classify some session-specific state as o✏oadable.

Any state shared across sessions cannot be o✏oaded if that state can be accessed across

multiple sessions. If such state is o✏oaded, it can be simultaneously updated by mul-

tiple sessions from di↵erent network locations, leading to race conditions and incorrect

application behavior.

56 State Taxonomy of SDN applications

3.1.3 Proposed hierachical o✏oad design

Figure 3.2 shows the design of our proposed hierarchical scaling design, where subset

of the global state that is identified as o✏oadable, is cached at the local controller or the

switch. After that, all the control plane computations that depend on o✏oadable state

alone (o✏oadable computations), are processed at the local controller/switches (close to

the user). The centralized controller processes the computations that depend on some non-

o✏oadable state (non-o✏oadable computations). The amount of computation o✏oad is

much more than that of the traditional hierarchical scaling approach since the o✏oad-

able state also includes the subset of the global state. The additional o✏oad of control

plane computations to local controllers/switches significantly improves the control plane

capacity and reduces the response latency compared to traditional hierarchical scaling

techniques.

But, this additional state and computation o✏oad comes with a side e↵ect. The

side e↵ect of the proposed o✏oad technique is that the copy of the global state at the

local controller/switch should be synchronized with the centralized controller (and vice-

versa) to ensure state consistency. Following are the challenges of our proposed o✏oad

approach—

1. The non-o✏oadable messages at the root controller modify the o✏oadable state,

and the o✏oadable messages at the local controllers/switches access the stale state.

2. The o✏oadable state copy is modified at the local controllers/switches, and the

non-o✏oadable messages (at root controller) might access the stale state.

3. The o✏oadable state is accessed from one location, but the location of the end-user

may change.

4. The local controllers or switches might fail, taking the latest copy of the o✏oadable

state along with them.

Therefore, it is necessary to keep the o✏oadable state at the centralized root con-

troller synchronized with the local o✏oadable state. Our proposed systems, Cuttlefish and

TurboEPC, solve these challenges in the following way. For case (1) mentioned above,

we implement strict synchronization mechanisms so that the o✏oadable messages access

the correct o✏oadable state (similar to write-through). For case (2), we implement lazy

synchronization mechanisms (similar to write-back), i.e., the non-o✏oadable message

that requires access to the o✏oadable state initiates on-demand synchronization opera-

tion. For case (3), the session’s last control message is responsible for on-demand state

3.2 What application computations can be o✏oaded? 57

synchronization. For case (4), we must implement state replication techniques at the local

controllers/switches. We should carefully choose the o✏oadable global state to avoid un-

desirably high synchronization costs. We provide guidelines for choosing the o✏oadable

state and computations for an application, in §3.2.1.

3.2 What application computations can be o✏oaded?
We have proposed two hierarchical control plane scaling designs, Cuttlefish and Tur-

boEPC. In case of Cuttlefish, we process the o✏oadable computations at the local con-

trollers, whereas in the case of TurboEPC, we process them at the programmable hardware

switches. We provide a guide for application programmers that help the identification of

o✏oadable application messages for local controllers as well as programmable switches.

3.2.1 Guide to identify o✏oadable messages

The application messages that do not access any state (stateless) are o✏oadable. For

every control message of the SDN application that accesses some state, test the following:

Essential conditions (to guarantee correctness)

1. All the states accessed by the message are o✏oadable. The state is said to be of-

floadable if the following conditions are satisfied.

• The state is never updated (read-only).

• The state is either switch-local or has session-wide scope.

• The state is not accessed concurrently from multiple network locations.

2. In the case of o✏oad to hardware programmable switch targets, we also need to

ensure that the programmable target should support the computations required for

the message processing. The programmable target could be an ASIC, an NPU, an

FPGA, or a software switch. The detailed checklist to determine o✏oad to hardware

programmable targets is provided at §6.5.1.

Desirable qualities (to improve performance)

1. The message should span a significant fraction of total tra�c, else the e↵ort of

o✏oad implementation is wasted.

2. The o✏oadable state accessed by the message should not be frequently updated by

the non-o✏oadable messages at the centralized root controller. Otherwise, the state

synchronization cost will negate the benefits of o✏oad.

58 State Taxonomy of SDN applications

If the control message satisfies the essential conditions, then the message is said to

be o✏oadable. But, in order to achieve high performance, the control message should

also have the desirable qualities. The first desirable quality measures the benefit of the

o✏oad, whereas the second quality measures the cost of the o✏oad. An o✏oad decision

must be taken only if the benefits outweigh the costs.

To implement the hierarchical design, whenever the o✏oadable state is generated at

the centralized controller, it should be cached at the local controllers or switches. After

that, we should update the rules at the switching devices such that all the incoming of-

floadable messages are routed to the corresponding local controller/switch. We apply our

proposed guidelines to a few popular SDN-based applications and classify their applica-

tion state so that they can utilize the benefits of our proposed hierarchical design.

3.2.2 Identify o✏oadable messages for LTE EPC application

We have provided a guide on the conditions that a control message should satisfy

to be the right candidate for o✏oad. Now, we shall apply the rules illustrated in the

guide to real-life applications. We have described the details of the CUPS-based LTE

EPC application in §2.4 and its architecture is shown in Figure 2.12. In the traditional

CUPS-based EPC model, all the signaling (control) messages are processed by the MME,

SGW, and PGW control components that reside at the centralized SDN controller. To

apply our hierarchical scaling technique, we classify the EPC state as o✏oadable and

non-o✏oadable. The o✏oadable computations are processed at the SGW switch (close to

the user) to reduce the load at the centralized controller.

Table 3.1 shows the various components of the per-user state, or user context, that

is accessed by LTE procedures [97]. We identify the part of the user context that has

network-wide scope (shaded rows in the table) as the non-o✏oadable state. A piece of

user context has network-wide scope if it is derived from, or depends on, network-wide

information.

The security keys of the user include the master key (KAS ME), the cipher key (CK),

the integrity key (IK), the authentication key (AV), the NAS encryption key (KNAS enc),

and the NAS integrity key (KNAS int). The IMSI (International Mobile Subscriber identi-

fication) and MSISDN (Mobile Subscriber ISDN Number) are the permanent identifiers

that provide the unique international identification for the mobile subscriber. The secu-

rity keys and the permanent identifiers are derived from information that is located in

the centralized HSS database and hence have a network-wide scope. The IP address has

network-wide scope as it is assigned from the global address pool. This address pool

can be concurrently accessed by messages from multiple locations. The registration man-

3.2 What application computations can be o✏oaded? 59

EPC state Description Examples network-wide
OR per-user

O✏oadable
(Y/N)

Security keys Used for user authentication, authoriza-
tion, anonymity, confidentiality

KAS ME , CK, IK, AV, KNAS enc,
KNAS int

network-wide N

Permanent identifiers Identifies the user globally International Mobile Sub-
scriber Identity (IMSI), Mobile
Subscriber ISDN Number
(MSISDN)

network-wide N

Temporary identifiers Temporary identity for security Globally Unique Temporary ID
(GUTI), Temporary Mobile Sub-
scriber Identity (TMSI)

per-user Y

IP address Identifies the user UE IP address network-wide N

Registration
management state

Indicates if the user is registered to the
network

REGISTERED,
DEREGISTERED

network-wide N

Connection
management state

Indicates if the user is currently idle or
connected

IDLE, CONNECTED per-user Y

User location Tracks the current location of the user Tracking Area (TA), TAI (TA
identifier)

per-user Y

Forwarding state Used for routing data tra�c within the
packet core

Tunnel end-point identifiers
(TEID)

per-user Y

Policy/QoS state Determines policies & QoS values Guaranteed Bit Rate (GBR),
Maximum Bit Rate (MBR)

per-user Y

Table 3.1: Classification of LTE EPC state.

agement state of the mobile user tells whether the user is currently registered with the

network. This state can be accessed concurrently by multiple messages, like: (1) the

user registration request (attach) or user registration termination request (detach), (2) the

network (MME/HSS) can terminate the connection if the user’s policy is modified, and

(3) messages for management tasks like network load calculation, that maintain count of

registered users in an area, and so on. Therefore, the registration management state has

network-wide scope.

On the other hand, the temporary identifiers GUTI (Globally Unique Temporary

Identity) and the TMSI (Temporary Mobile Subscriber Identity) are assigned by the net-

work when the user connects to a network location and this state changes when the user

changes its location. The temporary identifier state is session-specific, and this state can-

not be concurrently accessed from multiple locations, hence it is o✏oadable. The con-

nection state of a user (whether connected or idle) is only changed based on local events

at the eNB (whether radio link is active or not), and hence has local scope. The user lo-

cation, the user policies, or the QoS state pertains to a specific user (per-user state). This

per-user state can be safely o✏oaded to the network location where the user is connected.

We have classified the EPC application state as non-o✏oadable (network-wide) and

o✏oadable (per-user, session-wide). Now, let us classify the EPC application messages.

Table 3.2 shows the various user states that are accessed during the processing of each

60 State Taxonomy of SDN applications

Message Security
keys

Perm
id

Temp
id

IP
address

Registration
mgmt state

Connection
mgmt
state

User
location

Forwarding
state

Policy
/ QoS
state

Freq
(%) [5,
6]

Attach r+w r r+w r+w r+w r+w r+w r+w r+w 0.5 – 1

Detach — r r+w r+w r+w r+w r+w r+w — 0.5 – 1

Service
request

— — r+w r — r+w — r+w — 30 – 46

S1
release

— — r+w r — r+w — r+w — 30 – 46

Handover r+w r r+w r r+w r+w r+w r+w r+w 4 – 5

Table 3.2: Classification of LTE EPC control messages.

LTE EPC procedure, along with the relative frequencies of each procedure. A procedure

consists of multiple messages exchanged in a sequence. The shaded cells represent the

states with network-wide scope (non-o✏oadable) that are updated by the EPC procedures.

We see from this table that the set of messages in the S1 release and service request

procedures modify only: (1) the connection management state (from CONNECTED to

IDLE and vice versa), (2) the forwarding state (GTP tunnel identifiers), and (3) the tem-

porary user identifiers, none of which have the network-wide scope. Note that a given

user is only connected to one eNB at a time, and any changes in user location are no-

tified to the core via suitable signaling messages (e.g., handover). If the user location

changes, the o✏oadable state is synchronized with the state at the centralized controller

to ensure consistent state access. Also, the o✏oaded state at the local controller/switch is

deleted. Therefore, it is safe to o✏oad some parts of the user context to the edge close

to the current eNB without worrying about concurrent access to this state from other net-

work locations. All states accessed by the S1 release and service request procedures are

o✏oadable (non-shaded rows of the Table 3.2).

Our hierarchical design, Cuttlefish, implements the o✏oad over local SDN con-

trollers, but TurboEPC implements the o✏oad over programmable hardware. We exam-

ined and found that the S1 release and service request procedures can be programmed

using P4 language for the programmable data plane targets (tested for bmv2 software

switch [116] and Netronome smartNIC target [117]).

Both S1 release and service request procedures span a considerable fraction of traf-

fic, 30% to 46% each. Therefore, if we o✏oad the per-user, o✏oadable state to local

controllers or data plane switches closer to the eNB edge, the S1 release and service re-

quest procedures can be processed locally without being forwarded all the way to the

centralized controller. The o✏oad of the S1 release and the service request procedures

3.2 What application computations can be o✏oaded? 61

to the edge is particularly useful because of the high proportion of these messages in the

already high LTE signaling tra�c [5, 6, 100, 101].

The handover procedure results in a change in the location from where the o✏oad-

able state is accessed. The non-o✏oadable handover procedure requires access to the

o✏oaded state, as well as the non-o✏oadable state. The handover request triggers the

synchronization of the o✏oaded state with the centralized controller, and the local state

is deleted. But the handover procedure spans a tiny fraction of the total tra�c (4–5%).

The attach and detach procedures create and delete the per-user o✏oadable state at the

centralized root controller, that triggers the synchronization of the o✏oaded state with the

local controller/switch. But these procedures span a fraction of less than 2% of the total

tra�c. Therefore, the o✏oad costs are lower as compared to the o✏oad benefits.

We have identified S1 release and service request procedures as o✏oadable proce-

dures of the LTE EPC application.

3.2.3 Identify o✏oadable messages for stateful load balancer

In this section, we introduce the SDN-based stateful load balancer application and

illustrate the state classification so that the application can achieve scalability benefits by

using our proposed hierarchical design. Consider a simple stateful load balancer that bal-

ances the incoming connections among the pool of servers, based on the current load on

the servers (measured by, say, the current number of ongoing connections at the servers).

If this application were to be implemented within the SDN framework, the load bal-

ancer application running at the centralized root controller would perform the following

computations— (1) maintain server load statistics, (2) assign a least loaded server to the

client, upon the start of a new connection, (3) install forwarding rules to direct tra�c to the

assigned server for all subsequent packets of the connection after connection setup, and

(4) add/remove servers from the pool to dynamically provision resources during server

overload and underload conditions. Our description of the load balancer application is

somewhat simplistic, but it captures the essence of real implementations.

The centralized SDN-based stateful load balancer application can be overwhelmed

with the growth of the incoming connections, and the increase in the number of servers

among which these connections are to be balanced. Now, if this application were to be

designed for a hierarchical SDN controller framework like Cuttlefish or TurboEPC (see

Figure 3.3), one possible way to o✏oad the computations could be as follows:

• The centralized controller partitions the “global server pool” and assigns a subset

of servers (local server pool) to each local node (controller/switch).

62 State Taxonomy of SDN applications

Figure 3.3: Hierarchical SDN-based stateful load balancer.

• The local nodes periodically queries each server assigned to the local server pool,

and receives the number of active client connections at each server and the server

utilization. This state is stored as “server load statistics”. If any server is found

overloaded or underloaded, the local node triggers the corresponding notification to

the centralized controller.

– The centralized controller queries the server load statistics from all the local

nodes.

– In case of an overload condition, if there are underutilized servers with some

local server pool, the centralized controller moves the servers across local

pools. Otherwise, the controller spawns a new server instance and assigns it

to the overloaded local server pool.

– In case of an underload condition, the centralized controller removes an un-

derloaded server instance from the local and global server pools.

• The first and the last client packets from a client are processed by the local node.

When the first packet arrives, the local node identifies the least loaded server from

3.2 What application computations can be o✏oaded? 63

State Description Example O✏oadable
(Y/N)

Global server pool List of active servers among
which the load is balanced

{(server IP, server port), ... } N

Local server pool Subset of active servers
assigned to local con-
troller/switch

{(server IP, server port), ... } N

Server load statistics Current load level at each
server

number of active connections,
utilization

Y

Connection map Stores mapping between client
connection and assigned server

{(client (IP/port), server (IP/-
port)), ...}

Y

Table 3.3: Classification of stateful load balancer state.

“server load statistics” and assigns it to the client. This client-server mapping is

stored in the “connection map” state, and the forwarding rule is installed at the

edge switch so that the switch forwards all consecutive client packets to the assigned

server. The local node deletes the “connection map“ entry when the last packet is

received from the client.

Table 3.3 shows the state classification for the stateful load balancer application. All

the states are stored at the controllers as key-value pairs. The shaded rows in the table

denote non-o✏oadable states. The server pool state (global and local) is non-o✏oadable

since provisioning and maintenance of servers require network topology information. The

“server load statistics” state is o✏oadable since the server statistics are maintained for the

assigned set of servers by the local node. The “connection map” state is valid for the

lifetime of the client flow (session-wide), and this state cannot be accessed concurrently

from multiple locations. So, the “connection map” state is o✏oadable.

Table 3.4 shows the stateful load balancer application layer messages and the corre-

sponding states accessed by them. We refer to the proposed o✏oad guide mentioned in

§3.2.1 to identify the o✏oadable messages of the stateful load balancer application. The

shaded cells of the Table 3.4 show the non-o✏oadable state that is updated by the load

balancer messages. All the messages that do not update the non-o✏oadable state (shaded

cells in the table) are o✏oadable. Therefore, “query server statistics”, “install forwarding

rules” messages, and all incoming client packets are o✏oadable. “Assign local server

pool”, “Update local/global server pool”, and “Overload or underload trigger” messages

update the non-o✏oadable state; therefore, these messages are non-o✏oadable and must

be processed by the application that runs at centralized root controller. The frequency

of client packet processing and periodic collection of local server statistics (o✏oadable

64 State Taxonomy of SDN applications

Message Global
server
pool

Local
server
pool

Server
load
statistics

Connection
map

Assign local server pool r+w r+w — —

Query server statistics — r r+w —

Overload or underload trigger r+w r+w r —

Update local/global server pool r+w r+w — —

First client packet — r r r+w

Last client packet — r — r+w

Install forwarding rules — — — r

Other client packets — — — —

Table 3.4: Classification of stateful load balancer messages.

computation) is much higher than that of overload/underload condition processing (non-

o✏oadable computation). Therefore, the cost of synchronizing the local server pools

(o✏oad cost) is lower than the number of independent computations at the local nodes

(benefit of o✏oad).

We have not implemented the o✏oad for the load balancer application over the hard-

ware switches. We believe that it is possible to program the o✏oadable messages over

programmable hardware since all the messages require simple computations and access

key-value states. We have implemented the hierarchical stateful load balancer o✏oad

design for local controllers as one of the use cases of our proposal, Cuttlefish.

Note that several other network functions like stateful firewalls, stateful intrusion

detection systems, NAT routers, and DNS can be decomposed into hierarchical SDN ap-

plications in this manner—a subset of application computations and corresponding state

can be o✏oaded across local controllers, with each local controller handling part of the

global state pertaining to its network location or tra�c.

3.3 Summary
We have discussed the state taxonomy implemented by the traditional hierarchical solu-

tions for application computation o✏oading and proposed a new application state taxon-

omy and an improved hierarchical o✏oad design, to improve the application scalability

over the status quo. We have provided a guide for the identification of o✏oadable state

and computations. We apply this guide to classify the state of the real-life applications, the

3.3 Summary 65

SDN-based LTE EPC, and the stateful load balancer. Although we have only illustrated

two examples, the o✏oad guide is generic and can be applied to any SDN application.

Chapter 4

Adaptive O✏oad of SDN Applications
to Local Controllers

We have discussed the SDN control plane scalability problem and the existing literature on

the scalability solutions in §2.2. In this chapter, we present the design and implementation

of our proposed system, Cuttlefish, that advances the state-of-the-art hierarchical control

plane scaling techniques.

4.1 Problem description
The existing literature on SDN control plane scalability has broadly classified the scal-

ability solutions into horizontally distributed controllers and the hierarchical distributed

controllers (§2.2). In the case of horizontally distributed SDN controllers, the incoming

control plane tra�c is distributed amongst multiple homogenous controllers that run con-

currently over commodity servers. These controllers should be tightly synchronized to

maintain the logically centralized network view. This design results in wastage of CPU

cycles due to state synchronization. The control plane response latency is high since the

control packets traverse all the way from the ingress switch up to the controller for pro-

cessing. The existing hierarchical distributed controller design splits the control plane

computations between the centralized root controller and multiple local controllers de-

ployed close to the switch/user. This design o✏oads the application computations that

only depend on the local switch-specific state to the local controllers, thereby scaling the

SDN control plane and results in reduced lower response time latency for control plane

tra�c. Since the local SDN controllers store local state alone, there is no need for state

synchronization with the centralized controller.

67

68 Adaptive O✏oad of SDN Applications to Local Controllers

(a) Centralized mode. (b) O✏oad mode.

Figure 4.1: SDN operation modes.

The hierarchical distributed controller design is favorable compared to horizontally

distributed controller design. However, not all control plane applications process a signif-

icant proportion of tra�c that depend only on the local state; therefore, this design applies

only to a small class of applications. The next section talks about the key idea of Cuttle-

fish, and it provides insights on how we can generalize the hierarchical scaling design and

cater to a larger class of SDN applications.

4.2 Key idea, challenges, and contributions
We ask the key question: Can we increase the number of computations that can be of-

floaded to local controllers compared to the existing hierarchical control plane scalability

solutions? To address this problem, we have proposed a new state taxonomy (described in

§3.1.2) and a modified hierarchical o✏oad design (described in §3.1.3). We define an ad-

ditional class of SDN application messages that can be o✏oaded to the local controllers,

i.e., the o✏oadable messages—messages that depend only on o✏oadable state (superset

of local switch-specific state). The increase in the amount of o✏oadable messages lowers

the computation overhead at the centralized root controller, resulting in higher control

plane capacity. The local controllers reside close to the edge switch, thereby reduces the

latency for the SDN applications.

To utilize the benefits of additional computation o✏oad, we define two modes of

operation for an SDN application, the o✏oad mode (Figure 4.1(b)) and the centralized

4.2 Key idea, challenges, and contributions 69

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

A B C D E F G H

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s

p
e

r
se

c)

LTE-EPC traffic mix

Centralized mode
Offload mode

Figure 4.2: Performance with di↵erent controller modes

mode (Figure 4.1(a)). In o✏oad mode, the copy of the o✏oadable state resides at the

local controllers, and o✏oadable messages that access only o✏oadable state are processed

locally. The non-o✏oadable messages are processed by the centralized root controller.

The updates to the o✏oadable state at the root controller are synchronized consistently

with the local controllers. But, the o✏oadable state updates at the local controllers are

synchronized lazily (on-demand) with the centralized root controller. Therefore, the state

synchronization cost is lower as compared to horizontal scaling design. In contrast, when

operating in the default centralized mode, all application state resides at the centralized

root controller, and all control plane messages (o✏oadable and otherwise) are processed

at the centralized root (or one of its replicas in a distributed framework) controller. We

have discussed several use cases in this thesis (§3.2) that show that several classes of SDN

applications exhibit such o✏oadable state and o✏oadable messages.

Does the o✏oad mode of operation always improve performance?
To answer the question, we show the experimental results in Figure 4.2. This fig-

ure shows the throughput of the 4G LTE packet core application, under various control

plane tra�c mixes, in both the centralized and o✏oad modes of operation. The details

for this experiment are discussed in §4.4. The performance and resource utilization met-

rics are discussed in Figure 4.11 and Figure 4.12. In this experiment, the proportion of

registration messages (that update the o✏oadable state at the root controller, resulting

in synchronization between the root and local controllers) monotonically increases from

tra�c mix A to mix H, and the proportion of o✏oadable messages decreases. We can

observe that o✏oad mode performs better than centralized mode for tra�c mixes A to

D, because a significant fraction of control plane messages is o✏oaded in o✏oad mode,

70 Adaptive O✏oad of SDN Applications to Local Controllers

thereby improving the capacity of the SDN controller. However, for the rest of the traf-

fic mixes, the centralized mode performs better. The o✏oad mode performance is poor

for tra�c mix E to H because the increase in the amount of non-o✏oadable messages

increases the amount of state synchronization, resulting in high synchronization cost (in

terms of CPU and network overhead) between the root and local controllers. That is, the

cost of the o✏oad is substantially higher than the o✏oad benefits.

Let us look at the workload characteristics of real-world deployments. Atikoglu

et al. [27] has presented the workload analysis from Facebook’s Memcached (key-value

store) deployment. Their observations include extreme variations in terms of read/write

mix, request sizes and rates, and usage patterns. They have reported instances where the

load varies by more than 2X within intervals as small as 16 minutes. Studies by Filiposka

et al. [118] have reported temporal dynamicity for mobile control plane and data plane

tra�c for real-world deployments. Such temporal dynamic workload characteristics are

behavioral in nature (for example, tra�c peaks during the start of o�ce hours) and apply

to any application.

Given the evidence that the tra�c characteristics are dynamic in nature, our key

idea is that an SDN controller framework must support o✏oading of o✏oadable state and

associated computation adaptively between the centralized mode and o✏oad mode based

on the cost of synchronization, to optimize system performance.

Key challenges and contributions

Once we have identified the o✏oadable application messages using our o✏oad guide

(§3.2.1), we can o✏oad the computations of these messages to the local controllers, but

we face a few challenges while designing the adaptive o✏oad mechanism of Cuttlefish.

• High state synchronization costs. We need to synchronize the changes to the

o✏oadable state between the centralized root and the local controllers for correct

application behavior. But, we have discussed in §1.4 that high state synchronization

costs can outweigh the o✏oad benefits. Cuttlefish solves this problem in two ways.

1. Cuttlefish implements optimization techniques like lazy (on-demand) state

synchronization and batching to ensure that we do not waste synchronization

cycles if the stale state is never accessed. For example, in the o✏oad mode,

the o✏oadable state is always accessed at the local controllers, so there is no

need to synchronize state updates to the root controller (§4.3.3).

2. The Cuttlefish framework dynamically determines the state synchronization

cost. Despite the optimizations, if the synchronization cost is high such that

4.2 Key idea, challenges, and contributions 71

the application performance degrades, the framework automatically switches

the SDN application processing from the proposed o✏oad SDN mode to the

traditional centralized SDN mode that does not require state synchronization

(§4.3.4).

• State consistency during mode migration. The Cuttlefish root controller caches a

copy of the o✏oadable state at the local controllers to process o✏oadable messages.

There are two cases when this o✏oadable state can be inconsistent.

1. When the Cuttlefish framework automatically switches between the central-

ized and o✏oad SDN modes to ensure the best application performance, there

is a short phase during which the application is not entirely in centralized

mode or o✏oad mode. During this phase, the application packets could arrive

at both the controllers and should be processed correctly. We have designed

a migration protocol to ensure that the o✏oadable state is accessed/updated

at the correct location (either root or local controller). This latest state must

be used once the mode migration phase completes. We describe the detailed

design of the migration protocol for the switch between the o✏oad and cen-

tralized modes in §4.3.6.

2. When the non-o✏oadable state requires access to the o✏oadable state at the

root controller, but the root controller has a stale copy due to lazy synchro-

nization. Cuttlefish framework implements on-demand synchronization of the

o✏oadable state as explained in §4.3.3.

• E↵ort of code rewrite for existing SDN applications. The application program-

mer must rewrite the application code to utilize the Cuttlefish framework. Our

framework provides APIs (§4.3.2) to access o✏oadable state in an SDN application,

and manages the synchronization of this state across the root and local controllers,

to reduce the programming e↵orts. The programmer has to replace the state access

procedures (get, put, delete) in the original application code by the Cuttlefish APIs,

and provide the identification details about the o✏oadable and non-o✏oadable ap-

plication messages.

Using this limited input from the programmer, Cuttlefish can migrate the original

SDN application to the one that can utilize the Cuttlefish framework. The Cuttle-

fish framework can dynamically select the appropriate SDN mode (centralized or

o✏oad) and automatically switch between them.

72 Adaptive O✏oad of SDN Applications to Local Controllers

Figure 4.3: The Cuttlefish architecture.

4.3 Cuttlefish design and implementation
This section describes the design and implementation of the Cuttlefish hierarchical SDN

controller framework. Figure 4.3 shows the architecture of Cuttlefish. Cuttlefish takes

input from the application developer regarding the type of control plane messages, i.e.,

whether they are good candidates for o✏oad (§4.3.1). SDN application developers write

applications using Cuttlefish API (§4.3.2) functions to access the o✏oadable state. The

framework takes care of transparently synchronizing this state across the root and local

controllers based on the operating mode (§4.3.3). The heart of Cuttlefish is its adapta-

tion module (§4.3.4) that dynamically measures the cost of synchronizing the o✏oadable

state and the benefits due to o✏oad, and decides on whether to operate the application in

proposed o✏oad mode or centralized mode. The framework enforces the o✏oad decision

by pushing suitable rules into the data plane SDN switches (§4.3.5). When the adaptation

module decides to switch between controller modes, Cuttlefish ensures that the migra-

tion of o✏oadable state and redirection of control plane tra�c happens correctly without

any race conditions (§4.3.6). Finally, we describe our implementation of sample SDN

applications in the Cuttlefish framework (§4.3.7).

4.3.1 Developer input

Cuttlefish requires the application developer to provide the following input: the

types of messages in the control plane tra�c, the control plane message identifier, and

whether each of these messages is o✏oadable or not. We assume that the control plane

4.3 Cuttlefish design and implementation 73

tra�c to the application has a discrete, known number of message types, which can be

identified by inspecting packets in the SDN switches. If the type of the control plane

message cannot be identified by parsing standard L2-L4 headers alone, we assume that

the switches are programmable using a language like P4 [4], to be able to parse applica-

tion layer headers and identify the control plane message type. The application developer

provides rules to identify incoming message types as part of the input specification. For

each message type in the control plane tra�c, the user specifies whether the message is

o✏oadable or not.

Can Cuttlefish automatically classify application state? We have defined o✏oadable

and non-o✏oadable state in §3.1.2. The classification of the application state is tightly tied

with the application semantics. We cannot automate to infer if the given state is session-

specific and would be accessed from the same network edge all the time. Therefore, we

require the application developer to provide state classification as input.

Can Cuttlefish automatically classify control plane messages? Cuttlefish could cause

application performance degradation if the application messages are incorrectly classi-

fied. It may be arguable that given the state classification as input, we can use compiler

techniques such as lexical analysis and parsing to automatically identify the o✏oadable

messages, i.e., the application messages that only access the o✏oadable state. Such au-

tomatically determined o✏oadable messages satisfy the essential conditions but may not

satisfy the desirable qualities (§3.2.1) to declare an application message as o✏oadable.

We require application developer intervention to determine if the message possesses de-

sirable qualities to classify the application message as o✏oadable.

How does an application developer decide if a message can be o✏oaded to a local
controller? Given our definitions of o✏oadable and non-o✏oadable state (§3.1.2) and

guidelines on classification of application state at §3.2.1, the application messages can be

classified as o✏oadable and non-o✏oadable. We have demonstrated the application state

classification for real life application examples like the SDN-based LTE EPC (§3.2.2) and

the stateful load balancer (§3.2.3). We expect application developers to have su�cient

knowledge about application state semantics to be able to classify the application mes-

sages. This expectation from the developers is the standard practice that exists in prior

work too. For example, Split/Merge [50] and OpenNF [51], provide APIs for moving

state between distributed networking applications and require the developer input to have

a similar understanding of the semantics of application state. Table 4.1 shows an example

of developer input for the LTE EPC Cuttlefish application, listing the types of messages

in the control plane tra�c of the EPC application and whether they are o✏oadable. The

shaded rows indicate the non-o✏oadable EPC messages.

74 Adaptive O✏oad of SDN Applications to Local Controllers

Message type Message
identifier

O✏oadable?
(true/false)

Authentication Step 1 switchRule1 false

Authentication Step 3 switchRule2 false

NAS Step 2 switchRule3 false

Send Access Point Name switchRule4 false

Send UE Tunnel id (teid) switchRule5 true

UE Context Release switchRule6 true

UE Service Request switchRule7 true

Context Setup Response switchRule8 true

Detach Request switchRule9 false

Table 4.1: Sample developer input for LTE EPC.

4.3.2 The Cuttlefish API

Application developers within the Cuttlefish framework do not need to write separate

applications to run at the root and local controllers. Instead, developers must use the

Cuttlefish state management API to access the o✏oadable state. The framework takes

care of transparently synchronizing this state across the controllers, depending on the

mode of operation. We assume all o✏oadable state can be stored as key-value pairs. Our

API provides the following get/put/delete functions:

get(partition_id, map_name, key)

put(msg_id, partition_id, map_name, key, value)

delete(msg_id, partition_id, map_name, key)

The developer invokes Cuttlefish API functions when accessing the o✏oadable state in

the application code, instead of invoking standard hashmap API functions.

The Cuttlefish API takes map_name as one of the parameters in the get/put/delete

functions that identify the hashmap.

The o✏oadable state space is partitioned, and each local controller is assigned one

partition, to optimize the synchronization overheads. The partition stores the o✏oadable

state only for users who access the network via the switch associated with the corre-

sponding local controller. Therefore, the o✏oadable state updates at the root controller

for a particular user are synchronized with a single local controller. As per our definition

of an o✏oadable state, the user accesses the o✏oadable state from a single location. The

ingress switch or local controller identifiers are proxies for the user’s (or user’s o✏oad-

able state) location. By default, the packet sent by the ingress switch to the controller is

4.3 Cuttlefish design and implementation 75

encapsulated with switch information (e.g., Openflow’s packet-in header) like switch-id

and output port. The programmer should use this packet header information and supply

the ingress switch identifier as partition_id parameter, so that the Cuttlefish controller can

determine the partition to be used for o✏oadable state access.

The parameter msg_id corresponds to the identifier of the message that generated

the state update. This parameter is part of the put API, to let our framework attribute

synchronization costs to control plane messages (more details in §4.3.4).

Listing 4.1: Code snippet using standard hashmap API.
1 import java.util.HashMap;

2 //Programmer’s SDN application written for Floodlight SDN controller

3 public class TestMain {

4 public static void main(String[] args) {

5 // Create a HashMap objects for the KV stores

6 HashMap<String, String> ueTunnelMap = new HashMap<String, String >();

7 HashMap<String, String> freeTunnelMap = new HashMap<String, String >();

8 HashMap<String, String> ueStateMap = new HashMap<String, String >();

9 //Message identifiers for incoming application messages

10 ...

11 final static String DETACH_MESSAGE = "2";

12 ...

13 //Process control plane messages (PACKET_IN)

14 ...

15 //Processing for "DETACH_MESSAGE"

16 case DETACH_MESSAGE:

17 //Extract ueKey from packet header

18 ...

19 String tunId = ueTunnelMap.get(ueKey);

20 freeTunnelMap.put(ueKey, tunId);

21 ueStateMap.del(ueKey);

22 ...

23 break;

24 ...

25 }

26 }

To help understand the usage of Cuttlefish API, we provide a code snippet that uses

get/put/del API for key-value operations. Listing 4.1 shows the code snippet with a stan-

dard API call. Listing 4.2 shows the code snippet with the corresponding Cuttlefish API

call. The sample code snippet shows the subset of the detach control plane request pro-

cessing for the 4G mobile packet core. We retrieve the tunnel identifier assigned to the

detaching user, add the tunnel identifier to the free list, and delete the user’s state. This

objective is implemented as Lines 19–21 of Listing 4.1 which correspond to lines 29–31

of Listing 4.2. Lines 26 and 28 of Listing 4.2 shows how Cuttlefish API could be used to

retrieve partition_id and msg_id, respectively. Lines 10–14 of Listing 4.2 shows the

msg_id declaration for application messages.

76 Adaptive O✏oad of SDN Applications to Local Controllers

Listing 4.2: Code snippet using Cuttlefish API.
1 //Create ConcurrentHashMap objects for the KV stores in predefined Cuttlefish class

2 public class CF ... {

3 ...

4 public static ConcurrentHashMap <String, String> ueTunnelMap = new

ConcurrentHashMap <String, String >();

5 public static ConcurrentHashMap <String, String> freeTunnelMap = new

ConcurrentHashMap <String, String >();

6 public static ConcurrentHashMap <String, String> ueStateMap = new

ConcurrentHashMap <String, String >();

7 ...

8 }

9 //Message identifiers for incoming application messages declared in predefined

Cuttlefish class

10 public class CfConstants{

11 ...

12 final static String DETACH_MESSAGE = "2";

13 ...

14 }

15 //Programmer’s SDN application written for Floodlight SDN controller

16 public class TestMain {

17 public static void main(String[] args) {

18 ...

19 //Process control plane messages (PACKET_IN)

20

21 //Processing for "DETACH_MESSAGE"

22 case DETACH_MESSAGE:

23 //Extract ueKey and sourceIP from packet header

24 ...

25 // Obtain ingress switch identifier (partition_id) using Cuttlefish API

26 DatapathId testDpid = CfConstants.getDpid(sourceIP.toString());

27 //Obtain the message identifier (msg_id) for DETACH_MESSAGE

28 int msgId = Integer.parseInt(CfConstants.DETACH_MESSAGE);

29 String tunId = CF.get(testDpid, "ueTunnelMap", ueKey);

30 CF.put(msgId, testDpid , "freeTunnelMap", ueKey, tunId);

31 CF.del(msgId, testDpid , "ueStateMap", ueKey);

32 ...

33 break;

34 ...

35 }

36 }

4.3.3 Cuttlefish API implementation

The Cuttlefish API is implemented using hashmaps synchronized between the cen-

tralized root and the local controllers. The get/put/delete operations on the o✏oadable

state are performed on these synchronized hashmaps. The use of synchronized hashmaps

is expensive because for every put/delete operation at the synchronized hash maps, our

application performs additional computations related to version control and concurrency

control, to ensure state consistency.

4.3 Cuttlefish design and implementation 77

(a) Centralized mode. (b) O✏oad mode.

Figure 4.4: Cuttlefish API functions.

We implement a few optimizations to deal with the high overhead of synchronized

hashmaps, as follows.

1. While a traditional SDN application may use several hashmaps to store the o✏oad-

able state, Cuttlefish stores all the state in a single synchronized hashmap (for each

partition). Otherwise, multiple synchronization channels have to be maintained

between the root and local controllers, one for each hashmap. The use of a sin-

gle hashmap for all o✏oadable state reduces the synchronization overheads. The

programmer’s view of the state should not be changed, therefore the key stored in

Cuttlefish is a concatenation of the map_name and the original key.

2. When operating in the centralized mode, all the messages are processed by the root

controller. That is, we do not require to synchronize the o✏oadable state. Cuttlefish

reduces the synchronization overheads by using local hashmaps (no version control)

instead of synchronized hashmaps, whenever possible. The details are described

below.

78 Adaptive O✏oad of SDN Applications to Local Controllers

Cuttlefish API implementation: centralized mode. During the centralized mode of op-

eration, there is no need to synchronize the updates to the o✏oadable state with the local

controller since all application messages are processed at the root controller. To speed

up the put/delete operations in centralized mode, we temporarily cache the o✏oadable

state in local hashmaps. That is, the application state in centralized mode is split between

synchronized hashmaps (which would have been populated when the application was in

o✏oad mode) and the local hashmap cache (which is used only in centralized mode). The

API function implementation for the centralized mode is shown in Figure 4.4(a). Our

goal is to avoid unnecessary state synchronization and speed up the put/delete operations.

For example, if a particular user was active when the system was in o✏oad mode, the

synchronized map has the user’s state as Connected. After this, the system switches to

centralized mode. Now, if the user turns idle, the eNB initiates a context release proce-

dure, and the user’s state should be changed to Idle. In centralized mode, we apply all

the put operations to the local hashmap for fast processing. Get operations are first per-

formed on the local hashmap since it has the most recent state. If the state is not found in

the local hashmap, it indicates that the state during the o✏oad mode is the latest; hence

the get operation fetches the state from the synchronized hashmap. Delete operations are

performed on both local and synchronized hashmaps for consistency.

Cuttlefish API implementation: o✏oad mode. When operating in o✏oad mode, all

o✏oadable messages are processed at local controllers, and all o✏oadable state accesses

(get/put/delete) by the o✏oaded messages are performed on the synchronized hashmaps,

as shown in Figure 4.4(b). All non-o✏oadable messages are handled at the root con-

troller (e.g., because processing such messages depends on other global states), and these

messages may also generate concurrent put/delete requests to the o✏oadable state. To

optimize performance in o✏oad mode, we batch updates to synchronized hashmaps at

the local controller and push multiple updates at a time to the root controller. However,

updates to o✏oadable state at the root controller are immediately pushed to the local con-

trollers without batching, in order to ensure that the get operations at the local controller

never see the stale state. If any of the non-o✏oadable messages (e.g., handover message

of EPC application) requires access to the o✏oadable state cached at the local controller,

such messages are routed to the root controller via the local controller. The cached of-

floadable state is piggybacked with the non-o✏oadable message, deleted from the local

controller, and the message is forwarded to the root controller.

We implement synchronized hashmaps and batching by extending the fault tolerance

module of the open-source Floodlight SDN controller [44]. The Cuttlefish framework im-

plements TCP communication channels between the root and local controllers to transport

4.3 Cuttlefish design and implementation 79

updates to the synchronized hashmaps. We batch up to 500 updates at a time at the local

controller. Note that we currently do not handle pending updates in a batch being lost due

to the failure of the local controller. Our changes spanned about 350 lines of code in the

Floodlight controller code base.

4.3.4 The adaptation approach

The Cuttlefish adaptation module dynamically monitors the cost of synchronizing

the o✏oadable state across the root and local controllers and weighs the benefits of o✏oad

against the cost to decide the appropriate mode of operation (centralized vs. o✏oad) for

the SDN application. The adaptation module can run as a separate application at the root

controller or as a standalone application.

When is the centralized mode better than the o✏oad mode? The non-o✏oadable mes-

sages that write to the o✏oadable state at the root controllers trigger state synchronization

and, therefore, form a significant part of the synchronization cost. The state synchroniza-

tion process uses a large number of CPU cycles to perform functions like version control

for every state update, and also uses a small slice (typically, state sizes are small) of net-

work bandwidth for agreement on the current value of states. The amount of network

bandwidth utilization is negligible even when the root controller is saturated due to a high

state synchronization rate, so we cannot use this metric to quantify the state synchroniza-

tion cost. Instead, the rate at which the non-o✏oadable messages (at the root controller)

update the o✏oadable state can be a good proxy to quantify the state synchronization cost

(cost of the o✏oad).

When the Cuttlefish application is operating in o✏oad mode, and the fraction of

o✏oadable tra�c is high, we achieve high throughput and latency gains, since the root

controller load is o✏oaded to local controllers, and the state synchronization cost is low.

Therefore, the rate at which o✏oadable message arrive at the local controllers can be

used as a proxy to measure the benefits obtained due to o✏oad. The Cuttlefish adaptation

module can decide to switch from o✏oad mode to centralized mode when the synchro-

nization cost exceeds the gains due to o✏oading, i.e., when the cost of the o✏oad exceeds

the benefits due to the o✏oad.

Determine the metrics that decide the SDN mode switch. Let us define the metrics that

quantify the o✏oad gains at the local controller, and the synchronization cost at the root

controller. Let ‘ fNOFF’ be the fraction of non-o✏oadable messages in the incoming tra�c,

that generate writes to the o✏oadable state at the root controller, during an epoch (say,

epoch=10sec). Let ‘ fOFF’ be the fraction of o✏oadable messages in the incoming tra�c,

that access (read/write) the o✏oadable state at the local controller, during an epoch. Let

80 Adaptive O✏oad of SDN Applications to Local Controllers

kR be the average number of writes to the o✏oadable state at the root controller, by any

non-o✏oadable message. Let kL be the average number of accesses to the o✏oadable state

at the local controller, by any o✏oadable message. We have manually obtained the kR and

kL values. Although, given the input as the set of o✏oadable control plane messages,

non-o✏oadable control plane messages, o✏oadable state variables, and non-o✏oadable

state variables, kR and kL values can be automatically derived. Let NR be the number of

root controller CPU resource, and NL be the number of local controller CPU resource.

The local controller runs over the local switch CPU or the commodity server, close to the

edge. The local switch CPUs aren’t typically powerful unless the switches are custom

built by network operators [119]. For example, the Pica8 3290 OpenFlow switch uses a

825 MHz PowerPC CPU [120]. Switch local CPUs can widely vary in their packet I/O

performance. Therefore, the CPU resource parameters, NR and NL, should be provided

as normalized values. Our implementation runs the root and local controllers over the

commodity server; therefore, we use absolute values

The state synchronization cost at the root controller can be quantified by the put_rate

at the root controller defined in equation 4.1. The put_rate is the average number of

o✏oadable states written by non-o✏oadable messages at the root controller during an

epoch, normalized to the root controller CPU.

put_rate = (fNOFF ⇤ kR)/NR (4.1)

The gains due to computation o✏oad can be quantified by the access_rate at the

local controller defined in equation 4.2. The access_rate is the average number of of-

floadable states accessed by o✏oadable messages at the local controller during an epoch,

normalized to the local controller CPU.

access_rate = (fOFF ⇤ kL)/NL (4.2)

The rate at which the o✏oadable state is written at the root controller (put_rate) is

a good proxy for estimating the synchronization cost. The rate at which the o✏oadable

state is accessed at the local controller (access_rate) is a good proxy for estimating the

benefits obtained due to computation o✏oad.

If the put_rate at the root controller is higher than the access_rate at the local con-

trollers, it implies that there is not enough o✏oadable load to be processed at local con-

trollers. The state synchronization cost (put_rate) is an overhead at the root controller,

and the local controllers are underutilized. Under low load conditions, we still observe

lower response latencies, as the o✏oadable messages are processed close to the user. But,

4.3 Cuttlefish design and implementation 81

the performance of the o✏oad mode degrades when the state synchronization due to the

high put_rate saturates the root controller CPU, and there is not enough CPU available for

application message processing. Under such high non-o✏oadable tra�c-mix conditions,

the performance of centralized mode is better than the o✏oad mode in terms of throughput

as well as latency, since centralized mode does not require state synchronization.

Cuttlefish adaptation metric computation. We assume that the application programmer

has the kR, kL values, and the network administrator who deploys the application has the

knowledge of NR, and NL. The kR, kL, NR, and NL values are provided as input to the

Cuttlefish adaptation module. The Cuttlefish adaptation module monitors the values of

fNOFF and fOFF dynamically. At the end of each epoch, the Cuttlefish adaptation module

queries the edge switches to obtain the statistics of the number of packets received for each

control plane message type. The message type information is provided as input by the

programmer as defined in §4.3.1. The Cuttlefish adaptation module uses the programmer

input to identify the o✏oadable messages that read/write to o✏oadable state and non-

o✏oadable messages that write to the o✏oadable state. The adaptation module computes

the count of o✏oadable messages, non-o✏oadable messages, and total messages received

during the epoch. These calculated values are used to obtain the fractions fNOFF and fOFF .

At the end of each epoch, the Cuttlefish module substitutes the computed fNOFF and fOFF

values in the equations 4.1 and 4.2 to obtain the put_rate and access_rate that estimates

the synchronization cost and the o✏oad benefits for the last epoch.

Cuttlefish adaptation conditions. When operating in o✏oad mode, if the put_rate at

the root controller is higher than the access_rate at the local controller, it implies that

the synchronization cost is higher than the o✏oad benefits. If the root controller CPU

is also saturated (> 90%), there is not enough CPU available for application message

processing; therefore, the Cuttlefish framework should switch to the centralized SDN

mode. Of course, the root controller CPU saturation condition will always hold, as the

problem solved by this thesis is to alleviate the root controller bottleneck.

When operating in centralized mode, if the put_rate at the root controller is lower

than the access_rate at the local controller, the Cuttlefish framework should switch to

o✏oad mode since the performance gains would be high.

Equation 4.3 states the condition when the Cuttlefish adaptation module decides

to migrate from the o✏oad mode to the centralized mode, whereas, equation 4.4 states

the condition when Cuttlefish adaptation module chooses to migrate from the centralized

mode to o✏oad mode. We keep a guard band of � to ensure the bu↵er between mode

switch decisions and avoid flip-flops.

82 Adaptive O✏oad of SDN Applications to Local Controllers

put_rate
access_rate

� 1 + � (4.3)

put_rate
access_rate

 1 � � (4.4)

The instrumentation to the Floodlight controller to gather the statistics of put_rate,

access_rate, and the adaptation algorithm logic were implemented in about 200 lines of

code.

Assumptions. Note that, the proposed adaptation metrics and conditions are not directly

applicable for multiple Cuttlefish applications.

• We assume that the SDN application is bottlenecked by the root controller CPU,

which will be the case in scenarios where SDN controller scalability solutions are

deployed. In such a case of root controller CPU bottleneck, CPU cycles spent on

synchronization reduce the amount of CPU available for application processing at

the root. Therefore, the put rate is a good metric to capture the cost of the o✏oad.

• If the access_rate is high due to a small set of flows, Cuttlefish will run in o✏oad

mode even for the flows that do not use the state at the local controller, and root

controller CPU is wasted in synchronization of such state. Similarly, if the put_rate

is high due to a small set of flows, Cuttlefish will switch to the centralized mode

for all flows, a↵ecting the performance of other flows. The adaptation conditions

choose the best performing mode based on overall application statistics and does

not capture per-user or per-tra�c-class statistics. Assuming that the number of

flows (or users) is very large, we may rarely observe this situation.

Alternative adaptive o✏oad decision metrics.
Cuttlefish uses the o✏oadable and non-o✏oadable message frequencies normalized with

the controller resources to estimate the o✏oad costs and benefits. We can translate the

put_rate and access_rate to absolute CPU and network utilization costs and benefits.

This translation would involve profiling the underlying hardware every time the SDN

controller is migrated. We observed that the Cuttlefish adaptation decisions were the

same for the proposed adaptation metric and the absolute resource utilization metric. Such

absolute metric values could be used to enforce policies such as enforcing the CPU upper

bound for o✏oadable state synchronization.

4.3 Cuttlefish design and implementation 83

4.3.5 Enforcing the o✏oad mode

When the Cuttlefish adaptation algorithm decides to switch from the o✏oad mode

of operation to a centralized mode, or vice versa, the SDN switches in the data plane must

be configured in real-time to redirect messages to the suitable controller. We now describe

how this redirection happens in our system.

Our framework has been implemented over the OpenvSwitch (OVS) [57] SDN

switches managed by the Floodlight controller. The OVS switches are configured with

rules to identify the various message types specified in the user input. When the system

switches modes, the controller and switches must redirect specific o✏oadable message

types to the appropriate controller (root/local) based on the mode of operation. The con-

troller in our implementation did not come with this support to direct packets to a speci-

fied controller; all switches forwarded tra�c to all configured SDN controllers by default.

Therefore, we developed an extension to the Floodlight controller by implementing the

NiciraSetControllerId feature in the Loxigen library[44], which allows the Flood-

light controller to identify and communicate with specific switches. To adaptively switch

between modes, we added logic to the controller to automatically generate Openflow com-

mands that add/delete/modify rules to direct specific message types to specific controllers

at the OVS switches. Finally, we added a new Openflow action type of_action_nicira

to Floodlight that allows adding routes at switches to direct packets to a specific controller

(instead of forwarding to all controllers, as in the default implementation). These changes

required modifying ⇠150 lines of code in the controller (Java), and Loxigen library (C++)

code base and required no changes to the OVS switch implementation.

4.3.6 Transition between controller modes

When transitioning between modes, the Cuttlefish framework avoids race conditions

during the installation of switch rules to divert tra�c, and the process of synchronizing

state across the root and local controllers. We now describe the detailed algorithm for

Cuttlefish transition from the o✏oad mode to the centralized mode, and back.

O✏oad mode to centralized mode. Figure 4.5 shows the timeline of tasks performed by

the Cuttlefish framework when it decides to switch from the o✏oad mode to centralized

mode. Recall that the o✏oadable state is synchronized in batches from the local con-

trollers to the root controller, in o✏oad mode. When we want to switch from o✏oad to

the centralized mode, we must immediately synchronize the o✏oadable state. The root

controller instructs the local controller to flush all pending updates from the synchronized

hashmaps, immediately. After waiting for a grace period for the synchronization to com-

84 Adaptive O✏oad of SDN Applications to Local Controllers

Figure 4.5: Switch from o✏oad mode to centralized mode.

plete, the root controller is ready to switch to the centralized mode. The root controller

first pushes the rules onto the OVS at the local controller to forward all the messages (of-

floadable and otherwise) to the root controller. However, there could still be packets in

the pipeline at the switch that arrive at the local controllers, and continue to update the

o✏oadable state for a short duration after the switch rules have been installed. In order to

correctly handle such packets, the root controller accesses the o✏oadable state from syn-

chronized hashmaps for a brief waiting period. Further, new packets arriving at the root

are bu↵ered until the packets in the local switch’s pipeline have been processed, to avoid

reordering. Once this grace period for flushing the switch pipeline has expired, the root

controller stops state synchronization of synchronized hashmaps, since no packets will

be serviced by the local controllers. The root controller can now switch to centralized

mode with consistent o✏oadable state, and store newly created o✏oadable state in the

local hashmap cache for better application performance. The values of the grace periods

are a few milliseconds in our implementation, and will have to be configured based on the

processing latency of the local controller and the network latency between the root and

local controllers for other deployments.

Centralized mode to o✏oad mode. Figure 4.6 shows the timeline of tasks performed by

the Cuttlefish framework when it decides to switch from the centralized mode to o✏oad

mode. When Cuttlefish is operating in centralized mode, some of the o✏oadable state

is stored in the local hashmap cache at the root controller, and some in the synchronized

hashmaps. When the framework decides to switch from centralized to o✏oad mode,

we must migrate the o✏oadable state from the local hashmap cache to the synchronized

hashmap at the root controller. During the state migration phase, all the delete operations

at the root are performed on both the local and synchronized hashmaps, all put operations

are performed only on the synchronized hashmaps. In contrast, all get operations are

4.3 Cuttlefish design and implementation 85

Figure 4.6: Switch from centralized mode to o✏oad mode.

handled normally (get from the local cache, and on a miss get from the synchronized

hashmap). Also, for all put operations during state migration, we first perform delete on

local hashmap to avoid state inconsistency. After the local hashmap has been transferred

to the synchronized hashmaps at the root, the local cache is cleared to avoid stale state.

We then wait for a grace period for the synchronized hashmap updates to propagate to the

switches. After that, we push rules on to the switches to forward all o✏oadable messages

to the local controller. Finally, we also enable batching of updates to o✏oadable state at

the local controller in o✏oad mode.

4.3.7 Implementation of use cases

We implement the two sample applications — a key-value store, and the SDN-based

LTE packet core (§3.2.2)—over the Cuttlefish framework, to demonstrate and evaluate

the benefits of our framework. The source code of the Cuttlefish framework and the

implemented use cases is available at [39] for innovation.

Key-value store. We implemented a centralized key-value store as the basic application.

We partition key-value space into o✏oadable and non-o✏oadable states by randomly

marking a subset of key-value pairs as o✏oadable and rest as non-o✏oadable. We de-

fined the get/put/del messages that only access the o✏oadable key-value states; these

messages are marked as o✏oadable. We also defined the get/put/del messages that access

both the non-o✏oadable and o✏oadable key-value states. These messages induce state

synchronization between the root and local controllers in o✏oad mode and are marked as

non-o✏oadable messages. The application implements the o✏oadable state access using

the Cuttlefish API.

86 Adaptive O✏oad of SDN Applications to Local Controllers

We have implemented a load generator that can generate tra�c with varying ratios

of o✏oadable and non-o✏oadable requests. We use the IP ToS field in packet headers to

identify the application messages at the switches. The application and the load generator

were implemented in about 1400 lines of Java/C++ code.

SDN based LTE EPC. We implement the SDN-based LTE EPC application by extending

an existing version of the code [121] built atop the Floodlight controller and OVS SDN

switches, and adapting it to use the Cuttlefish API. We extended the load generator in the

existing code to tag packets with message types in the IP ToS field, to enable identification

of the various control plane messages. We also modified the load generator to generate

tra�c of varying mixes, e.g., vary the ratio of the attach requests (non-o✏oadable) and

the service requests (o✏oadable). Our changes modified 1800 lines of Java/C++ code in

the original application codebase.

4.4 Evaluation
We describe the evaluation of Cuttlefish framework in this section. Our evaluation aims

to answer two broad questions:

• What are the performance gains of adaptively o✏oading computation across local

controllers? (§4.4.2)

• How e�ciently does Cuttlefish accomplish the process of adaptively switching

modes? (§4.4.3)

4.4.1 Experimental setup

Testbed. We deployed the Cuttlefish applications over our testbed consisting of a Flood-

light v1.2 as the root and local controllers, and OVS v2.3.2 switches as the data plane

switches. The local controller was colocated with one of the switches. All components

(controller and switches) used Ubuntu 14.04 and were hosted over separate LXC con-

tainers to ensure isolation. The containers were distributed amongst two 16-core Intel

Xeon E312xx @2.6Ghz servers with 64GB RAM. The root and local controllers, and all

gateway switches, were allocated 1 CPU core and 4GB RAM each.

In the o✏oad mode of operation, when the non-o✏oadable tra�c rate was low, we

were unable to generate enough load to saturate the root controller and measure saturated

throughput. So we allocated six forwarding chains for each application (i.e., six load

generators and six local controllers) to generate more tra�c for the root controller. We

did not have enough CPU/memory resources to add more forwarding chains; therefore,

4.4 Evaluation 87

Figure 4.7: Experimental setup for the key-value store application.

Figure 4.8: Experimental setup for the SDN-based EPC application.

there were cases when we could not saturate the root controller, but the local controllers

were saturated.

We now describe the specific setup components for each application. Figure 4.7

shows the setup for the key-value store application. Each chain comprises of a load-

generator, an ingress switch that routes the o✏oadable and non-o✏oadable messages to

the appropriate controller based on the current SDN operation mode, and a local controller

that serves the o✏oadable messages in the o✏oad mode. Figure 4.8 shows the setup for

the LTE-EPC application. Each chain comprises a load-generator, an eNB switch that

routes the data tra�c and control plane messages (o✏oadable/non-o✏oadable), an SGW

switch that hosts a local controller to process o✏oadable messages, a PGW switch, and

the sink node which is the end node for EPC data tra�c.

Parameters and metrics. We generate di↵erent experiment scenarios by varying the

mix of o✏oadable and non-o✏oadable messages in the control plane tra�c processed by

88 Adaptive O✏oad of SDN Applications to Local Controllers

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Off-95 Off-90 Off-80 Off-75 Off-50 Off-35 Off-25 Off-0

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s

p
e

r
se

c)

Traffic mix

Centralized mode
Offload mode

Cuttlefish

Figure 4.9: Key-value store: control plane throughput.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Off-95 Off-90 Off-80 Off-75 Off-50 Off-35 Off-25 Off-0

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
µ

s)

Traffic mix

Centralized mode
Offload mode

Cuttlefish

Figure 4.10: Key-value store: control plane latency.

the SDN controllers. All experiments ran for 300 seconds, and the results are averaged

over three runs unless mentioned otherwise. The performance metrics measured in our

experiments were the control plane throughput (number of control plane messages pro-

cessed/sec) and response latency of control plane messages. We compare these metrics

across three modes of operation of the application: (a) centralized mode, where all control

plane messages are handled at the root controller, (b) o✏oad mode, where non-o✏oadable

messages are processed at the root controller and all o✏oadable messages are always pro-

cessed at local controllers, and (c) the Cuttlefish adaptive o✏oad mode, where o✏oadable

messages are processed at the local controller only if the Cuttlefish adaptation algorithm

detects that the synchronization costs are lower than the o✏oad gains.

4.4.2 E�cacy of adaptive o✏oad

We first quantify the performance gains due to the adaptive o✏oad mechanism of

Cuttlefish. We vary the mix of get and put requests in the incoming tra�c and measure

the performance of the Cuttlefish key-value store application. Tra�c mix O↵-x denotes

4.4 Evaluation 89

 0

 2000

 4000

 6000

 8000

 10000

Off-98 Off-95 Off-90 Off-75 Off-65 Off-50 Off-30 Off-20 Off-0
 0

 50

 100

 150

 200
T

h
ro

u
g

h
p

u
t

(r
e

q
u

e
st

s
p

e
r

se
c)

R
o

o
t

C
P

U
 u

til
iz

a
tio

n

Traffic mix

Centralized mode
Offload mode

Cuttlefish
Centralized: root CPU

Offload: root CPU

Figure 4.11: LTE EPC: control plane throughput.

 0

 10

 20

 30

 40

 50

Off-98 Off-95 Off-90 Off-75 Off-65 Off-50 Off-30 Off-20 Off-0

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
m

s)

Traffic mix

Centralized mode
Offload mode

Cuttlefish

Figure 4.12: LTE EPC: control plane latency.

x% o✏oadable messages, i.e., get/put to the o✏oadable state at the local controller, and

(100�x)% non-o✏oadable messages, i.e., put to the o✏oadable state at the root controller.

Figure 4.9 shows the throughput of all the controller modes, and Figure 4.10 shows

the response latency with errorbars that represent min-max latency values. As expected,

the performance of the o✏oad mode degrades as compared to the centralized mode, as

the proportion of non-o✏oadable tra�c increases. However, across all tra�c mixes, we

see that the performance of the Cuttlefish adaptive o✏oad mode matches that of the best

non-adaptive mode for that tra�c mix.

We observe that the Cuttlefish throughput is up to 2X higher than that of the tradi-

tional centralized mode, and its latency is up to 50% lower. Also, Cuttlefish throughput

is up to 6.4X higher than that of the o✏oad mode, and its latency is up to 80% lower.

Further, the throughput and latency of Cuttlefish are almost equal to that of the optimal

mode (whether centralized or o✏oad) for a given tra�c mix, because the cost of running

the adaptation module is almost negligible.

Figure 4.11 and Figure 4.12 show the control plane throughput and response latency

respectively of the LTE EPC application, with varying tra�c mix . The errorbars shown in

90 Adaptive O✏oad of SDN Applications to Local Controllers

Figure 4.12 represent the min-max latency values. Here, tra�c mix O↵-x denotes (100 �
x)% non-o✏oadable attach and detach requests, and x% o✏oadable service requests and

context release requests.

Our observations remain similar for this application, as well. That is, we see that the

performance of the Cuttlefish adaptive o✏oad mode matches that of the best non-adaptive

mode for that tra�c mix. The throughput of Cuttlefish is up to 2X higher than that of

the traditional centralized mode, and its latency is up to 66% lower. Cuttlefish through-

put is also up to 3X higher than that of the o✏oad mode, and its latency is up to 62%

lower. Similar to our previous observations, the performance of Cuttlefish matches the

best performing mode for a given tra�c mix. The y2-axis of Figure 4.11 shows the root

controller CPU utilization for the centralized and o✏oad modes. We observe that, in the

o✏oad mode of operation, the root controller CPU is not saturated up to tra�c-mix O↵-

75, but the local controller CPU is saturated for all six forwarding chains. As we said

earlier, we did not have enough CPU/memory resources to add more forwarding chains

to saturate the root controller. The root CPU utilization for Cuttlefish/o✏oad mode for

O↵-98 is ⇠35%, which means that the performance values of the o✏oad and Cuttlefish

mode will be better than the above indicated values when the root controller is saturated.

4.4.3 Convergence of adaptive o✏oad

In our next set of experiments, we demonstrate the e↵ectiveness of the adaptation

mechanism and measure the amount of time taken by Cuttlefish to compute the correct

mode of operation and switch to it when the tra�c mix changes. Our last experiment

presents the limitations of the adaptation mechanism and discusses the parameters that

impact the accuracy of the adaptation decision.

At the end of each epoch, Cuttlefish gathers the parameter values for adaptation

decision, as discussed in §4.3.4, and substitutes the parameter values in equation 4.1 to

estimate the synchronization cost at root controller (put_rate), and in equation 4.2 to es-

timate the o✏oad benefits (access_rate). The computed put_rate and access_rate values

are substituted in equation 4.3 when in o✏oad mode, and in equation 4.4 when in central-

ized mode, to test if controller mode migration is required (� = 0.2).

In our first experiment, the key-value store application generates get/put tra�c for a

duration of 2400 seconds, while varying the tra�c mix during the experiment as follows.

During the first 300s of the experiment, 90% of the tra�c comprises of o✏oadable mes-

sages. The o✏oadable fraction changes to 95% for the next 300s, to no o✏oadable tra�c

for the next 300s, to 80% o✏oadable messages for the next 300s, to 95% o✏oadable mes-

4.4 Evaluation 91

0

5k

10k

15k

20k

25k

30k

35k

40k

45k

 0 1
20

 2
40

 3
60

 4
80

 6
00

 7
20

 8
40

 9
60

 1
08

0

 1
20

0

 1
32

0

 1
44

0

 1
56

0

 1
68

0

 1
80

0

 1
92

0

 2
04

0

 2
16

0

 2
28

0

 2
40

0

Off-90 A Off-95 B Off-0 C Off-80 D Off-95 E Off-35 F Off-50 Off-50G
T

h
ro

u
g

h
p

u
t

(r
e

q
u

e
st

s
p

e
r

se
c)

Time in secs

Centralized
Offload

Cuttlefish

Figure 4.13: Throughput with varying tra�c mix for the key-value store application.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1
20

 2
40

 3
60

 4
80

 6
00

 7
20

 8
40

 9
60

 1
08

0

 1
20

0

 1
32

0

 1
44

0

 1
56

0

 1
68

0

 1
80

0

 1
92

0

 2
04

0

 2
16

0

 2
28

0

 2
40

0

Off-90 A Off-95 B Off-0 C Off-80 D Off-95 E Off-35 F Off-50 Off-50G

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
m

s)

Time in secs

Centralized
Offload

Cuttlefish

Figure 4.14: Latency with varying tra�c mix for the key-value store application.

 0.1

 1

 10

 100

 1000

 0 1
20

 2
40

 3
60

 4
80

 6
00

 7
20

 8
40

 9
60

 1
08

0

 1
20

0

 1
32

0

 1
44

0

 1
56

0

 1
68

0

 1
80

0

 1
92

0

 2
04

0

 2
16

0

 2
28

0

 2
40

0

A B C D E F G

1+∆

1-∆

p
u
t_

ra
te

/a
cc

e
ss

_
ra

te

Time in secs

Figure 4.15: Key-value store: adaptation metric for mode switch.

sages for the next 300s, to 35% o✏oadable messages in the next 300s, and finally 50%

o✏oadable messages in the final 600s.

Figures 4.13 and 4.14 show the throughput and the response latency, respectively,

of the key-value store application, sampled every 30 seconds for the duration of the ex-

periment. Figure 4.15 shows the fraction put_rate
access_rate and the thresholds for migration from

the o✏oad to centralized mode (1 + �), and vice-versa (1 � �). The Cuttlefish adapta-

tion module observes the fraction and the thresholds, at the end of each epoch to make

the mode switch decision. From the graphs, we see that when the tra�c consists of

predominantly o✏oadable requests in the first 600s (up to point B in the graphs), Cut-

tlefish operates in o✏oad mode. After point B, the non-o✏oadable component in the

tra�c-mix exceeds such that the cost of the o✏oad is much higher than the o✏oad ben-

efits (put_rate
access_rate > 1 + �), the adaptation algorithm switches from the o✏oad mode to

centralized mode, and stays in this mode up to point D. After point D, the non-o✏oadable

tra�c reduces (put_rate
access_rate < 1 � �), the Cuttlefish adaptation algorithm switches to of-

fload mode, and stays there up to point E. After point E, the tra�c mix incurs a high

synchronization cost, and Cuttlefish switches to centralized mode, and remains in this

92 Adaptive O✏oad of SDN Applications to Local Controllers

mode for the rest of the experiment. Throughout the experiment, we observe that the

Cuttlefish adaptation algorithm always correctly identifies the best performing controller

mode and correctly switches to it. We observe a transient drop in performance after points

B, D, and E, due to the mechanisms of migrating between modes in Cuttlefish. We find

that the Cuttlefish framework takes around 20–30 seconds to switch to a new mode of

operation after change in the tra�c mix. This switching duration is obviously a function

of the frequency at which we invoke our decision algorithm (every 10 seconds), and on

size of the application-centric state requiring synchronization (700 key-value pairs in this

experiment).

In our second experiment with the LTE EPC application, we generate tra�c for

the EPC setup for a duration of 1200 seconds, while varying the tra�c mix during the

experiment as follows. The fraction of o✏oadable tra�c (service request, context release

request) is 95% during the first 300s of the experiment, which changes to 20% in the next

300s, then back to 95% for next 300s, and it is 20% for the final 300s.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 6
0

 1
20

 1
80

 2
40

 3
00

 3
60

 4
20

 4
80

 5
40

 6
00

 6
60

 7
20

 7
80

 8
40

 9
00

 9
60

 1
02

0

 1
08

0

 1
14

0

 1
20

0

Off-95 A Off-20 B Off-95 Off-20C

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s

p
e

r
se

c)

Time in secs

Centralized
Offload

Cuttlefish

Figure 4.16: Throughput with varying tra�c mix for the LTE EPC application.

 0

 20

 40

 60

 80

 100

 0 6
0

 1
20

 1
80

 2
40

 3
00

 3
60

 4
20

 4
80

 5
40

 6
00

 6
60

 7
20

 7
80

 8
40

 9
00

 9
60

 1
02

0

 1
08

0

 1
14

0

 1
20

0

Off-95 A Off-20 B Off-95 Off-20C

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
m

s)

Time in secs

Centralized
Offload

Cuttlefish

Figure 4.17: Latency with varying tra�c mix for the LTE EPC application.

 0.01

 0.1

 1

 10

 100

 0 4
0

 8
0

 1
20

 1
60

 2
00

 2
40

 2
80

 3
20

 3
60

 4
00

 4
40

 4
80

 5
20

 5
60

 6
00

 6
40

 6
80

 7
20

 7
60

 8
00

 8
40

 8
80

 9
20

 9
60

 1
00

0

 1
04

0

 1
08

0

 1
12

0

 1
16

0

 1
20

0

A B C

1+∆

1-∆

p
u

t_
ra

te
/a

cc
e

ss
_

ra
te

Time in secs

Figure 4.18: LTE-EPC: adaptation metric for mode switch.

4.4 Evaluation 93

Figures 4.16 and 4.17 show the control plane throughput and latency, respectively,

of the LTE EPC application, sampled every 10 seconds for the duration of the experi-

ment. Figure 4.18 shows the value of put_rate
access_rate computed by the Cuttlefish adaptation

algorithm during the experiment. The Cuttlefish framework behaves similar as explained

for the previous experiment. Cuttlefish stays in o✏oad mode up to point A, after which

the non-o✏oadable component in the tra�c-mix exceeds such that put_rate
access_rate > 1 + �,

and the Cuttlefish adaptation algorithm switches the controller to centralized mode, and

stays there upto point B. After point B, the non-o✏oadable component in the tra�c-mix

reduces (put_rate
access_rate < 1 � �), and Cuttlefish shifts to o✏oad mode and stays up to point

C. After point C up to the end of the experiment, the synchronization cost is high, and

Cuttlefish switches to the centralized mode and stays. We conclude from this experiment

that the Cuttlefish framework takes around 30–70 seconds to identify and switch to a new

mode of operation after a change in tra�c mix. This switching duration also depends on

the frequency at which we invoke our decision algorithm (every 10 seconds), and on size

of the application-centric state requiring synchronization (1000 key-value pairs in this

experiment).

In our third experiment, we discuss the limitations of the proposed adaptation mech-

anism. Given that Cuttlefish takes a few tens of seconds to identify the correct mode and

switch between modes, it is expected that Cuttlefish will not perform well if the tra�c

mix changes very frequently. Also, Cuttlefish may not adapt to the correct SDN mode if

the monitoring interval (epoch size) is too long or too short. To observe the limitations,

we planned an experiment with bursty tra�c and configured the monitoring interval of the

adaptation mechanism to 30s. Figures 4.19 and 4.20 show the control plane throughput

and latency, respectively, of the LTE EPC application, sampled every 10 seconds for the

duration of the experiment. Figure 4.21 shows the value of put_rate
access_rate computed by the

Cuttlefish adaptation algorithm during the experiment. To demonstrate the bursty tra�c

scenario, we generate tra�c for the EPC setup for a duration of 480 seconds, while vary-

ing the tra�c mix during the experiment as follows. The fraction of o✏oadable tra�c

(service request, context release request) is 60% during the first 240s of the experiment,

which changes to 90% in the next 60s, then to 35% for next 60s, and it is 90% for the final

120s.

For the initial tra�c-mix, the adaptation metric, put_rate
access_rate > 1 + �, so Cuttlefish

runs in centralized mode. After point A, the non-o✏oadable component in the tra�c-

mix reduces such that put_rate
access_rate < 1 � �. Since the monitoring interval is configured

to 30s, the adaptation algorithm identifies the need for mode switch at t=270s and takes

around 30s (t=300s) for migrating to the o✏oad mode. After point B, the non-o✏oadable

94 Adaptive O✏oad of SDN Applications to Local Controllers

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 6
0

 1
20

 1
80

 2
40

 3
00

 3
60

 4
20

 4
80

Off-60 A Off-90 B Off-35 Off-90C

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s

p
e

r
se

c)

Time in secs

Centralized
Offload

Cuttlefish

Figure 4.19: Throughput with bursty tra�c for the LTE EPC application.

 0

 20

 40

 60

 80

 100

 0 6
0

 1
20

 1
80

 2
40

 3
00

 3
60

 4
20

 4
80

Off-60 A Off-90 B Off-35 Off-90C

A
ve

ra
g

e
 r

e
sp

o
n

se
 t

im
e

 (
m

s)

Time in secs

Centralized
Offload

Cuttlefish

Figure 4.20: Latency with bursty tra�c for the LTE EPC application.

 0.1

 1

 10

 0 3
0

 6
0

 9
0

 1
20

 1
50

 1
80

 2
10

 2
40

 2
70

 3
00

 3
30

 3
60

 3
90

 4
20

 4
50

 4
80

A B C

1+∆

1-∆

p
u

t_
ra

te
/a

cc
e

ss
_

ra
te

Time in secs

Figure 4.21: LTE-EPC bursty tra�c: adaptation metric for mode switch (epoch = 30s).

component in the tra�c-mix exceeds (put_rate
access_rate > 1 + �), but this change is identified at

the next epoch, t=330s. It takes around 25s (t=355s) for migrating to the centralized

mode. After point C up to the end of the experiment, the synchronization cost is low

(put_rate
access_rate < 1 � �). Cuttlefish identifies the change in tra�c-mix at t=390s and takes

around 40s (t=430s) to switch to the o✏oad mode and stays.

We conclude from this experiment that the Cuttlefish framework takes a long time

to switch mode after tra�c-mix changes. The delay is caused due to the large epoch size

(30s) and the switching time (25–30s). The switching duration depends on the size of the

application state that requires synchronization (1000 key-value pairs in this experiment).

We also observed rapid oscillations between the centralized and o✏oad modes due to

bursty tra�c characteristics.

Of course, Cuttlefish can perform better if it reduces the monitoring interval from

30s to something smaller. We tested our algorithm with epochs as low as 5s. We found

that the algorithm occasionally makes wrong decisions for shorter epochs due to incorrect

estimation of the adaptation metric. The monitoring interval of 10s helped Cuttlefish to

converge quickly under most scenarios. Also, the root controller CPU usage was within

4.4 Evaluation 95

2% for 10s epoch size, which is acceptable. Note that, even after careful calibration of

monitoring interval, Cuttlefish will not perform well if the tra�c-mix changes frequently.

To summarize, the Cuttlefish adaptation metric would fail to decide the correct mode

of operation for the following conditions.

• If the tra�c-mix changes very frequently resulting in tra�c spikes (bursty tra�c).

Such tra�c behavior could cause the system to oscillate between the centralized

and o✏oad mode, causing unnecessary state migration and application performance

degradation.

• If the monitoring interval is not configured correctly (too high or too low), the

adaptation metric based decision could be delayed or incorrect.

• Suppose Cuttlefish is operating in the o✏oad mode, and the network link tra�c

causes a bottleneck between the root and local controllers, but the root controller

CPU is not the bottleneck. In that case, Cuttlefish will continue to function in the

degraded o✏oad mode.

4.4.4 Summary of results

Our evaluation of the key-value store SDN application demonstrated that Cuttle-

fish improved control plane throughput by ⇠2X and control plane latency by ⇠50%

as compared to the traditional SDN design, and improved control plane throughput by

⇠6.4X and control plane latency by ⇠80% as compared to the o✏oad SDN design. Also,

our evaluation of the LTE-EPC SDN application demonstrated that Cuttlefish improved

control plane throughput by ⇠2X and control plane latency by ⇠66% as compared to the

traditional SDN design, and improved control plane throughput by ⇠3X and control plane

latency by ⇠62% as compared to the o✏oad SDN design.

The root controller was saturated for all tra�c-mix in the centralized mode, for both

the applications. In contrast, for the EPC application case, the root controller utilization

in the o✏oad mode for the best performing tra�c-mix, O↵-99, was only 35%. In fact, the

root controller was not saturated until O↵-75 while operating in o✏oad mode. It means

that the o✏oad performance will improve if enough load is generated (with additional

forwarding chains), and the current performance improvement values are pessimistic. Our

evaluation depicts that Cuttlefish correctly chooses the SDN controller mode, centralized

or o✏oad, to optimize application performance.

96 Adaptive O✏oad of SDN Applications to Local Controllers

4.5 Summary
We presented the design and implementation of Cuttlefish, a hierarchical SDN controller

that o✏oads a subset of global (o✏oadable) SDN application computations and the cor-

responding o✏oadable states to the local controllers on switches, to scale SDN control

plane capacity. Cuttlefish incorporated an adaptive state o✏oad capability to balance the

tradeo↵ between performance gains due to o✏oading of o✏oadable state, and the cost of

synchronizing this state across the root and local controllers. We developed two sample

applications—the SDN-based LTE packet core and a key-value store—and demonstrated

the e�cacy of the Cuttlefish framework. Our framework, based on the popular Floodlight

SDN controller, is available for use by SDN application developers [39].

Chapter 5

O✏oad of SDN Applications to
Programmable Switches

In the previous chapter (Chapter §4), we observed that o✏oad of control plane compu-

tations to local controllers resulted in high throughput and latency benefits. This chapter

describes how we can further accelerate applications by o✏oading control plane com-

putations to the hardware programmable switches, close to the user. The o✏oad to the

hardware switch avoids the packet traversal latency through the local controller’s network

stack and the application stack, and provides high throughput. To demonstrate the e�-

cacy of our idea, we implement our o✏oad idea for the real-life use case, the CUPS-based

(Control User Plane Separation) mobile packet core [97]. We present the design and im-

plementation of our proposed system, TurboEPC, a redesign of the mobile packet core

that revisits the division of work between the control and data planes.

5.1 Motivation and problem description
The telecom industry has endorsed the SDN design to gain benefits like control plane

programmability and individual component scaling. Therefore, the future mobile packet

core networks adopt the CUPS-based model that we have described in §2.4. We have

discussed the SDN controller scalability problem earlier (§2.2). The centralized SDN

controller located at the mobile core network can become a bottleneck with the increase

in the control plane tra�c. We have discussed the e↵orts of the research community

towards scaling the software mobile packet core in §2.4.3, but we believe that they are

not good enough to ensure the real-time experience to the mobile users. TurboEPC takes

a few steps towards this goal.

97

98 O✏oad of SDN Applications to Programmable Switches

EPC procedure Number of transactions/sec

Attach 9K

Detach 9K

S1 release 300K

Service request 285K

Handover 45K

Network load when total subscribers in the core = 1 million

Table 5.1: Sample EPC load statistics [5, 6].

Our work is motivated by following observations pertaining to the signaling tra�c

in the mobile packet core.

1. As discussed in §2.4.3, the signaling tra�c is proliferating [100, 101] due to the

increase in the number of mobile devices, and the increased number of signaling

messages exchanged [100] between the mobile user and the network. The high

signaling load at the mobile packet core with the centralized software control plane

makes it challenging to satisfy signaling tra�c SLAs.

2. We have classified the mobile packet core signaling procedures into two types, of-

floadable and non-o✏oadable procedures (§3.2.2), based on their frequency (see

Table 5.1) and nature of the processing. A small percentage of the signaling tra�c

consists of procedures like the attach and detach procedure (1–2% of total traf-

fic, as per [5, 6]), the handover procedure (~5%) that is executed when the user

moves across regions of the mobile network. These procedures are identified as

non-o✏oadable because they access/update global state (non-o✏oadable state), for

example, the free IP address pool and the HSS (Home Subscriber Server) database.

Whereas, a significant fraction of the signaling tra�c (~63–90%) is made up of

procedures like the S1 release, and the service request procedure. These proce-

dures are identified as o✏oadable because they only access/update the per-session

user context (o✏oadable state) like the tunnel identifiers for data forwarding. We

have described more details about these EPC procedures in §2.4.2. We can pro-

tect the core from high signaling load with a positive side-e↵ect of lower response

time latencies if we process the high-frequency signaling messages at the hardware

programmable edge switch, closer to the user.

3. The mobile network minimizes the UE’s power consumption and network resource

usage by switching the UE to IDLE state whenever possible. Suppose that the UE

5.2 Key idea and challenges 99

is in IDLE state, and the data request arrives; the mobile core invokes the service re-

quest control plane procedure. The service request procedure assigns resources and

switches the UE to CONNECTED state, and after that, data can be sent or received.

The current mobile standards transit the UE state from IDLE to CONNECTED

state in the order of ⇠50 ms [122]. But, the 5G standards have end-to-end latency

requirements of 10 ms for broadband data access [30]. Therefore, it is impossible

to satisfy the 5G latency requirements using the current mobile network standards.

One solution is to keep all the UEs in the CONNECTED state, but this increases

power consumption and also generates considerable amount of signaling tra�c to

keep the connection alive. It is not advisable to waste power, especially for low

power, battery-operated IoT devices. If we o✏oad the processing of the service re-

quest and S1 release control plane procedures close to the UE (at/close to the base

station) along with the user state, we can easily satisfy the 5G latency requirements.

Also, the devices can save power by more frequently transiting to the idle state.

As discussed in §2.3, the data plane switches are evolving from fixed-function hard-

ware towards programmable components that can forward tra�c at line rate while being

highly customizable [36, 37]. TurboEPC improves the control plane performance of the

CUPS-based mobile packet core by o✏oading the o✏oadable control plane procedures

(S1 release and service request) from the control plane onto the programmable hardware

switches, close to the mobile user.

5.2 Key idea and challenges
The o✏oad of frequent o✏oadable signaling procedures to the programmable hardware

switches improves both control plane throughput (by utilizing spare switch capacity for

handling signaling tra�c) and latency (by handling signaling tra�c closer to the end-

user at the switches). TurboEPC modifies the processing of the non-o✏oadable messages

(like the attach and handover procedure) in the control plane so that modifications to the

user-specific context generated/modified during such procedures is immediately pushed

to the data plane switches. This user context is stored at the switches along with the

forwarding state needed for data plane processing, and is used to process o✏oadable

signaling messages within the data plane switch itself.

Challenges and contributions

We have already addressed the challenge of identification of o✏oadable EPC sig-

naling messages in §3.2.2, using our o✏oad guide (§3.2.1) to enable o✏oad of the EPC

100 O✏oad of SDN Applications to Programmable Switches

User state (in bytes) Forwarding state (in bytes)

eNB 0 32

SGW 64 28

PGW 0 19

Table 5.2: Size of state stored at TurboEPC switches.

application to the programmable switch hardware. TurboEPC addresses the following

other challenges while implementing the o✏oad for the CUPS-based LTE-EPC applica-

tion.

• Inconsistency of o✏oaded state. The o✏oadable state is cached at the pro-

grammable hardware switches for o✏oadable message processing. Non-o✏oadable

messages like the handover message require access to both the o✏oadable and non-

o✏oadable state, and are processed at the root controller. TurboEPC lazily synchro-

nizes the o✏oadable state updates from the switch to the root controller. Therefore,

the handover message may use stale o✏oadable state, which may result in incor-

rect application behavior. TurboEPC employs an on-demand state synchronization

technique that ensures state consistency and reduces synchronization costs, as well

(discussed in §5.3.1).

• Memory limitations at the programmable switches. The hardware pro-

grammable switches have a small amount of memory to store the application state.

A typical mobile core must handle millions of actively connected users [5, 38]. Ta-

ble 5.2 shows the size of the o✏oadable user-context at the TurboEPC switch. The

recent high-end programmable switches like Barefoot Tofino [36] can only store

the user context for a few 100K users, whereas the Netronome programmable NIC

hardware used in our prototype implementation [117] could only store user con-

text for 65K users. Therefore, it is unlikely that a single data plane switch can

accommodate the contexts of all the users connected to the mobile network core.

To overcome this challenge, TurboEPC partitions the o✏oadable state across mul-

tiple switches, which increases the probability of storing the o✏oadable state for all

users at the data plane. We discuss multiple state partitioning techniques in §5.3.2.

• State losses due to failure of target switches. The programmable hardware

switches have the most recent version of the o✏oaded user context, and if they fail,

the latest user context is lost. The UE’s view and the network’s view of the user’s

5.3 TurboEPC design 101

(a) Traditional CUPS-based EPC (b) TurboEPC

Figure 5.1: TurboEPC Design.

context become inconsistent, and future message processing may result in incor-

rect application behavior. TurboEPC overcomes this challenge by employing state

replication techniques for the o✏oadable state across the programmable switches.

The state replication runs as a data plane application to support line-rate replica-

tion. The SDN controller monitors the network topology, and when a switch failure

is detected, it implements a failover mechanism to tackle switch failures (discussed

in §5.3.3).

5.3 TurboEPC design
This section describes the TurboEPC design that enables the o✏oad of EPC messages to

the programmable switches. We also describe the details on how TurboEPC addresses the

challenges mentioned in §5.2. We begin with an overview of TurboEPC’s basic design

(§5.3.1) and then describe design features related to scalability (§5.3.2) and fault tolerance

(§5.3.3).

5.3.1 Design overview

Figure 5.1 compares the CUPS-based traditional EPC design with TurboEPC. In

the traditional CUPS-based EPC design (Figure 5.1(a)), the MME, SGW-C, and PGW-

C components are implemented within a centralized root SDN controller in the con-

trol plane, while the data plane processing is performed at data plane switches (SGW-

102 O✏oad of SDN Applications to Programmable Switches

D & PGW-D). The eNB forwards all control plane (a.k.a., signaling) tra�c to the root

controller, which processes these messages and installs forwarding state at the S/P-GW

switches. All control plane state, including the per-user context, is maintained only in the

control plane.

In contrast, in the TurboEPC design (shown in Figure 5.1(b)), the eNB forwards

o✏oadable messages (e.g., S1 release and service request) to the data plane S/P-GW

switches. We assume that the eNB is capable of analyzing the header of a signaling mes-

sage to determine if it is o✏oadable or not. To enable the processing of o✏oadable sig-

naling messages in the data plane, the root controller in TurboEPC pushes the o✏oadable

per-user context generated/modified by non-o✏oadable signaling messages into the data

plane switches. The user context that is pushed to the data plane consists of a mapping

between the UE identifier and the following subset of information pertaining to the user:

the tunnel identifiers (TEIDs), GUTI (Globally Unique Temporary Identifier), and the UE

connection state (CONNECTED/IDLE). This user context is stored in data structures of

data plane switch, much like the forwarding state, and consumes an additional ⇡64 bytes

of memory over and above the ⇡32 bytes of forwarding state in our prototype (as shown

in Table 5.2).

O✏oadable signaling messages that arrive at the edge data plane switches (close to

the eNB) are processed within the switch data plane itself, by accessing and modifying

the o✏oaded per-user context. For example, the S1 release request processing requires

the TurboEPC switch data plane to delete the uplink/downlink TEIDs at the eNB and the

downlink TEID at the SGW, change the user connection state to idle, and update GUTI

if required. Because these o✏oadable messages reach the switch at least a few tens of

seconds (idle timeout) after the root controller pushes the context, the state o✏oad does

not cause any additional delays while waiting for the state to be synchronized. If the

signaling message requires a reply to be sent back to the user, the reply is generated and

sent by the switch data plane as well.

Consistency of o✏oadable state. Note that, the user context can be modified by the

o✏oadable signaling messages within the switch data structures, and the latest copy of

this state resides only in the data plane. TurboEPC does not synchronize this state back

to the root after every modification to the o✏oaded state, because doing so nullifies the

performance gains due to the o✏oad in the first place. Instead, TurboEPC lazily synchro-

nizes this state with its master copy at the root controller only when required. That is, all

future o✏oadable messages will access the latest copy of the o✏oaded state within the

data plane itself, and non-o✏oadable messages that do not depend on this o✏oaded state

will be directly forwarded to the root by the eNB. However, some non-o✏oadable mes-

5.3 TurboEPC design 103

Figure 5.2: Handover message processing in TurboEPC.

sages in EPC (e.g., handover messages) require access to both the latest o✏oaded user

context in the data plane and the non-o✏oaded state stored in the root. Figure 5.2 shows

how TurboEPC processes handover messages when the user is moving from the source

base station (eNB) to the target base station. The handover message is first sent to the

data plane switches by the eNB, and the switch performs the part of message processing

that does not require access to the global non-o✏oadable state. Next, the message is for-

warded from the data plane switch to the root controller, with a copy of the modified user

context (that is subsequently invalidated at the switch by the root controller) appended

to the packet, in order to complete the rest of the processing at the root correctly. Once

the mobile user is successfully migrated to the target network, the most recent user con-

text is pushed to the target switch to help processing of o✏oadable messages at the edge

programmable hardware switch.

We acknowledge that TurboEPC introduces a small amount of overhead during the

processing of non-o✏oadable handover messages since we need to piggyback the user

context from the switch to the root controller, as described above. This overhead may be

acceptable in current networks, because the handover messages comprise only 4–5% [5,

6] of all signaling tra�c. However, the handover tra�c can increase for future networks,

e.g., with small cells in 5G. We plan to revisit our handover processing to reduce overhead

in such use cases as part of our future work.

104 O✏oad of SDN Applications to Programmable Switches

Figure 5.3: User context distributed over set of switches connected in series.

5.3.2 Partitioning for scalability

To overcome single switch memory limitations, and maximize handling of o✏oad-

able messages at the data plane, TurboEPC relies on multiple programmable switches in

the core network. TurboEPC partitions the user context required to handle o✏oadable

messages and distributes the partitions among multiple data plane switches along the path

from the eNB to S/P-GW (possibly including the S/P-GW itself) [97]. Further, if the data

plane switches cannot accommodate all user contexts even with partitioning, some subset

of the user contexts can be retained in the root controller itself. With this design, any

given data plane switch stores the contexts of only a subset of the users and handles the

o✏oadable signaling messages pertaining to only those users. The switches over which

the partitioning of user context state is done can be connected in one of two ways, as we

describe below.

Series design. In the series design shown in Figure 5.3, the contexts of a set of users

traversing a certain eNB to S/P-GW path in the network are split amongst a series of pro-

grammable switches placed along the path. When an o✏oadable control plane message

arrives at one of the switches in the series, it looks up the user context tables to check if

the state of the incoming packet’s user exists on the switch. If it exists (a hit), the switch

processes the signaling message as discussed in §5.3.1. If the user context is not found

(a miss), the packet is forwarded to the next switch in the series until the last switch is

reached. If the user context is not found even at the last switch, the message is forwarded

to the root controller, and is processed like in the traditional EPC.

Parallel design. Figure 5.4 depicts a parallel design, where the user context is distributed

amongst programmable switches located on multiple parallel network paths between the

5.3 TurboEPC design 105

Figure 5.4: User context distributed over set of switches on parallel network paths.

eNB and the S/P-GW in the network. The di↵erence from the series design is that the eNB

now needs to maintain information on how the user contexts are partitioned along multiple

paths, and must forward o✏oadable messages of a particular user along the correct path

that has the user’s state. The parallel design entails the extra step of parsing the signaling

message header to identify the user, and an additional table lookup to identify the path

to send the message on, at the eNB. O✏oadable signaling messages that do not find the

necessary user context at the switches on any of the parallel paths are forwarded to the

root. While the series design leads to simpler forwarding rules at the eNB, the parallel

design lends itself well to load balancing across network paths. Note that, while our

current implementation supports only the simple series and parallel designs described

above, a network could employ a combination of series and parallel designs, where user

contexts are partitioned across multiple parallel paths from the eNB to the S/P-GWs, and

are further split amongst multiple switches on each parallel path. Across all designs,

the root controller installs suitable rules at all switches to enable forwarding of signaling

messages towards the switch that can handle it. §5.5 compares the performance of both

designs and evaluates the impact of partitioning state on TurboEPC performance.

Partitioning user context. Given a fixed and limited amount of storage in the pro-

grammable dataplanes, the question of how best to partition user contexts across multiple

106 O✏oad of SDN Applications to Programmable Switches

Figure 5.5: Fault tolerance in TurboEPC.

programmable switches in a large network is vital to address. The partitioning decision

depends upon many factors, including the number of active users, the size of the core net-

work, the capacity of the programmable switches, and the routing and tra�c engineering

policies employed within the network, and is beyond the scope of this work. Another

interesting question that we defer to future work is deciding which users should be han-

dled at which switches. With the advent of new use cases such as vehicular automation,

IoT, smart sensors, and AR/VR in next-generation networks, it is becoming essential to

provide ultra-low latency and ultra-high reliability in processing signaling tra�c of some

users. Subscribers who require low latency for their frequent signaling requests but are

not highly mobile (e.g., smart sensors) are ideal candidates to o✏oad to the data plane. It

is also conceivable to think that an operator would wish to o✏oad the contexts of premium

subscribers. TurboEPC can support any such operator-desired placement policy.

5.3.3 Replication for fault tolerance

In TurboEPC, a subset of the user context is pushed into the data plane switches

during the attach procedure. This context is then modified in the data plane tables during

the processing of subsequent o✏oadable signaling messages. For example, the S1 release

message changes the connection state in the context from connected to idle. In the case of

a switch failure, such modifications could be lost, leaving the UE in an inconsistent state.

For example, a UE might believe it is idle while a stale copy of the user context at the root

controller might indicate that the user is actively connected.

5.3 TurboEPC design 107

To be resilient to such failure scenarios, TurboEPC stores the user context at one

primary data plane switch, and another secondary switch. During the processing of non-

o✏oadable messages such as the attach procedure, the root controller pushes the user

context to the user’s primary as well as the secondary switch. The root controller also sets

up forwarding paths such that o✏oadable signaling messages of a user are directed to the

primary switch of the user. Upon processing an o✏oadable message, the primary switch

first synchronously replicates the updated user context at the secondary switch, before

generating a response to the signaling message back to the user, as shown in Figure 5.5.

Our current implementation uses simple synchronous state replication from the primary

to one other secondary switch, and is not resilient to failures of both the primary and

secondary switches in quick succession. We plan to evolve our design for replication

across multiple secondary switches as part of future work, using techniques from recent

research such as Netchain [123] and SwiShmem [124]. For example, SwiShmem uses

a register data structure to store the distributed state. SwishShmem proposes in-network

mechanisms to provide di↵erent consistency levels (strong, weak, eventual) and failure

management using state replication.

In our implementation, suppose the message from the primary switch to the sec-

ondary switch or the ACK from the secondary switch to the primary switch is lost; the

user application will retry the signaling message and recover from the loss. If a primary

switch fails before replication completes, no response is sent to the user, the user will retry

the signaling message, and will be redirected to a new switch after the network repairs the

failure. If the primary switch fails after successful replication, the SDN controller will

be notified of the failure in the normal course of events, e.g., in order to repair network

routes, and the TurboEPC application installs forwarding rules to route subsequent of-

floadable messages of the user to the secondary switch. The root controller also synchro-

nizes itself with the latest copy of user context from the now primary (former secondary)

switch and repopulates this context at another new secondary switch. Users served by

the failed switch may see a temporary disruption in o✏oadable message responses (along

with a disruption in data plane forwarding) during the time of failure recovery, and we

evaluate the impact of such disruptions in §5.5.

Tradeo↵ between scalability and fault-tolerance. To scale the mobile network core

application, TurboEPC partitions the state across multiple switches in the network. How-

ever, to achieve fault tolerance, TurboEPC creates a backup copy of the state requiring

twice the amount of state. With multiple replica copies, the required memory further in-

creases. We have a fixed number of programmable switches in the network; therefore, we

have an upper bound on the total memory in the network dataplane. Therefore, we need a

108 O✏oad of SDN Applications to Programmable Switches

Figure 5.6: TurboEPC implementation.

tradeo↵ to be made between scalability and fault tolerance. For the mobile packet core ap-

plication, we cannot ignore fault tolerance, as the mobile user’s state should be consistent

and available. To optimally utilize the limited switch memory, we should implement state

eviction policies based on parameters such as the tra�c pattern, the frequently accessed

tra�c class (latency-sensitive control plane or not), the mobility rate, and the user prior-

ity. However, for general applications, we must tradeo↵ fault-tolerance for the ephemeral

state for improved scalability.

5.4 TurboEPC implementation
We implemented simplified versions of the CUPS-based traditional EPC and TurboEPC

in order to evaluate our ideas. We have built our prototype by extending the SDN based

EPC implementation available at [39, 121]. Our implementation supports a basic set

of procedures: attach, detach, handover, S1 release, and service request in the control

plane, and GTP-based data forwarding. While our implementation of these procedures is

based on the 3GPP standards, complete standards compliance was not our goal, and is not

critical to our evaluation. The source code of TurboEPC is available at [40].

Figure 5.6 shows the various components of our implementation. A load generator

emulates control and data plane tra�c from multiple UEs to the core, a simplified eNB

switch implements only the wired interface to the core, and a sink consumes the tra�c

generated by the load generator. The load generator is a multi-threaded raw-sockets based

program of 5.3K lines, that generates EPC signaling messages and TCP data tra�c. The

load generator can emulate tra�c from a configurable number of concurrent UEs. Further,

the emulated tra�c mix (i.e., the relative proportions of the various signaling and data

plane messages) is also configurable.

5.4 TurboEPC implementation 109

Figure 5.7: Message processing at the TurboEPC hardware switch.

The control plane components of the packet core (MME, SGW-C, PGW-C) are im-

plemented within an SDN controller. The data plane switches (eNB, SGW-D, PGW-D)

are implemented as P4-based packet processing pipelines in approximately 3K lines of

P4 code. While the data plane performs only GTP-based forwarding in the traditional

CUPS-based EPC prototype, it also performs additional processing of o✏oadable signal-

ing messages (MME’ and SGW-C’ of Figure 5.1(b)) in TurboEPC. We have compiled our

TurboEPC P4 code to run on two targets: the bmv2 simple_switch_grpc [116] software

switch target, and the Netronome CX 2x10GbE [117] smartNIC hardware target. We now

describe these hardware and software switches.

TurboEPC software switch. In the software switch based TurboEPC prototype, the SDN

application that forms the EPC control plane is implemented in the ONOS controller [19]

in 10K lines of Java code. The o✏oadable message processing is implemented within a

local ONOS controller that is co-located with the P4-based software data plane switches.

This local controller configures and modifies the P4 software switch tables that contain

the o✏oaded state. We use P4Runtime [74] as the communication protocol between the

ONOS controller and the P4 software switch. However, the current P4Runtime v1.0.0

does not support multiple controllers (e.g., local and root controllers) configuring the

same data plane switch. Therefore, we built custom support for this feature by modifying

the proto/server package of the P4Runtime [74] to send/receive packets to/from multiple

controllers. Our initial implementation broadcasted control plane messages to all the

controllers, which resulted in unnecessary message processing overhead at the controllers.

Therefore, we further modified the P4Runtime agent at the bmv2 switch and the ONOS

controller to enable the P4 switch to identify the specific controller where the control

packet should be forwarded. This optimization required significant code changes but also

improved performance.

110 O✏oad of SDN Applications to Programmable Switches

TurboEPC hardware switch. Our hardware-based TurboEPC switch did not integrate

with the ONOS SDN controller used in the software prototype, due to the limitations of

the control to data plane communication mechanisms (P4Runtime support) in the pro-

grammable hardware we used. Therefore, we implemented our own channels for the

control to data plane communication, but we still could not dynamically install rules on

the hardware switch. So, we pre-populated the table rules on the hardware, and the rule

population code at the controller generates the rule packets for the switch. When the

switch receives these rule packets, it silently discards them.

Another di↵erence with the software switch is in how o✏oadable messages are pro-

cessed. Figure 5.7 shows the message processing flow at the TurboEPC hardware switch,

and we also describe how it di↵ers from the TurboEPC software switch design. The soft-

ware prototype stores the o✏oadable user context and forwarding state generated by the

non-o✏oadable procedures in switch tables, and the local controller is invoked to modify

these tables when processing o✏oadable messages. However, this local controller can

consume the limited switch CPU available in hardware switches. Therefore, the hardware

prototype stores the o✏oadable state not in switch tables but in switch register arrays,

which are distinct from switch tables. While a switch table can only be modified from

the root/local control plane, a register can be modified by P4 code running within the

data plane. Therefore, we modified our design so that the switch tables only store a

pointer from the user identifier to this register state, and not the actual state itself. The

root controller takes care of maintaining the free and used slots in the register arrays of

the switches. The root controller creates the table entries that map from user identifiers

(which are either available in packet headers, or can be derived from the packet headers)

to register array indices when the user context is first created during the attach proce-

dure. After the entries are created, o✏oadable messages (S1 release, service request) that

change the o✏oaded state do not require to invoke the switch control plane (that consumes

switch CPU) to modify the tables. Rather, the o✏oadable messages can fetch the register

index from the table and directly modify the registers from within the data plane.

TurboEPC packet processing pipeline. We now briefly describe the P4-based packet

processing pipeline of both hardware and software TurboEPC data plane switches (Figure

5.8). Incoming packets in an EPC switch are first run through a message redirection table

that matches on various header fields to identify if the incoming message is a signaling

message, and if yes, where it should be forwarded to. This table is populated by the root

controller to enable correct redirection of non-o✏oadable signaling messages to the root,

and o✏oadable messages to the switch that has the particular user’s context. Packets that

5.5 Evaluation 111

Figure 5.8: Packet processing pipeline in TurboEPC.

do not match the message redirection table continue along the pipeline, and are matched

through multiple GTP forwarding tables for GTP-based data plane forwarding.

O✏oadable signaling messages destined to the current switch are first run through

the user context table to find any existing o✏oaded user context. The signaling mes-

sage is processed by modifying or deleting the user context and/or GTP forwarding state

stored on the switch. The switch data structures are either updated by the local controller

(software prototype) or within the data plane itself (hardware prototype). After message

processing, the packet may be forwarded to the secondary switch for state replication. On

successful replication (within the data plane), the secondary switch generates the response

packet for the user, and forwards it to the primary switch as an acknowledgement for suc-

cessful state replication. The primary switch data plane forwards the response packet back

to the user, indicating the successful execution of the signaling message. If the signaling

message processing could not complete at the switch (e.g., the user context is not found,

or the handover message requires further processing at the root), the packet is forwarded

to the root controller for further processing. In the case of series design (not last switch),

if the user context is not found, the message is forwarded to the next switch on the path.

5.5 Evaluation
We now evaluate the TurboEPC software and hardware switch prototypes, and quantify

the performance gains over the traditional CUPS-based EPC.

112 O✏oad of SDN Applications to Programmable Switches

Figure 5.9: TurboEPC software evaluation setup.

5.5.1 TurboEPC software prototype

We first evaluate the TurboEPC prototype implemented on P4-based software

switches. We primarily aim to evaluate the benefits of our TurboEPC design as com-

pared to the traditional EPC design. Further, we also seek to demonstrate the correctness

and e�cacy of the various mechanisms for scalability and fault tolerance in our design.

Setup. Figure 5.9 shows the components in our software TurboEPC setup that include

the load generator, a sink node, ONOS v1.13 SDN controller, and multiple P4-based

programmable bmv2 software switches (simple_switch_grpc) for the eNB, SGW, and

PGW components of LTE EPC. We use multiple “forwarding chains” of load generators

and switches in the data plane, to generate enough load to saturate the root SDN controller.

All components run on Ubuntu 16.04 hosted over separate LXC containers to ensure

isolation. The root controller container is hosted on an Intel Xeon E5-2697@2.6GHz

(24GB RAM) server, and the rest are hosted on an Intel Xeon E5-2670@2.3GHz (64GB

RAM) server. The root/local controllers and all P4 software switches are allocated 1

CPU core and 4GB RAM each. Our load generator is a closed-loop load generator that

emulates multiple concurrent UEs generating signaling and data plane tra�c. The number

of concurrent emulated UEs in our load generator is tuned to saturate the control plane

capacity (root or local or both) of the system in all experiments, and is varied between 4

and 100.

Parameters and metrics. We generate di↵erent workload scenarios by varying the mix

of o✏oadable (S1 release and service request) and non-o✏oadable (attach, detach, and

handover) signaling messages in the control plane tra�c generated by the load generator.

Table 5.3 shows the relative proportions of the various signaling messages in the tra�c

mixes used, along with a typical tra�c mix found in real user tra�c [6]. O↵-x indicates

5.5 Evaluation 113

Tra�c Mix Attach, Detach % S1 release, Service request % Handover %

O↵-99 1 99 0

O↵-95 5 95 0

O↵-90 10 90 0

O↵-50 50 50 0

HO-5 10 85 5

Typical [6] 1–2 63–94 5

Table 5.3: LTE-EPC tra�c mix used for experiments.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Off-99 Off-95 Off-90 Off-50 HO-5 Typical

1.3x

1.2x

0.9x

0.3x

1.1x

2.3x

T
h

ro
u

g
h

p
u

t
(m

e
ss

a
g

e
s/

s)

LTE-EPC Traffic Mix

Traditional-EPC
TurboEPC

Figure 5.10: TurboEPC vs. traditional EPC: Throughput.

 0

 5

 10

 15

 20

 25

Off-99 Off-95 Off-90 Off-50 HO-5 Typical

-70%
-54%

-5%

-2%

5%

-90%

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
m

s)

LTE-EPC Traffic Mix

Traditional-EPC
TurboEPC

Figure 5.11: TurboEPC vs. traditional EPC: Latency.

that the tra�c mix comprises of x% of o✏oadable messages. All results reported are

averaged over three runs of an experiment conducted for 300 seconds, unless mentioned

otherwise. The performance metrics measured are the average control plane throughput

114 O✏oad of SDN Applications to Programmable Switches

(number of control plane messages processed/sec) and average response latency of control

plane requests, as measured at the load generator over the duration of the experiment.

TurboEPC vs. Traditional EPC. We first quantify the performance gains of the basic

TurboEPC design as compared to the traditional EPC design. In these set of experi-

ments, we assume (and ensure) that all UE context state fits in the memory of a single

switch. We also do not perform any replication of the data plane state for fault tolerance

because we are interested in measuring maximum control plane capacity; therefore, our

load generator does not generate any data plane tra�c. Figures 5.10 and 5.11 show the

control plane throughput and latency respectively of the traditional EPC and TurboEPC,

for various tra�c mixes of Table 5.3. As can be seen, performance gains of TurboEPC

over traditional EPC are higher for tra�c mixes with a greater fraction of o✏oadable

messages. For example, for the typical tra�c mix, we observe that TurboEPC improves

control plane throughput by 2.3⇥ over traditional EPC, while control plane latency is

reduced by 90%. Further, we note that the root controller was fully saturated in the tradi-

tional EPC experiments, while CPU utilization was under 20% with TurboEPC because

most signaling tra�c was processed using data plane switch CPU. However, when the

tra�c consists of a high proportion of non-o✏oadable messages (e.g., mix O↵-50, which

is unrealistic), TurboEPC has lower throughput than traditional EPC (0.3⇥), because it

incurs an additional overhead of pushing user context to the data plane switches during

the processing of non-o✏oadable messages. In summary, we expect TurboEPC to deliver

significant performance gains over the traditional EPC over realistic tra�c mixes, which

contain a high proportion of o✏oadable signaling messages.

The performance gains of TurboEPC are more pronounced when the distance be-

tween the “edge” and “core” of the network increases, and with the increasing number of

switches that can process o✏oadable messages in the data plane, both of which are likely

in real-life settings. Figures 5.12 and 5.13 show the performance of TurboEPC as a func-

tion of the distance to the root controller (emulated by adding delay to all communications

to the root) and the number of forwarding chains of data plane switches. We see from the

figures that TurboEPC with 4 chains provides 4⇥ – 5⇥ throughput over traditional EPC.

We also observe that TurboEPC latency does not increase with the distance to the core

network, and the latency is reduced by two orders of magnitude compared to traditional

EPC when the round trip latency to the core is higher than 5 ms.

While TurboEPC improves average control plane performance, it can (and does)

degrade performance for some specific non-o✏oadable messages. For example, as dis-

cussed in §5.3.1, processing non-o✏oadable messages like the attach request incurs the

extra cost of pushing o✏oaded user context to data plane switches. Similarly, handover

5.5 Evaluation 115

 0

 500

 1000

 1500

 2000

 2500

 3000

<1ms 5ms 10ms

T
h
ro

u
g
h
p
u
t
(m

e
ss

a
g
e
s/

s)

RTT to the core network

TurboEPC 1-chain throughput
TurboEPC 2-chain throughput
TurboEPC 3-chain throughput
TurboEPC 4-chain throughput

Traditional-EPC throughput

Figure 5.12: Throughput with varying distance to core, and varying number of dataplane
switches.

 0.1

 1

 10

 100

 1000

<1ms 5ms 10ms

E
n
d
 t
o
 e

n
d
 la

te
n
cy

 (
m

s)

RTT to the core network

TurboEPC 1-chain latency
TurboEPC 2-chain latency
TurboEPC 3-chain latency
TurboEPC 4-chain latency

Traditional-EPC latency

Figure 5.13: Latency with varying distance to core, and varying number of dataplane
switches.

message processing incurs a higher overhead with TurboEPC because we need to piggy-

back the o✏oaded state and synchronize it with the root. Table 5.4 shows the average

processing latency of various individual signaling messages in TurboEPC and the tradi-

tional EPC, in the setup with a single forwarding chain. The generated load followed the

typical tra�c distribution, as shown in Table 5.3. Table 5.4 shows the latency results for

two scenarios: (i) when the EPC core is close to the edge (RTT < 1ms), and (ii) when

the EPC core is far from the edge (RTT = 10ms). We see that the processing latency

reduces by up to 86–94% for o✏oadable messages like S1 release and service request,

but increases by 2–5% for non-o✏oadable messages like attach requests and handovers.

116 O✏oad of SDN Applications to Programmable Switches

Design Attach, Detach S1 release, Service request Handover

RTT to the core is less than 1 ms

Centralized 10.72 10.28 17.38

TurboEPC 10.98 1.44 18.36

RTT to the core is 10 ms

Centralized 200 38 549

TurboEPC 205 2.4 580

Table 5.4: Average end-to-end latency for typical LTE-EPC tra�c distribution (in ms).

Because o✏oadable messages form a significant fraction of signaling tra�c, TurboEPC

improves the overall control plane performance of the mobile packet core, even though a

small fraction of signaling messages may see a slightly degraded performance.

Series vs. parallel partitioning. Next, we perform experiments with the series vs. paral-

lel state partitioning design variants of the TurboEPC software switch prototypes, to eval-

uate the performance impact of the additional complexity of these designs. This experi-

ment was performed with tra�c mix O↵-99 of Table 5.3 (1% attach-detach requests), and

results for other tra�c mixes were similar. We use multiple (up to 3) TurboEPC switches

in series and parallel configurations, and partition 100 active users uniformly over these

switches. Besides these 100 users, our load generator also generates tra�c on behalf of an

additional 20 users whose contexts were not stored in the data plane switches, to emulate

the scenario where all contexts cannot be accommodated in the data plane. Figure 5.14

shows the average control plane throughput and latency of the TurboEPC-Series(n) and

TurboEPC-Parallel(n) designs, for a varying number of switches n in series and parallel,

both when the context of the users is found within one of the switches (hit) and when it

is not (miss). We see from the figure that the TurboEPC throughput scales well when an

additional switch becomes available to process o✏oadable signaling messages. The scal-

ing is imperfect when there are 3 switches in series or parallel because the eNB switch

became the bottleneck in these scenarios. This eNB bottleneck is more pronounced in

the parallel design case because the eNB does extra work to lookup the switch that has

the user’s context in the parallel design. We hope to tune the eNB software switch to

ameliorate this bottleneck in the future.

While the throughput increases with extra TurboEPC switches, the control plane

latency also increases due to extra hop traversals and extra table lookups compared to

the basic TurboEPC design. This impact on latency is more pronounced in the series

5.5 Evaluation 117

 0

 200

 400

 600

 800

 1000

 1200

 1400

T
ra

d
iti

o
n

a
l-
E

P
C

T
u

rb
o

E
P

C
-S

e
ri
e

s(
1

)

T
u

rb
o

E
P

C
-S

e
ri
e

s(
2

)

T
u

rb
o

E
P

C
-S

e
ri
e

s(
3

)

T
u

rb
o

E
P

C
-S

e
ri
e

s(
m

is
s)

T
u

rb
o

E
P

C
-P

a
ra

lle
l(
1

)

T
u

rb
o

E
P

C
-P

a
ra

lle
l(
2

)

T
u

rb
o

E
P

C
-P

a
ra

lle
l(
3

)

T
u

rb
o

E
P

C
-P

a
ra

lle
l(
m

is
s)

 0

 2

 4

 6

 8

 10

 12

 14

 16

T
h

ro
u

g
h

p
u

t
(m

e
ss

a
g

e
s/

s)

L
a

te
n

cy
 (

m
s)

Throughput
Latency

Figure 5.14: Series vs. parallel partitioning.

designs, where each switch adds an extra hop to latency. However, even with 3 switches

in series or parallel, TurboEPC latency is still lower than that of the traditional EPC.

We also see from the figure that the miss latency of o✏oadable message processing is

worse than the message processing latency of the traditional EPC, because the messages

undergo multiple table lookups within the data plane before eventually ending up at the

root controller.

TurboEPC fault tolerance. Next, we evaluate the fault tolerance of the TurboEPC de-

sign by simulating a failure of the primary switch in the middle of an experiment and

observing the recovery. Figure 5.15 shows the average throughput and Figure 5.16 shows

the average latency of the fault-tolerant TurboEPC for an experiment of duration 1200

seconds, where the primary switch was triggered to fail after 600 seconds. Also shown in

the graphs are the throughput and latency values of the basic TurboEPC without any fault

tolerance, for reference. We see that the throughput of the basic TurboEPC is 40% higher,

and the latency is 33% lower than the fault-tolerant design due to the lack of replication

overhead. After the failure of the primary switch, we found that the root controller takes

about 15 seconds to detect the primary switch failure, ⇠2 ms to push rules to eNB that

would route incoming packets to the secondary switch, and ⇠30 ms to restart o✏oad-

able signaling message processing at the secondary switch. During this recovery period,

we observed ⇠200 signaling message retransmissions, but all signaling messages were

eventually correctly handled by TurboEPC after the failure.

118 O✏oad of SDN Applications to Programmable Switches

 0

 100

 200

 300

 400

 500

 600

 700

 0 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 8
0

0

 9
0

0

 1
0

0
0

 1
1

0
0

 1
2

0
0

T
h

ro
u

g
h

p
u

t
(m

e
ss

a
g

e
s/

s)

Time in secs

Fail Recover

TurboEPC (basic)
TurboEPC (with fault tolerance)

Figure 5.15: TurboEPC throughput during failover.

 0

 2

 4

 6

 8

 10

 0 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 8
0

0

 9
0

0

 1
0

0
0

 1
1

0
0

 1
2

0
0

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
m

s)

Time in secs

Fail Recover

TurboEPC (basic)

TurboEPC-FT

Figure 5.16: TurboEPC latency during failover.

5.5.2 TurboEPC hardware prototype

We now evaluate our hardware-based TurboEPC prototype, built using the P4-

programmable Netronome Agilio smartNIC [117].

Setup. Figure 5.17 shows the TurboEPC hardware setup which was hosted on three

Intel Xeon E5-2670@2.3GHz (128GB RAM) servers, each connected to one Netronome

Agilio CX 2x10GbE smartNIC. The three servers hosted the single chain of the load

generator+eNB, SGW, and PGW+sink, respectively. An ONOS controller is assigned 4

CPU cores and is hosted on the SGW switch and served as the root control plane, for

TurboEPC hardware switch setup as well as the traditional CUPS-based EPC setup.

Parameters and Metrics. Our load generator generated a mix of o✏oadable/non-

o✏oadable signaling messages and data plane tra�c (using iperf3) in the experiments.

The smartNIC hardware could accommodate the user contexts of 65K users within the

5.5 Evaluation 119

Figure 5.17: TurboEPC hardware evaluation setup.

switch hardware tables, and the load generator could generate tra�c for these users in

all experiments. The maximum forwarding capacity of our smartNICs (without any Tur-

boEPC changes) was measured at 8 Gbps, so our load generator also limited its maximum

data plane tra�c rate to 8 Gbps. All experiments were run for 300 seconds, and we report

the maximum throughput and latency of processing o✏oadable signaling messages in the

hardware prototype.

Performance of TurboEPC hardware switch vs. traditional CUPS-based EPC. First,

we measure the performance of our hardware TurboEPC switch, without any interfering

data plane tra�c, and compare it with that of the traditional CUPS-based EPC setup.

We evaluate the saturation throughput and response latency with the smartNIC loaded

with the state for 65K users. Figure 5.18 and Figure 5.19 compare the performance of

the TurboEPC hardware switch and traditional CUPS-based EPC in terms of throughput

and response latency, respectively. The errorbars in the latency plot shows the minimum

and maximum latency values. We observe that when the o✏oadable tra�c rate is high

(O↵-99), the hardware-based TurboEPC throughput is 11⇥ higher, and the average la-

tency is 97% lower than the traditional EPC. The traditional EPC root CPU is saturated

(⇠400%, which refers to all the 4 CPU cores running at 100%), but the TurboEPC root

CPU utilization for this tra�c is only 45%, and the local TurboEPC switch is saturated.

The TurboEPC root controller does not saturate because the amount of non-o✏oadable

tra�c that is served by the root controller is very low. In order to obtain TurboEPC sat-

urated root controller throughput, we need to add more hardware TurboEPC chains that

could pump more non-o✏oadable tra�c. With additional hardware chains at saturated

root CPU (400%), the TurboEPC throughput improvements would be more significant.

However, for the O↵-20 tra�c-mix, we observe TurboEPC throughput to be 1.4⇥ higher

and average latency 68% lower than traditional EPC. The TurboEPC performance gains

120 O✏oad of SDN Applications to Programmable Switches

 0

 5000

 10000

 15000

 20000

 25000

Off-99 Off-95 Off-90 Off-70 Off-50 Off-20

T
h

ro
u

g
h

p
u

t
(m

e
ss

a
g

e
s/

s)

LTE-EPC Traffic Mix

Traditional-EPC throughput
TurboEPC hardware throughput

Figure 5.18: TurboEPC-hardware vs. traditional-EPC throughput.

 0.1

 1

 10

 100

Off-99 Off-95 Off-90 Off-70 Off-50 Off-20

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
m

s)

LTE-EPC Traffic Mix

Traditional-EPC latency
TurboEPC hardware latency

Figure 5.19: TurboEPC-hardware vs. traditional-EPC response latency.

decrease because as the non-o✏oadable tra�c rate increases, the tra�c processed at the

hardware switch reduces, and the root controller saturates. We observe high tail latencies

for TurboEPC due to the processing of non-o✏oadable tra�c at the root controller.

Capacity of TurboEPC hardware switch. Now, we measure the maximum control plane

capacity of our hardware TurboEPC switch such that the switch only processes o✏oad-

able EPC control messages. In this setup, the switch resource was not shared for data

plane tra�c processing or non-o✏oadable message processing. For this purpose, the load

generator o✏oaded the user state to the switch (attach request), after which it only per-

formed the o✏oadable operations of the S1 release and service request. We also tested

the e↵ect of varying user-state size on the switch performance. Figure 5.20 shows the

throughput and latency of a single TurboEPC hardware switch. We evaluate the maxi-

mum throughput with the smartNIC loaded with user state size varying from 100 to 65K.

5.5 Evaluation 121

 0

 10000

 20000

 30000

 40000

 50000

100 1K 5K 10K 20K 30K 40K 50K 60K 65K
 0

 50

 100

 150

 200

 250

 300

 350

 400

T
h

ro
u

g
h

p
u

t
(m

e
ss

a
g

e
s/

s)

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
µ

s)

Number of LTE-EPC users (user context stored on NIC)

TurboEPC hardware throughput
TurboEPC hardware latency

Figure 5.20: TurboEPC throughput vs. number of users

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

N
o

-d
a

ta

1
G

b
p

s

2
G

b
p

s

3
G

b
p

s

4
G

b
p

s

5
G

b
p

s

6
G

b
p

s

7
G

b
p

s

8
G

b
p

s

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
h

ro
u

g
h

p
u

t
(m

e
ss

a
g

e
s/

s)

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
µ

s)

Data traffic rate at the switch

TurboEPC hardware throughput
TurboEPC hardware latency

Figure 5.21: TurboEPC throughput with data tra�c interference.

We found that the throughput does not vary when we add the state of more users to the

smartNIC. We see from the figure that our single TurboEPC hardware switch can success-

fully serve up to 38K EPC messages per sec, while providing 20⇥ higher throughput and

97% lower latency than traditional EPC.

Performance with dataplane tra�c. TurboEPC improves control plane throughput over

the traditional EPC by leveraging the extra capacity at data plane switches for o✏oadable

signaling message processing. However, the performance gains of TurboEPC may be

lower if the switch is busy forwarding data plane tra�c. We now measure the impact

of this data plane cross-tra�c on the control plane throughput of TurboEPC. We pump

increasing amounts of data plane tra�c through our TurboEPC hardware switch (with

122 O✏oad of SDN Applications to Programmable Switches

the state for 65K users) and measure the maximum rate at which the switch can process

o✏oadable signaling messages while forwarding data tra�c simultaneously. Figure 5.21

show the signaling message throughput and latency, respectively, as a function of the data

plane tra�c forwarded by the TurboEPC hardware data plane switch. We see from the

figure that as the data tra�c rate increases, the o✏oadable signaling message throughput

decreases, and response latency varies between 150µs to 250µs. The throughput and

latency values for the traditional CUPS-based EPC (RTT to the root < 1 ms) are same as

in the previous experiment (refer Figure 5.18). We observe that when the switch is idle,

the hardware-based TurboEPC throughput is 20⇥ higher, and the latency is 97% lower

than the traditional EPC. However, even when the switch is forwarding data at line-rate

(8Gbps), we observe throughput to be 10⇥ higher and latency 96% lower than traditional

EPC, confirming our intuition that spare switch CPU can be used for handling o✏oaded

signaling tra�c.

5.5.3 Summary of results

Our evaluations demonstrated that o✏oading signaling messages to the data plane

improves the throughput by 1.4⇥ to 20⇥ and reduces the latency by 68% to 97% than tra-

ditional EPC, with the increase in the proportion of o✏oadable control plane messages.

The performance range depicts the TurboEPC e�cacy with the increase in the propor-

tion of o✏oadable control plane messages. Even when the switch is forwarding data at

line-rate, the TurboEPC data plane improves the control plane throughput of o✏oadable

messages by 10⇥ and reduces the latency by 96%.

5.6 Summary
We described TurboEPC, a redesigned mobile packet core that o✏oads a significant frac-

tion of signaling procedures from the control plane to the programmable data plane to

improve control plane performance. TurboEPC data plane switches store a small amount

of control plane state in switch tables, and use this state to process some of the more fre-

quent signaling messages at switches closer to the edge. We implemented TurboEPC on

P4-based software switches and programmable hardware. Our TurboEPC code is open-

sourced and available for use for the developers [40].

Chapter 6

Comparison of Control Plane Scaling
Approaches

In this chapter, we use empirical results to compare the performance of SDN control plane

scalability approaches proposed by existing research as well as the methods proposed in

this thesis. We use the common testbed, framework, and common SDN application (4G

LTE mobile packet core) to compare these scalability designs. We chose the mobile packet

core application because it is complex enough to cover all the patterns that are found in

other applications too. We conclude the chapter with the performance summary of all

scalability designs and provide guidelines on the scalability design choice based on the

application and tra�c characteristics.

6.1 SDN control plane scaling approaches
The goal of this thesis is to ensure scalability and low response latency for SDN con-

trol plane applications. The term scalability here implies that the application throughput

scales with the addition of resources to the SDN control plane. Response latency is the

latency between the user initiating the request and receiving the response. We have al-

ready discussed the existing SDN control plane scalability approaches in §2.2. We have

contributed two new approaches, Cuttlefish (Chapter 4) and TurboEPC (Chapter 5), to-

wards a scalable SDN control plane. Next, we briefly describe all control plane scalability

approaches that we compare (see Figure 6.1).

1. Centralized SDN controller design. The traditional SDN model runs the SDN

controller over a commodity server (Figure 6.1 (a)). POX [125] is an example of

a single threaded SDN controller. Beacon [43], Floodlight [44], NOX [45], Mae-

stro [46] are some of the popular multithreaded SDN controllers. The centralized

123

124 Comparison of Control Plane Scaling Approaches

Figure 6.1: SDN control plane scalability approaches.

SDN controller processes all the control plane requests that arrive at the data cen-

ter network. We have already seen in §2.1 that the centralized SDN controller can

become a bottleneck with high frequency control plane tra�c. In our experiments,

we evaluate two centralized controller configurations, single-core and multi-core,

where the number of cores assigned to the centralized root controller is the configu-

ration parameter. The multi-core configuration scales the SDN controller but, there

is a limit on the number of cores a dedicated server can have. Also, the cost of a

single dedicated server with M ⇤ N cores is higher than that of M servers with N

cores each [126]. So, it is better to split the load amongst multiple server replicas,

as adopted by the horizontally-scaled controller design.

2. Horizontally-scaled SDN controller design. The horizontally-scaled controller

design distributes the incoming control plane tra�c among multiple homogeneous

controller replicas (Figure 6.1 (b)). But, the SDN paradigm requires maintenance

of a consistent network-wide view at the SDN controller. Therefore, the controller

replicas in the horizontally-scaled design use synchronization mechanisms to main-

tain a consistent global network-wide view.

Proposals like Onix [13], Hyperflow [14], and Beehive [20] implement this design.

For example, Hyperflow divides the network topology into subsets, and the desig-

nated controller replica processes the control tra�c at each subset. These controller

replicas implement publish-subscribe state synchronization mechanisms to main-

tain the global network-wide view. We can scale the SDN control plane by the

6.1 SDN control plane scaling approaches 125

addition of controller replicas, but the state synchronization process will use some

CPU cycles. Therefore, the application scales but the throughput is slightly lower

than the expected linear scaling. The response latency slightly increases due to state

synchronization, as compared to traditional centralized technique.

3. O✏oad computations to local controllers. The SDN controllers discussed in the

previous approaches can be physically distant from the users and cause response

time latencies in the order of a few 10’s to 100’s of milliseconds. A hierarchical

control plane scaling approach is used to scale the centralized root controller and

reduce the response time latency. This approach o✏oads a subset of application

computations to the local controllers at/close to the edge switches, typically close

to the user (Figure 6.1 (c)). The rest of the computations are processed at the cen-

tralized root controller.

Devoflow [15], Difane [21], and Kandoo [16] are examples of hierarchical scaling

approaches. These approaches identify the computations that require local switch-

specific states alone and o✏oad their processing to the local controllers. We have

seen that our hierarchical control plane scaling framework, Cuttlefish, extends the

existing approaches by o✏oading additional computations that depend on the of-

floadable global state (§3.1.2) to the local controllers at the edge switches, close to

the user. It involves lazy synchronization of the o✏oadable global state since some

control plane messages may access this o✏oadable state at the root controller.

The o✏oad of the subset of computations significantly reduces the response latency

for the o✏oaded control plane messages. The response latency slightly increases for

non-o✏oadable messages because the message processing can create/update/delete

the o✏oadable state, that must be synchronized consistently with the copy of the

state at the local controllers. This approach performs worse than the centralized ap-

proaches when the state synchronization cost negates the benefits of o✏oad. There-

fore, our Cuttlefish framework monitors the state synchronization costs in real-time

and adapts to the best SDN mode, centralized or o✏oad.

4. O✏oad computations to programmable hardware switches. The hierarchical

scaling approach benefits significantly by o✏oading the processing of o✏oadable

messages to the programmable hardware switches or smartNICs since the pack-

ets do not have to travel the network and application stack of the controller and

undoubtedly hardware runs faster than the software (Figure 6.1 (d)).

Eden [25] and FOCUS [17] are examples of solutions that o✏oad subset of compu-

tations to the hardware switches. Our proposal, TurboEPC, o✏oads the S1 release

126 Comparison of Control Plane Scaling Approaches

Approach Scalable? Response latency Bottleneck reason Suitable workload

Centralized: multi-core Yes, limited to num-
ber of controller cores

Depends on RTT
between user and
root controller

Root controller CPU
saturation

Workload with low fre-
quency control tra�c

Horizontal scaling Yes Depends on RTT
between user and
root controller &
state synchroniza-
tion overhead

CPU saturation of all
controller instances &
state synchronization
overhead

Workload that generates
low synchronization
tra�c

O✏oad to
local controllers

Yes, scalable for
o✏oadable tra�c

Depends on RTT
between user and
local controller (for
o✏oadable tra�c)

High o✏oadable state
synchronization cost
(put_rate>access_rate)

Workload with higher
fraction of o✏oadable
tra�c

O✏oad to
programmable

hardware switches

Yes, scalable for
o✏oadable tra�c

Depends on RTT
between user and
hardware switch
(for o✏oadable
tra�c)

High o✏oadable state
synchronization cost
(put_rate>access_rate),
switch memory, &
spare switch CPU

Workload with higher
fraction of o✏oadable
tra�c & the o✏oadable
computations should be
implementable on pro-
grammable hardware

Table 6.1: Comparison of SDN control plane scaling approaches.

and the service request o✏oadable control plane messages to the programmable

hardware (smartNIC) that resides close to the base station. We achieve significant

throughput improvement as these hardware devices run at line-rate. Also, the re-

sponse latencies are low (order of 100’s of µsec) as the control plane messages

are processed at the data plane itself. Apart from the synchronization cost limita-

tion, there are additional programmable hardware limitations like small hardware

instruction set and memory size that we have discussed in §5.2.

6.1.1 Comparison of control plane scaling approaches

Table 6.1 summarizes the key points of the SDN control plane scaling approaches.

Both the horizontal scaling and hierarchical scaling approaches help scale the SDN con-

trol plane. The horizontal scaling approach must implement strict state synchronization

between the controller replicas to maintain a logically centralized network view. In con-

trast, the o✏oad techniques scale better because they employ lazy synchronization for the

o✏oadable state. The response latency provided by the o✏oad techniques is very low as

compared to horizontal scaling techniques since the o✏oadable messages are processed

at the edge, close to the user. In this chapter, the local controller o✏oad design does

not implement the Cuttlefish idea of adaptive switching between the o✏oad and central-

ized SDN modes, since we are interested in identifying the individual design (centralized,

horizontal, or o✏oad) that provides the best performance.

O✏oad to programmable hardware provides significant throughput and latency

gains. To implement this design, we incur additional costs for replacing the edge switches

6.2 Implementation 127

by the programmable hardware. The price of a quad-core Intel Xeon processor is 422

USD [127], and the value of the Netronome 10Gbps smartNIC is 444 USD [128]. The cost

for the two is similar, but the performance gains of smartNIC-based o✏oad are significant,

so it is preferred to use the hardware o✏oad approach, if the o✏oadable computations are

programmable with the instruction set of the underlying programmable hardware.

The horizontal scaling approach can scale any control plane tra�c, whereas the pro-

posed o✏oad techniques can only scale o✏oadable control tra�c. The o✏oad techniques

have to consistently update the copy of the o✏oadable state at the local controller/switch

whenever it is updated at the root controller by the non-o✏oadable messages. Therefore,

the response latency for non-o✏oadable messages increases and the performance of the

o✏oad design degrades with the increase in the proportion of non-o✏oadable messages in

the total tra�c. So, it is better to implement a framework like Cuttlefish, that adapts to the

best approach based on incoming control tra�c-mix. In the next section, we discuss the

empirical evaluation of SDN control plane scalability designs to validate our hypothesis.

In this section, we describe the implementation, experimental testbed setup, and

evaluation of all the SDN control plane scaling designs.

6.2 Implementation
Our testbed uses the ONOS controller framework and data plane switches (P4-based

bmv2 (simple_switch_grpc [116]) switch for all software setups, Netronome Agilio CX

4000 smartNIC [117] for hardware setup. We run the same SDN application (4G LTE

mobile packet core) for all the designs to have a fair comparison. Figure 6.2 shows the

experimental setup that is common to all the scaling designs. The mobile packet core ap-

plication components eNB, SGW, and PGW are the data plane switches controlled by the

root ONOS controller, i.e., the root controller can configure the switches and also popu-

late switch tables. Each switch is assigned 2 CPU cores, and the ONOS root controller is

assigned 4 CPU cores unless specified otherwise. In the case of all software setups, the

P4-based bmv2 switches used the P4Runtime API for controller-switch communication,

i.e., to populate switch rules and send control/data tra�c.

We know that our o✏oad designs distribute the computation processing between

the root controller and the local nodes (controllers/switches) such that the root controller

processes the non-o✏oadable computations, and the local nodes process the o✏oadable

computations. If the tra�c-mix consists of a small fraction of non-o✏oadable messages,

the root controller load is very low. Therefore, we may be unable to saturate the o✏oad

design’s root controller with a single forwarding chain (load generator + eNB + SGW).

128 Comparison of Control Plane Scaling Approaches

Figure 6.2: Experimental setup diagram for all scaling designs.

Similar to what we have discussed in §4.4.1 and §5.5.1, we set up four forwarding chains

with the intention to saturate the root controller. We set up a single forwarding chain

for the hardware o✏oad design since only three smartNICs were available with us. We

limited our setup with four forwarding chains because the CPU and the memory at the

servers that hosted our switch containers were exhausted. Despite four forwarding chains,

there were cases when we could not saturate the root controller CPU due to low fractions

of non-o✏oadable tra�c, and we have highlighted such results.

Some of the discussed scalability designs comprise of multiple controller nodes.

For example, the horizontal scaling design comprises multiple homogeneous root con-

trollers, whereas the local controller o✏oad design comprises multiple local controllers

and the root controller. Therefore, our framework should have the capability to allow

multiple controllers to configure/populate the switch tables simultaneously. The current

P4Runtime implementation does not have this support. Therefore, we modified the ex-

isting P4Runtime code at the bmv2 switches and the ONOS controllers to enable multi-

master support for all designs comprising multiple controller nodes. We have discussed

more details in §5.4. Next, we describe the specific implementation details for each scal-

ability design.

6.2 Implementation 129

1. Centralized single-core and centralized multi-core design. The centralized de-

sign is the traditional SDN controller design. We use the TurboEPC’s central-

ized design implementation for LTE-EPC application (refer §5.4) since it uses the

same framework, i.e., the ONOS SDN root controller and P4-based bmv2 soft-

ware switches. We evaluate two centralized design configurations, single-core, and

multi-core, where the purpose of the multi-core configuration is to demonstrate ver-

tical scaling of the root controller. We allocate 1 CPU core and 4 CPU cores to the

root controller for the single-core and multi-core configurations, respectively.

2. Horizontal scaling. We implemented this design since we do not have an exist-

ing LTE-EPC implementation that scales using horizontal scaling design. Our root

controller runs the modified version of the centralized controller code mentioned

in §5.5. We have implemented four root ONOS controllers that run the EPC appli-

cation, and each of them is assigned 1 CPU core and one forwarding chain. The

root controller with 4-core capacity can have a fair comparison with the centralized

multi-core design that is assigned 4-cores.

In horizontal scaling, controllers use synchronization mechanisms to maintain the

logically centralized view. We implement the synchronization mechanism similar

to Hyperflow [14]. All the root controllers update the state at the global Redis key-

value server (publish). All the updates at the global Redis store are synchronized

immediately with the local Redis store at the root controllers (subscribe). Since

all the root controller replicas have all user state, any root replica can service the

control plane message of any user. We modified the centralized code for all EPC

control plane messages to access the state from the Redis datastore, and we require

all the root controller replicas to have control over all the switches.

3. Local controller o✏oad. The proposed local controller o✏oad design, Cuttlefish

was implemented over the Floodlight SDN controller (§4.4). This implementation

did not implement the standard EPC security algorithms for encryption and au-

thentication, as Cuttlefish’s goal was to demonstrate adaptive o✏oad and not build

standards-compliant EPC application. Since all other designs have the standard

implementation for EPC security algorithms, we implemented the local controller

o✏oad prototype using TurboEPC’s base code (§5.4).

We implemented four forwarding chains with four local ONOS controllers, each

with 2 CPU cores. The local ONOS controller that resides at the SGW processes

the o✏oadable control tra�c that arrives at the corresponding forwarding chain. In

contrast, the incoming non-o✏oadable tra�c from all the forwarding chains is pro-

130 Comparison of Control Plane Scaling Approaches

cessed by the root controller. We implemented synchronization channels between

the root and local ONOS controllers for synchronization of o✏oadable state. We

could not use the ONOS built-in controller-to-controller communication channels

because it interfered with our P4Runtime implementation.

4. O✏oad to programmable hardware. In this chapter, the hardware o✏oad design

evaluation refers to the LTE-EPC application implementation and results presented

in §5.5.2.

6.3 Experimental setup
The components in our evaluation setup (see Figure 6.2) include the load generator,

ONOS v1.13 SDN controller (root as well as local), multiple switches for the eNB, SGW,

and PGW components of LTE EPC. Our load generator is a closed-loop load generator

that emulates multiple concurrent UEs generating signaling and data plane tra�c.

Setup specific to centralized, horizontal scaling, and local controller o✏oad design.
The switches for the centralized, the horizontal scaling, and the local controller o✏oad

design are the P4-based bmv2 software switches. We have described the resource allo-

cations in §6.2. All components run on Ubuntu 16.04 hosted over separate LXC con-

tainers to ensure isolation. The root controller container was hosted on an Intel Xeon

E5-2697@2.6GHz (24GB RAM) server, and the rest were hosted on an Intel Xeon E5-

2670@2.3GHz (64GB RAM) server. All the containers were allocated 4GB RAM each.

Setup specific to hardware o✏oad design. The hardware o✏oad setup was hosted on

three Intel Xeon E5-2670@2.3GHz (128GB RAM) servers with Ubuntu 18.04, each con-

nected to one Netronome Agilio CX 2x10GbE smartNIC [117]. The three servers hosted

the single chain of the load generator+eNB, SGW, and PGW+sink, respectively. The

root ONOS controller was hosted on the SGW switch. We have described the resource

allocations in §6.2.

Parameters and metrics. We generate di↵erent workload scenarios by varying the mix

of o✏oadable (S1 release and service request) and non-o✏oadable (attach and detach)

signaling messages in the control plane tra�c generated by the load generator. All results

reported are averaged over three runs of an experiment conducted for 300 seconds, unless

mentioned otherwise. The performance metrics measured are the average control plane

throughput (number of control plane messages processed/sec) and average response la-

tency of control plane requests, as measured at the load generator over the duration of the

experiment.

6.4 Evaluation 131

 100

 1000

 10000

 100000

 1x106

 1x107

Off-99 Off-95 Off-90 Off-70 Off-50 Off-20
 0

 100

 200

 300

 400

 500

 600

 700

T
h

ro
u

g
h

p
u

t
(m

e
ss

a
g

e
s/

s)

R
o

o
t

co
n
tr

o
lle

r
C

P
U

 u
til

iz
a

tio
n

 (
4

 c
o

re
s)

LTE-EPC Traffic Mix

Centralized: single-core
Centralized: multi-core

Horizontal scaling of root controller
Offload to local controller

Offload to local controller with state replication
Offload to hardware switch with state replication

Offload to hardware switch
Horizontal scaling: root CPU

Local controller offload: root CPU
Hardware offload: root CPU

Figure 6.3: Throughput for SDN-based EPC application.

6.4 Evaluation
Our evaluation aims to answer the following questions:

1. Which design performs better with respect to the application throughput and re-

sponse latency?

2. What is the impact of the distance of the root controller from the end-user on the

application performance?

6.4.1 Performance comparison of scaling designs

Figure 6.3 compares the throughput for all the SDN control plane scaling designs.

As the hardware o✏oad throughput is very high, it dominates the plot (y-axis plotted using

logscale). Therefore, we use Figure 6.4 to show the throughput without the hardware

o✏oad results so that the di↵erence between the rest of the results is clear. The figures

also show the root controller CPU utilization on y2-axis. The x-axis shows the tra�c-mix,

where the tra�c-mix, O↵-x, means that the fraction of o✏oadable tra�c is x%, and the

fraction of non-o✏oadable tra�c is (100-x)%.

We know that horizontal scaling design inherently replicates state to maintain a con-

sistent network-wide view; therefore, this design is fault-tolerant by default. To imple-

ment a fault-tolerant solution for the proposed o✏oad designs, we replicate the o✏oaded

132 Comparison of Control Plane Scaling Approaches

 0

 2000

 4000

 6000

 8000

 10000

Off-99 Off-95 Off-90 Off-70 Off-50 Off-20
 0

 100

 200

 300

 400

 500

 600
T

h
ro

u
g

h
p

u
t

(m
e

ss
a

g
e

s/
s)

R
o

o
t
co

n
tr

o
lle

r
C

P
U

 u
til

iz
a

tio
n

 (
4

 c
o

re
s)

LTE-EPC Traffic Mix

Centralized: single-core
Centralized: multi-core

Horizontal scaling of root controller
Offload to local controller

Offload to local controller with state replication
Horizontal scaling: root CPU

Local controller offload: root CPU

Figure 6.4: Throughput for SDN-based EPC application without hardware o✏oad results.

state at the local controllers and programmable switches. The experiment results compare

the performance of fault-tolerant o✏oad techniques (i.e., with replication of o✏oadable

state at the local nodes) with the performance of horizontal scaling. We observe the fol-

lowing from the throughput plots:

• Figure 6.4 shows that the saturation throughput of centralized multi-core (4 cores)

design for all tra�c-mixes was 3.8⇥ (average) higher than the centralized single-

core design implies that the multi-core design scales linearly.

• The saturation throughput of horizontal scaling was 3.7⇥ higher than the centralized

single-core design for O↵-99 tra�c-mix, whereas it was 2.4⇥ higher for O↵-20

tra�c mix (see Figure 6.4). The horizontal scaling design scales linearly when the

synchronization cost is low, and the throughput gains decrease with the increase in

synchronization rate due to increase in the fraction of non-o✏oadable tra�c.

• The centralized multi-core design performed better than the horizontal scaling de-

sign since both of them have the same number of root controller cores, and the cen-

tralized multi-core design did not require state synchronization. Practically, there is

a limit on the number of server CPU cores, so horizontal scaling must be preferred

over centralized multi-core design when the control tra�c rate is high. In case of

horizontal scaling, we can scale the SDN application by spawning a large number of

controller replicas, while reserving some CPU resource for state synchronization.

6.4 Evaluation 133

• The throughput of the local controller o✏oad was 2⇥ higher than the centralized

multi-core design for the O↵-99 tra�c-mix. Note that the local controllers were

saturated, but the root CPU utilization was only 26% because of a small fraction

of non-o✏oadable messages. As mentioned earlier, we could not generate enough

load to saturate the root controller with four forwarding chains (up to O↵-70 tra�c-

mix); otherwise, the throughput improvements would be more significant with sat-

urated root CPU (400%, which refers to all the 4 CPU cores running at 100%).

Figure 6.4 shows that the local controller o✏oad design shows better performance

than the centralized multi-core design up to O↵-50 (1.4⇥). At O↵-20, we observe

that the throughput of centralized multi-core design was better than the local con-

troller o✏oad design, as the synchronization costs become more prominent than the

o✏oad benefits, i.e., put_rate
access_rate > 1 + � (§4.3.4).

• The throughput of local controller o✏oad design with state replication for O↵-99

tra�c-mix was 1.8⇥ higher than horizontal scaling, and the root CPU utilization

was only 30%. It implies that the throughput improvement must be better with

saturated root CPU (400%). Even for O↵-20 tra�c-mix, the saturation throughput

of local controller o✏oad design was 1.4⇥ higher than horizontal scaling.

• Like the local controller o✏oad design, the hardware o✏oad design demonstrated

significant throughput improvements when the fraction of non-o✏oadable mes-

sages in the tra�c-mix was small (see Figure 6.3). As the fraction of o✏oadable

messages reduces, fewer computations are processed on hardware, and the non-

o✏oadable messages processed at the root controller waste the CPU cycles towards

o✏oadable state synchronization. The throughput of the hardware o✏oad design

was 12⇥ higher than the centralized multi-core design, with the root CPU utiliza-

tion of 45% for O↵-99 tra�c-mix. The addition of hardware chains to saturate the

root CPU (400%) would further improve the throughput. When the tra�c-mix was

O↵-20, the throughput gains of the hardware o✏oad design dropped to 1.4⇥ of the

centralized multi-core design.

• The hardware o✏oad design replicates the state at the data plane switch using the

primary-backup mechanism (discussed in §5.3.3). The data plane switches run at

line-rate; therefore, the application throughput was not impacted by replication.

Figure 6.5, Figure 6.6, and Figure 6.7 compare the response latency for o✏oadable

EPC messages, non-o✏oadable EPC messages, and all EPC messages, respectively. We

observe the following from the latency plots:

134 Comparison of Control Plane Scaling Approaches

 0

 2

 4

 6

 8

 10

 12

 14

Off-99 Off-95 Off-90 Off-70 Off-50 Off-20

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
m

s)

LTE-EPC Traffic Mix

Centralized: single-core
Centralized: multi-core

Horizontal scaling of root controller
Offload to local controller

Offload to hardware switch

Figure 6.5: Response latency of o✏oadable EPC messages.

 0

 5

 10

 15

 20

 25

 30

Off-99 Off-95 Off-90 Off-70 Off-50 Off-20

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
m

s)

LTE-EPC Traffic Mix

Centralized: single-core
Centralized: multi-core

Horizontal scaling of root controller
Offload to local controller

Offload to hardware switch

Figure 6.6: Response latency of non-o✏oadable EPC messages.

• Figure 6.5 shows that the response latency of o✏oadable EPC messages for hori-

zontal scaling design was 8% (average) higher than the centralized multi-core de-

sign. The response latency of o✏oadable EPC messages for local controller o✏oad

design was 87% (average) lower than the centralized multi-core design. The re-

sponse latency of o✏oadable EPC messages for hardware o✏oad design was 97%

(average) lower than the centralized multi-core design.

• Figure 6.6 shows that the response latency of non-o✏oadable EPC messages for

the horizontal scaling design and the o✏oad design were higher than the central-

ized multi-core design. The latency increase was due to the synchronization of

6.4 Evaluation 135

 0

 5

 10

 15

 20

Off-99 Off-95 Off-90 Off-70 Off-50 Off-20

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
m

s)

LTE-EPC Traffic Mix

Centralized: single-core
Centralized: multi-core

Horizontal scaling of root controller
Offload to local controller

Local controller offload with state replication
Offload to hardware switch

Offload to hardware switch with state replication

Figure 6.7: Response latency of all EPC messages.

updates to the o✏oadable state. The latency increase for the horizontal scaling de-

sign was observed to be lower than the o✏oad designs because the root controller

replicas are placed close to each other, within the data center core, whereas the root

controller (at the core network) and the local controller/switch (close to end-user)

are generally distant. In the case of o✏oad design, the latency increase is higher

when the fraction of non-o✏oadable tra�c is high.

– We observe that the response latency of non-o✏oadable EPC messages for the

local controller o✏oad design was 20% higher for O↵-99 and 52% higher for

O↵-20 tra�c-mix than the centralized multi-core design.

– The non-o✏oadable EPC message response latency for the hardware o✏oad

design was 18% higher for O↵-99 and 30% higher for O↵-20 tra�c-mix than

the centralized multi-core design.

• Figure 6.7 shows that the average response latency of EPC messages for the o✏oad

designs was lower than the centralized multi-core design, except at O↵-20 for local

controller o✏oad design (cost of the o✏oad > o✏oad benefits). The processing of

o✏oadable messages close to the user results in very low latencies, which amortize

the latency increase due to non-o✏oadable message processing.

– We observe that the average response latency for the local controller o✏oad

design was 80% lower for O↵-99 and 30% higher for O↵-20 tra�c-mix than

the centralized multi-core design.

136 Comparison of Control Plane Scaling Approaches

 0

 2

 4

 6

 8

 10

 12

 14

 16

RTT<1ms RTT=5ms

E
n

d
 t

o
 e

n
d

 la
te

n
cy

 (
m

s)

LTE-EPC Traffic Mix

Centralized: multi-core
Horizontal scaling of root controller

Offload to local controller
Offload to hardware switch

Figure 6.8: Response latency with varying distance to the root controller.

– Despite state replication at the local controllers, the latency for the local con-

troller o✏oad design was 79% lower than the horizontal scaling design for

O↵-99 tra�c-mix because a large fraction of messages were processed close

to the user. But, the latency was 17% higher for O↵-20 tra�c-mix because

apart from state replication latency, a high fraction of non-o✏oadable mes-

sages update the o✏oaded state and induce synchronization delays.

– The average message response latency for the hardware o✏oad design was

97% lower for O↵-99 and 60% lower for O↵-20 tra�c-mix, compared to the

centralized multi-core design.

– There was latency degradation observed for hardware o✏oad design with state

replication as the packets travel to/from the backup switch. The latency degra-

dation depends on the RTT from the primary switch to the backup switch,

which, in our case, was ⇠0.2 ms. Despite the latency degradation, we ob-

served that the latency of hardware o✏oad for O↵-99 tra�c-mix was 94%

lower than horizontal scaling design, and 70% lower for O↵-20 tra�c-mix.

6.4.2 Impact of distance of the root controller from the end-user

Figure 6.8 shows the response latency for EPC application messages for di↵erent

RTT values between the UE (end-user) and the root SDN controller. The plot is for the

O↵-99 tra�c-mix since we wanted to observe the impact of RTT on o✏oadable messages.

We have the following observations from the plot:

6.5 Choosing the right scalability design 137

• The response latency of the o✏oadable messages for the o✏oad designs is roughly

the same even if the distance to the root controller increases. Also, the latency of the

o✏oad designs is significantly lower than the centralized and horizontal scaling de-

signs. The near-constant, low latency was expected since the o✏oadable messages

are processed at the local controllers or switches close to the user.

• The response latency of the o✏oadable messages for the centralized and horizontal

scaling designs was 12 ms for RTT = 5 ms, and they would increase further with

higher RTT. These designs cannot be implemented for the 5G mobile network core

as they cannot satisfy the 10 ms latency constraint for data transfer when the user is

in idle state (discussed in §5.1).

6.5 Choosing the right scalability design
We have observed from the empirical evaluation in §6.4 that every scalability design has

strengths as well as limitations. We have demonstrated that our proposed o✏oad designs

provide significant performance gains in throughput and response latency. But, the o✏oad

design may not always be favorable. In this section, we define guidelines that suggest the

choice of suitable scalability design. We have discussed the essential and desirable con-

ditions for the application messages to be o✏oadable in §3.2. Next, we provide specific

conditions for o✏oading application messages to programmable hardware.

6.5.1 Checklist to determine o✏oad to programmable hardware

Typically, a packet processing application is the right candidate for o✏oading com-

putations to programmable hardware. The performance gains are significant because the

packets do not have to travel through the application server’s network and application

stack. We experience lower latencies and also save the server CPU that would have been

used for packet processing. Virtual network functions (VNFs) like firewalls, load bal-

ancers, and intrusion detection systems are typical examples of packet processing appli-

cations. Further, the computations should satisfy the following conditions if they were to

be o✏oaded to the programmable hardware.

1. The computations should be identified as o✏oadable. We have defined the con-

ditions for computations to be o✏oadable in §3.2. This condition ensures that the

states accessed by the computations could be made available on the hardware switch

without any compromise on o✏oaded state consistency and application accuracy.

138 Comparison of Control Plane Scaling Approaches

2. The hardware-dependent conditions that determine if the computations are o✏oad-

able are as follows (few of these were described in Table 2.2 of §2.3.3):

(a) There should be no stalls during packet processing since the data plane switch

commits to line-rate performance, i.e., the packet cannot wait at any stage for

data or completion of other tasks, it has to move from one stage to the other at

every clock tick.

(b) The on-switch memory of the programmable hardware should be enough to

store the o✏oadable state.

(c) We should over-provision the programmable hardware to have enough spare

capacity for application processing.

(d) The o✏oadable computations should be programmed using the instruction set

supported by the programmable hardware. The programmable hardware has a

limited instruction set to ensure line-rate processing.

i. The programmable hardware may not support all possible arithmetic op-

erations; for example, the division operation may not be supported.

ii. Arithmetic operations may be supported on an integer number of bytes

due to alignment and padding constraints

iii. Some architectures may only support multiplication with small constants,

or shifts with small values due to operand constraints.

iv. The programmable hardware has a limit on the number of packet pro-

cessing pipeline stages. All the tables and features independent of each

other can be part of the same pipeline stage. For example, IPv4 and IPV6

match-action table processing can share the same pipeline stage since the

same packet will never match to both the tables.

v. The code should not have any loops, and it cannot be recursive. This

constraint ensures a deterministic number of pipeline stages and hence

adheres to the line-rate performance commitment.

vi. We should be able to store the application state at the switch tables or reg-

isters, but they have a limit on the maximum width. We need to split the

state if its size is greater than this width. A typical programmable hard-

ware also supports abstract global data structures called counters and me-

ters. A counter can be used to maintain statistics. A meter is an advanced

counter, that triggers an action when some condition on the counter value

is satisfied.

6.5 Choosing the right scalability design 139

Example computations that cannot be o✏oaded to the programmable hardware
A tra�c-shaping application ensures that the packet rate of any flow does not exceed the

given threshold. The implementation involves two components, (a) monitor the rate of

each flow, (b) bu↵er the packets when the flow rate crosses the threshold. The second

component requires the packet to halt at the switch, which is not possible. The packet

has to leave through some interface or dropped, and the switch does not have enough

memory to bu↵er these packets. But, it is possible to monitor the flow rates during packet

processing and flag an anomaly when a flow’s rate exceeds the threshold. Therefore, we

can o✏oad the flow monitoring component on the hardware switch.

Solutions like AccelTCP [88] have o✏oaded the subset of TCP protocol operations to

the programmable hardware. TCP is a stateful protocol; therefore, TCP protocol o✏oad

implies that we must maintain the state for each TCP flow on the hardware switch. There

are certain complex tasks like maintaining timers for each flow and retransmit the packets

on timeout. Maintaining the state for a large number of flows on the hardware may not

be feasible. AccelTCP implements tasks like connection establishment, termination, and

splicing for a subset of flows on the hardware, which would require less memory. The

implementation of timers on the programmable hardware is challenging; hence AccelTCP

designs an optimized data structure for timers. The end-hosts handle operations like error

control and congestion control since the functions are complicated, and the data packets

require more memory than SYN/FIN/ACK packets.

Machine learning techniques comprise of feature extraction, which look like a decision

tree. Dream [96] performs the task of feature extraction from the packet headers by map-

ping the classification process to the match-action tables at the programmable hardware.

But, many machine learning models require complex features that may involve loops and

recursion, so it may not be possible to extract them on a programmable switch.

6.5.2 Choice of the scalability design

This thesis solves the research problem of alleviating the root controller bottleneck and

proposes the control plane scalability solutions. Therefore, we assume that the control

plane tra�c always saturates the centralized root SDN controller (refer §1.1). With this

assumption in mind, we should choose one of the scalability solutions from horizontal-

scaling design, local controller o✏oad design, and hardware o✏oad design. We now

describe the decision making process for the choice of scalability design for a given ap-

plication.

1. We have provided the necessary and desirable conditions for an application mes-

sage to be declared as o✏oadable in §3.2. The essential conditions for o✏oad

140 Comparison of Control Plane Scaling Approaches

ensure application correctness when the application uses the o✏oad design. One

of the essential conditions is that all the states accessed by the application message

should be o✏oadable. An application state is said to be o✏oadable if it is switch-

local or has session-wide scope, and it should not be concurrently accessed from

multiple network locations. We have an additional condition for hardware o✏oad;

the programmable hardware target should support the computations required for

message processing. The desirable conditions guarantee application performance.

If at least the essential conditions are satisfied by the application, then test condition

(2). Otherwise, the application should be implemented over the horizontal scaling

framework.

2. We have provided a checklist that should be used to verify if the application can

benefit from the hardware o✏oad design in §6.5.1. The o✏oadable messages iden-

tified in (1) should satisfy conditions like: there should be no stalls during the

message processing, the on-board memory should be enough to store the o✏oad-

able state, the programmable hardware should have spare capacity, and the message

processing should be completed within a limited number of pipeline stages.

If all the checklist conditions for programmable hardware o✏oad are satisfied by

the application, implement the application over the hardware o✏oad framework.

Otherwise, the application should be implemented over the local controller o✏oad

framework.

3. If condition (1) is satisfied, we know that the application can gain the benefits of

o✏oading. But, if the fraction of non-o✏oadable and o✏oadable messages in the

tra�c-mix change dynamically, we must implement the Cuttlefish framework that

adapts to the best SDN mode.

6.6 Summary
We demonstrated the empirical evaluation of the centralized, horizontal scaling, and the

proposed o✏oad designs. We found that the o✏oad scalability design provides substantial

performance improvements over the status-quo when the incoming tra�c-mix comprises

of a large fraction of o✏oadable messages. Finally, we provide guidelines to the applica-

tion deployer to help her choose a suitable control plane scaling design.

Chapter 7

Future Work

This chapter discusses the insights gained for further system improvements while working

on the thesis. These insights require additional exploration to understand the underlying

state-of-the-art and feasibility. These ideas are open-ended, and we consider to pursue

these as part of future work. We discuss two open-ended problems in this chapter.

7.1 TurboEPC extensions for 5G mobile packet core
The research community suggests the CUPS-based (Control User Plane Separation) ar-

chitecture for the 4G mobile packet core network, but the current 4G packet core com-

ponents are implemented over traditional hardware. But, the next-generation 5G mobile

packet core is designed using the CUPS-based architecture and provided the specifica-

tions [29] for the same. The 5G control plane is physically separated from the user plane

(or data plane), and the control plane components are implemented in software as VNFs

(Virtual Network Functions).

The 5G control plane components perform functions that are similar to the corre-

sponding 4G elements. Figure 7.1 shows the basic 5G components and the mapping with

the relevant 4G components. The 4G MME functions are performed by the 5G Access

and Mobility management Function (AMF) and Session Management Function (SMF).

SMF also performs the control plane functions of the 4G SGW and PGW. The 4G HSS is

implemented as the 5G Authentication Server Function (AUSF) and User Data Manage-

ment (UDM). The UDM stores the state for all the users that can be accessed by any 5G

component. The 4G PCRF is renamed as PCF in 5G. The 5G User Plane Function (UPF)

refers to the data plane switches.

According to the 5G 3GPP standards [122] (discussed earlier in §5.1), the response

latency for control plane messages that switch between IDLE and CONNECTED states

141

142 Future Work

Figure 7.1: 5G components with corresponding 4G components.

should be less than 10 ms so that the data transfer can be initiated quickly and SLAs

are protected. We have seen that our TurboEPC design is capable of providing such

low control plane latency (⇠0.3 ms) by o✏oading the control plane computations to the

programmable hardware. The o✏oadable 4G control plane functions like the S1 release

and service request correspond to the 5G control plane functions, AN release, and session

modification request. The AN release and session modification request control plane

functions are responsible for the IDLE-CONNECTED user state switch. We want to

answer the following questions for improvements to the 5G mobile packet core:

• Can we extend the current TurboEPC design to o✏oad the AN release and session

modification request 5G control plane functions to the programmable hardware?

For example, the 5G standard wraps the control messages into HTTP packets; there-

fore, we will have to process HTTP connections in hardware. We need to identify

additional challenges.

• The authentication, encryption, and message integrity procedures processed by the

AMF/AUSF consume most of the host CPU. Can we o✏oad these procedures to the

programmable hardware so that the control plane can use the spare CPU for other

important tasks like network management and control?

7.2 Three-tier adaptive hierarchical design 143

• All the 5G components frequently talk to the UDM for state access and state update

operations, and this state is replicated for failure management. Can we reduce

the latency of these operations by o✏oading the UDM state access and replication

functions to the programmable hardware?

We want to explore these design questions and build an accelerated 5G mobile packet

core over programmable hardware.

7.2 Three-tier adaptive hierarchical design
Our TurboEPC design proposed to process the o✏oadable control plane computations at

the programmable hardware switch close to the user. The control plane performance is

accelerated by utilizing the spare capacity at the switch. Let us look at a few concerns.

• Under peak load conditions, the data tra�c could saturate the switch. The control

plane tra�c and data plane tra�c will interfere with each other and cause perfor-

mance degradation for both control and data tra�c.

• Our current TurboEPC implementation always runs in o✏oad mode because the

non-o✏oadable tra�c fraction for 4G networks is always less than 8% (Attach/De-

tach: 1–2%, Handover: 5%), and the synchronization costs are low. But, the Tur-

boEPC design applies to a general class of applications. What happens if the state

synchronization cost is higher than the o✏oad benefits for a generic TurboEPC ap-

plication? For example, the 5G mobile packet core comprise of a class of users that

have high mobility rate, so the handover rate will be high for such users.

Towards solving these concerns, we want to explore the broad scheme of o✏oad. We

propose a three-tier hierarchical scaling design (see Figure 7.2) where the tiers are: (1) the

root controller, (2) the local controller, and (3) the programmable hardware switch. The

root controller can process all computations, but it is expensive (centralized SDN design).

The local controller and the programmable hardware can process o✏oadable computa-

tions, where the programmable hardware is preferred if the application computations are

o✏oadable to the hardware.

There are three conditions when the computations already o✏oaded to the pro-

grammable hardware have to be revoked.

1. The synchronization rate due to updates to the o✏oaded state by the non-o✏oadable

computations is higher than the o✏oad benefits.

144 Future Work

Figure 7.2: Three-tier adaptive hierarchical design.

2. The switch is saturated due to high data plane tra�c, and there is no spare capacity

for control plane packet processing.

3. The switch memory is exhausted, and the state of additional users/flows cannot be

stored.

If condition (1) holds, our proposal, Cuttlefish, states that we must migrate the ap-

plication processing to the centralized root controller. Can we do this intelligently? There

may be few flows responsible for the increased synchronization cost. We should be able to

dynamically classify the flows, and identify the set of flows that cause high synchroniza-

tion at the root controller, and migrate the processing of such flows to the root controller.

The rest of the flows can benefit from the o✏oad design. For example, in the 5G mobile

packet core application, there is a class of users with high mobility, so the handover rate of

such users would be very high (high synchronization cost). We should identify such users

and migrate their processing to the root controller. We have to explore the challenges

of gathering per-user or per-tra�c-class statistics. Of course, the size of these statistics

would be large. We need to identify the additional overheads at the data plane, switch

control plane, and the root controller. We also need to verify if the benefits obtained by

such a selective o✏oad mechanism are significant.

If condition (2) holds, it does not make sense to demote o✏oadable computations

processing to the root controller (centralized mode). Instead, we must migrate the o✏oad-

able computations from hardware switch to the local controller at (or close to) the switch.

7.3 Summary 145

Since the state synchronization cost is low, the local controller o✏oad will provide better

performance than the traditional centralized design. We need to explore the feasibility of

this proposal. We need to quantify the overheads of maintaining the state consistency for

the two-level cache. That is, the master copy of the o✏oadable state is available at the

root, and the copy of this state is cached at the local controller and the hardware switch.

We need to ensure that the stale state is not accessed and application accuracy is pre-

served. Further, we need to quantify the overheads during mode-switch between the three

hierarchical nodes. Finally, we need to explore various cost-benefit aspects to evaluate

the gains of such a hierarchical o✏oad design.

In chapter 5, we have already suggested the solution for condition (3). The o✏oad-

able state is partitioned and stored across multiple hardware switches, and the root con-

troller manages the partitions. Alternatively, we can process the computations of the addi-

tional flows (whose state is not stored on the hardware) at the local controllers. To achieve

this, we should implement cache eviction policies (similar to Netcache [85]) such that the

more frequently accessed state remains in the dataplane or local controllers, whereas the

less frequently accessed state is moved to the root controller dynamically during runtime.

We must compare the performance of the hierarchical o✏oad design with the two-level

cache with the design where the state is partitioned across multiple switches, to decide if

one of the designs is better.

7.3 Summary
We have defined and described two broad research problems that have been identified

while working on the thesis. We have presented a few alternative design options for our

proposed systems. With the evolution of programmable network hardware and acceler-

ators, there are many open, challenging, and exciting problems in the domain that the

system and network researchers would address in the future.

Chapter 8

Conclusion

The primary focus of this thesis was to alleviate the control plane bottleneck for SDN ap-

plications. We presented the challenges and existing solution directions for alleviating the

control plane bottleneck. Out of the existing control plane scaling approaches,i.e., hori-

zontal and hierarchical scaling, we chose the hierarchical scaling approach and advanced

the state-of-the-art. Traditional hierarchical scaling solutions o✏oad the computations

that depend only on the switch-specific local state to the local controllers/switches that

are close to the user. This o✏oad reduces the load at the centralized root controller hence

scales the application and also reduces the response latency. Not many applications have

these types of computations, limiting the applicability of the hierarchical design. The key

ideas of this thesis were as follows:

1. We classified the application state and identified a class of the global application

state that can be o✏oaded to the local controllers/switches (o✏oadable state). We

proposed an o✏oad approach where the application computations that depend only

on o✏oadable state can also be o✏oaded locally, with reduced synchronization

costs compared to horizontal scaling solutions.

2. Since the typical tra�c-mix is dynamic, the fraction of non-o✏oadable messages

in the tra�c-mix that modify o✏oadable state may increase, which increases the

synchronization cost. There could be conditions when the cost of the o✏oad (syn-

chronization costs) exceeds the o✏oad gains (throughput and latency); therefore,

the proposed o✏oad approach is not always the right solution. We designed an

adaptive framework for SDN applications that dynamically identifies the best SDN

operation mode and automatically switches between the traditional centralized and

our proposed o✏oad SDN modes based on the synchronization costs introduced by

the current tra�c-mix.

147

148 Conclusion

3. We implemented our proposed hierarchical design concepts to o✏oad SDN appli-

cations over fast programmable hardware devices and accelerate the SDN control

plane of the mobile packet core application.

While incorporating our key ideas, we identified many challenges like high syn-

chronization costs, the inconsistency of o✏oaded state, state losses due to local node

failure, and limited memory to store o✏oaded state for programmable hardware. We

have addressed these challenges and advanced the current state-of-the-art with the de-

sign and implementation of two hierarchical scaling designs—Cuttlefish and TurboEPC.

Cuttlefish o✏oads the application computations to the software local controllers, whereas

TurboEPC o✏oads the application computations to the hardware programmable P4-based

switches. Our proposal Cuttlefish incorporated an adaptive o✏oad capability to balance

the tradeo↵ between performance gains due to state o✏oad, and the cost of synchronizing

this state across the root and local controllers—a win-win design approach.

We performed an empirical evaluation of the existing and proposed control plane

scaling approaches. We observe that the choice of the suitable control plane scaling

framework depends on various parameters like:

• the application characteristics like whether the application instructions are stateless

or stateful (o✏oadable or not) and the application message’s SLA constraints

• the tra�c characteristics like the fraction of o✏oadable tra�c in the total tra�c

• the capabilities of the target node where the computations are o✏oaded, for exam-

ple, the on-chip memory size and the supported instruction set

We have provided guidelines on how to choose an appropriate SDN scalability design

based on these parameters. We have also provided guidelines on how to identify the

o✏oadable computations of an application.

We presented the scaling of one of the popular use-case — the mobile packet core,

using both the hierarchical Cuttlefish framework that o✏oads computations to local con-

trollers and TurboEPC that o✏oads computations to programmable hardware switches

(close to the user). We have observed significant throughput and latency gains by pro-

cessing some of the more frequent signaling messages at local controllers/switches closer

to the edge. Our ideas can be applied to other applications with o✏oadable computations

and can be identified using our guidelines. There are other ways of alleviating the control

plane bottleneck that we have presented as part of our future work.

References

[1] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and ap-

proaches in software-defined networking (sdn),” Computer Networks, vol. 112, pp.

279–293, 2017.

[2] C. El Khalfi, A. El Qadi, and H. Bennis, “A comparative study of software de-

fined networks controllers,” in Proceedings of the 2nd International Conference on

Computing and Wireless Communication Systems, 2017, pp. 1–5.

[3] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “Sdn controllers:

Benchmarking & performance evaluation,” arXiv preprint arXiv:1902.04491,

2019.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-

independent packet processors,” SIGCOMM Computer Communication Review,

vol. 44, 2014.

[5] S. Tabbane, “Core network and transmission dimensioning,” https:

//www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/

2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf,

2016.

[6] D. Nowoswiat, “Managing LTE Core Network Signaling Tra�c,” https://www.

nokia.com/en_int/blog/managing-lte-core-network-signaling-tra�c, 2013.

[7] O. W. Paper, “Software-Defined Networking: The New Norm for Networks,” https:

//pdfs.semanticscholar.org/a3f6/9f6181a0b4d481073a21eafbcc434a800db6.pdf,

2012.

[8] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service and big

data,” arXiv preprint arXiv:1301.0159, 2013.

149

https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
https://pdfs.semanticscholar.org/a3f6/9f6181a0b4d481073a21eafbcc434a800db6.pdf
https://pdfs.semanticscholar.org/a3f6/9f6181a0b4d481073a21eafbcc434a800db6.pdf

150 References

[9] J. Ochs, “Scalability in cloud computing: using virtualization to save money,”

https://www.servercentral.com/blog/scalability-in-cloud-computing/, 2014.

[10] M. Nelson, B.-H. Lim, G. Hutchins et al., “Fast transparent migration for virtual

machines.” in USENIX Annual technical conference, general track, 2005, pp. 391–

394.

[11] “Sdn adoption in enterprises,” https://www.wipro.com/en-IN/infrastructure/

sdn-adoption-in-enterprises/, 2019.

[12] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” ACM Queue, vol. 11,

2013.

[13] T. Koponen et al., “Onix: A distributed control platform for large-scale production

networks,” in Proceedings of the OSDI, 2010.

[14] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane for open-

flow,” in Proceedings of the the INM/WREN, 2010.

[15] A. R. Curtis et al., “Devoflow: Scaling flow management for high-performance

networks,” in Proceedings of the ACM SIGCOMM, 2011.

[16] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for e�cient and scalable

o✏oading of control applications,” in Proceedings of the HotSDN, 2012.

[17] J. Yang, Z. Zhou, T. Benson, X. Yang, X. Wu, and C. Hu, “Focus: Function of-

floading from a controller to utilize switch power,” in Proceedings of the IEEE

NFV-SDN, 2016.

[18] A. S. . Tam, Kang Xi, and H. J. Chao, “Use of devolved controllers in data center

networks,” in 2011 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), 2011.

[19] “ONOS SDN controller,” https://github.com/opennetworkinglab/onos, 2017.

[20] S. H. Yeganeh and Y. Ganjali, “Beehive: Simple distributed programming in

software-defined networks,” in Proceedings of the SoSR, 2016.

[21] M. Yu et al., “Scalable flow-based networking with difane,” in Proceedings of the

ACM SIGCOMM., 2010.

https://www.servercentral.com/blog/scalability-in-cloud-computing/
https://www.wipro.com/en-IN/infrastructure/sdn-adoption-in-enterprises/
https://www.wipro.com/en-IN/infrastructure/sdn-adoption-in-enterprises/
https://github.com/opennetworkinglab/onos

References 151

[22] M. A. S. Santos, B. A. A. Nunes, K. Obraczka, T. Turletti, B. T. de Oliveira, and

C. B. Margi, “Decentralizing sdn’s control plane,” in 39th Annual IEEE Conference

on Local Computer Networks, 2014.

[23] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Ex-

perience with a globally-deployed software defined wan,” SIGCOMM Computer

Communication Review, vol. 43, no. 4, 2013.

[24] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,

T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka,

M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying,

M. Kallahalla, B. Koley, and A. Vahdat, “Taking the edge o↵ with espresso: Scale,

reliability and programmability for global internet peering,” in Proceedings of the

Conference of the ACM Special Interest Group on Data Communication (SIG-

COMM), 2017.

[25] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis, L. Koromilas,

and G. O’Shea, “Enabling end-host network functions,” in Proceedings of the ACM

SIGCOMM, 2015.

[26] M. A. Togou, D. A. Chekired, L. Khoukhi, and G. Muntean, “A hierarchical dis-

tributed control plane for path computation scalability in large scale software-

defined networks,” IEEE Transactions on Network and Service Management,

vol. 16, no. 3, pp. 1019–1031, 2019.

[27] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload analy-

sis of a large-scale key-value store,” in Proceedings of the 12th ACM SIGMETRIC-

S/PERFORMANCE Joint International Conference on Measurement and Modeling

of Computer Systems, 2012.

[28] “Ericsson Mobility Report,” http://www.ericsson.com/res/docs/2016/

ericsson-mobility-report-2016.pdf, 2016.

[29] 3GPP, “5g 3gpp specifications,” https://www.3gpp.org/ftp/Specs/archive/23_

series/23.502/, 2017.

[30] R. E. Hattachi, “Next generation mobile networks, ngmn,” https:

//www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_

5G_White_Paper_V1_0.pdf, 2015.

http://www.ericsson.com/res/docs/%202016/ericsson-mobility-report-2016.pdf
http://www.ericsson.com/res/docs/%202016/ericsson-mobility-report-2016.pdf
https://www.3gpp.org/ftp/Specs/archive/23_series/23.502/
https://www.3gpp.org/ftp/Specs/archive/23_series/23.502/
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/%20NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/%20NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/%20NGMN_5G_White_Paper_V1_0.pdf

152 References

[31] D. Kim, “5g stats,” https://techneconomyblog.com/tag/economics/, 2017.

[32] C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks in

data centers: recent trends and future challenges,” IEEE Communications Maga-

zine, vol. 51, no. 9, pp. 39–45, 2013.

[33] T. Benson, A. Akella, and D. A. Maltz, “Network tra�c characteristics of data

centers in the wild,” in Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, 2010, pp. 267–280.

[34] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Bov-

ing, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons,

E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A

decade of clos topologies and centralized control in google’s datacenter network,”

in Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication, 2015.

[35] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio, and L. Van-

bever, “Blink: Fast connectivity recovery entirely in the data plane,” in 16th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

19), 2019.

[36] “NoviWare 400.5 for Barefoot Tofino chipset,” https://noviflow.com/wp-content/

uploads/NoviWare-Tofino-Datasheet.pdf, 2018.

[37] N. Systems, “vEPC Acceleration Using Agilio SmartNICs,” https://www.

netronome.com/media/documents/SB_vEPC.pdf, 2017.

[38] TRAI, “Highlights of Telecom Subscription Data,” https://main.trai.gov.in/sites/

default/files/PR_60_TSD_Jun_170817.pdf, 2017.

[39] R. Shah, M. Vutukuru, and P. Kulkarni, “Cuttlefish project,” https://github.com/

rinku-shah/cuttlefish, 2018.

[40] R. Shah, V. Kumar, M. Vutukuru, and P. Kulkarni, “Turboepc github code,” https:

//github.com/rinku-shah/turboepc, 2015.

[41] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward adaptive and

scalable openflow-sdn flow control: A survey,” IEEE Access, vol. 7, pp. 107 346–

107 379, 2019.

https://techneconomyblog.com/tag/economics/
https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://www.netronome.com/media/documents/SB_vEPC.pdf
https://www.netronome.com/media/documents/SB_vEPC.pdf
https://main.trai.gov.in/sites/default/files/PR_60_TSD_Jun_170817.pdf
https://main.trai.gov.in/sites/default/files/PR_60_TSD_Jun_170817.pdf
https://github.com/rinku-shah/cuttlefish
https://github.com/rinku-shah/cuttlefish
https://github.com/rinku-shah/turboepc
https://github.com/rinku-shah/turboepc

References 153

[42] N. McKeown et al., “Openflow: enabling innovation in campus networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, 2008.

[43] D. Erickson, “The beacon openflow controller,” in Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking, 2013.

[44] “Floodlight SDN controller,” https://github.com/floodlight, 2016.

[45] N. Gude, T. Koponen, J. Pettit, B. Pfa↵, M. Casado, N. McKeown, and S. Shenker,

“Nox: Towards an operating system for networks,” SIGCOMM Comput. Commun.

Rev., p. 105–110, Jul. 2008.

[46] Z. Cai, A. L. Cox, and T. Ng, “Maestro: A system for scalable openflow control,”

Tech. Rep., 2010.

[47] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A hybrid hierarchical

control plane of software-defined networking for large-scale networks,” in IEEE

22nd International Conference on Network Protocols, 2014.

[48] M. Li, X. Wang, H. Tong, T. Liu, and Y. Tian, “Sparc: Towards a scalable dis-

tributed control plane architecture for protocol-oblivious sdn networks,” in 28th

International Conference on Computer Communication and Networks (ICCCN),

2019.

[49] F. Kandah, I. Ozcelik, and B. Huber, “Mars: Machine learning based adaptable and

robust network management for software-defined networks,” in The 10th Annual

Computing and Communication Workshop and Conference (CCWC), 2020.

[50] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/merge: System

support for elastic execution in virtual middleboxes.” in Proceedings of the NSDI,

2013.

[51] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,

and A. Akella, “Opennf: Enabling innovation in network function control,” in ACM

SIGCOMM Computer Communication Review, vol. 44, 2014.

[52] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high availabil-

ity framework for middleboxes,” in Proceedings of the SoCC, 2013.

[53] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella, “Elasticon; an

elastic distributed sdn controller,” in Proceedings of the ANCS, 2014.

https://github.com/floodlight

154 References

[54] “NVGRE standard,” https://tools.ietf.org/html/rfc7637, 2015.

[55] “VXLAN standard,” https://tools.ietf.org/html/rfc7348, 2014.

[56] “STT standard,” https://tools.ietf.org/html/draft-davie-stt-01, 2012.

[57] OVS, “OpenvSwitch,” https://github.com/openvswitch, 2011.

[58] “OVS-DPDK software switch,” https://software.intel.com/en-us/articles/

open-vswitch-with-dpdk-overview, 2016.

[59] “BESS software switch,” http://span.cs.berkeley.edu/bess.html, 2015.

[60] “Intel Vector Packet Processor(VPP),” https://wiki.fd.io/view/VPP, 2018.

[61] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,” in Pro-

ceedings of the 8th International Conference on Emerging Networking Experi-

ments and Technologies, 2012.

[62] R. Ozdag, “Intel Ethernet Switch FM6000 Series - Software Defined Networking,”

https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf,

2019.

[63] “Cisco highlights next big switch.” https://www.biztechafrica.com/article/

cisco-announces-next-big-switch/5448/, 2013.

[64] “Cavium Xpliant ethernet switch product line.” https://people.ucsc.edu/~warner/

Bufs/Xpliant-cavium.pdf, 2015.

[65] “EZchip.” https://www.mips.com/partner/ezchip/, 2019.

[66] “Xilinx.” https://www.xilinx.com/, 2019.

[67] “Altera.” https://www.mouser.in/manufacturer/altera/, 2019.

[68] “EBPF (extended Berkeley Packet Filter.” https://www.iovisor.org/technology/

ebpf, 2019.

[69] “Intel Data Plane Development Kit(DPDK),” https://www.dpdk.org/, 2018.

[70] “P4-16 language specifications,” https://p4.org/p4-spec/docs/P4-16-v1.2.0.html,

2019.

[71] “P4Runtime Specifications,” https://p4.org/p4runtime/spec/master/

P4Runtime-Spec.html, 2020.

https://tools.ietf.org/html/rfc7637
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/draft-davie-stt-01
https://github.com/openvswitch
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
http://span.cs.berkeley.edu/bess.html
https://wiki.fd.io/view/VPP
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/
https://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/
https://people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf
https://people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf
https://www.mips.com/partner/ezchip/
https://www.xilinx.com/
https://www.mouser.in/manufacturer/altera/
https://www.iovisor.org/technology/ebpf
https://www.iovisor.org/technology/ebpf
https://www.dpdk.org/
https://p4.org/p4-spec/docs/P4-16-v1.2.0.html
https://p4.org/p4runtime/spec/master/P4Runtime-Spec.html
https://p4.org/p4runtime/spec/master/P4Runtime-Spec.html

References 155

[72] “General purpose RPC (gRPC),” https://grpc.io/, 2018.

[73] “P4Runtime Github code,” https://github.com/p4lang/p4runtime, 2018.

[74] “P4Runtime server implementation,” https://github.com/p4lang/PI, 2018.

[75] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker, “In-band

network telemetry via programmable dataplanes,” in ACM SIGCOMM, 2015.

[76] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh, V. Jeyaku-

mar, and C. Kim, “Language-directed hardware design for network performance

monitoring,” in Proceedings of the the ACM SIGCOMM Conference, 2017.

[77] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford,

“Heavy-hitter detection entirely in the data plane,” in Proceedings of the the SoSR,

2017.

[78] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy hitter de-

tection with commodity switches,” in Proceedings of the Symposium on SDN Re-

search, 2018.

[79] R. Harrison, S. L. Feibish, A. Gupta, R. Teixeira, S. Muthukrishnan, and J. Rexford,

“Carpe elephants: Seize the global heavy hitters,” in Proceedings of the Workshop

on Secure Programmable Network Infrastructure, 2020.

[80] E. Cidon, S. Choi, S. Katti, and N. McKeown, “Appswitch: Application-layer load

balancing within a software switch,” in Proceedings of the APNet, 2017.

[81] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scalable load

balancing using programmable data planes,” in Proceedings of the the SoSR, 2016.

[82] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful layer-

4 load balancing fast and cheap using switching asics,” in Proceedings of the the

ACM SIGCOMM Conference, 2017.

[83] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Netpaxos: Consen-

sus at network speed,” in Proceedings of the the ACM SIGCOMM SoSR, 2015.

[84] H. T. Dang et al., “Consensus for non-volatile main memory,” in IEEE 26th Inter-

national Conference on Network Protocols (ICNP), 2018.

https://grpc.io/
https://github.com/p4lang/p4runtime
https://github.com/p4lang/PI

156 References

[85] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica, “Net-

cache: Balancing key-value stores with fast in-network caching,” in Proceedings

of the SOSP, 2017.

[86] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang, “Kv-

direct: High-performance in-memory key-value store with programmable nic,” in

Proceedings of the SOSP, 2017.

[87] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana, L. Kant, A. J.

McAuley, A. Poylisher, A. DeHon et al., “In-network computing to the rescue

of faulty links,” in Proceedings of the 2018 Morning Workshop on In-Network

Computing, 2018, pp. 1–6.

[88] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “Acceltcp: Accelerating network

applications with stateful {TCP} o✏oading,” in 17th {USENIX} Symposium on Net-

worked Systems Design and Implementation ({NSDI}s), 2020, pp. 77–92.

[89] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy,

M. Moshref, D. R. Ports, and P. Richtárik, “Scaling distributed machine learning

with in-network aggregation,” arXiv preprint arXiv:1903.06701, 2019.

[90] C. Cascone and U. Chau, “O✏oading vnfs to programmable switches using p4,” in

ONS North America, 2018.

[91] A. Aghdai et al., “Transparent edge gateway for mobile networks,” in IEEE 26th

International Conference on Network Protocols (ICNP), 2018.

[92] E. C. Molero, S. Vissicchio, and L. Vanbever, “Hardware-accelerated network con-

trol planes,” in Proceedings of the 17th ACM Workshop on Hot Topics in Networks,

ser. HotNets, 2018.

[93] “Noviflow switch,” https://noviflow.com/noviswitch, 2018.

[94] K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Adap-

tive weighted tra�c splitting in programmable data planes,” in Proceedings of the

Symposium on SDN Research, 2020.

[95] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,

and M. Horowitz, “Forwarding metamorphosis: Fast programmable match-action

processing in hardware for sdn,” in Proceedings of the ACM SIGCOMM Confer-

ence, 2013.

https://noviflow.com/noviswitch

References 157

[96] Z. Xiong and N. Zilberman, “Do switches dream of machine learning? toward in-

network classification,” in Proceedings of the 18th ACM Workshop on Hot Topics

in Networks, 2019.

[97] “The evolved packet core,” http://www.3gpp.org/technologies/

keywords-acronyms/100-the-evolved-packet-core, 2017.

[98] “Control and User Plane Separation,” http://www.3gpp.org/cups, 2017.

[99] “EPC: S1 release,” https://gitlab.eurecom.fr/oai/openairinterface5g/issues/16,

2016.

[100] N. S. Networks, “Signaling is growing 50% faster than data tra�c,” https:

//docplayer.net/6278117-Signaling-is-growing-50-faster-than-data-tra�c.html,

2012.

[101] “On Signalling Storm,” https://blog.3g4g.co.uk/2012/06/

on-signalling-storm-ltews.html, 2012.

[102] P. Kiss, A. Reale, C. J. Ferrari, and Z. Istenes, “Deployment of iot applications on

5g edge,” in IEEE International Conference on Future IoT Technologies, 2018.

[103] A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera, K. Van der Merwe, and

S. Rangarajan, “Scaling the lte control-plane for future mobile access,” in Pro-

ceedings of the 11th ACM Conference on Emerging Networking Experiments and

Technologies, 2015.

[104] J. Cho, R. Stutsman, and J. Van der Merwe, “Mobilestream: A scalable, pro-

grammable and evolvable mobile core control plane platform,” in Proceedings

of the 14th International Conference on Emerging Networking EXperiments and

Technologies, 2018.

[105] V. Nagendra, A. Bhattacharya, A. Gandhi, and S. R. Das, “Mmlite: A scalable

and resource e�cient control plane for next generation cellular packet core,” in

Proceedings of the 2019 ACM Symposium on SDN Research, 2019.

[106] Y. Li, Z. Yuan, and C. Peng, “A control-plane perspective on reducing data access

latency in lte networks,” in Proceedings of the 23rd Annual International Confer-

ence on Mobile Computing and Networking, 2017.

[107] A. Mohammadkhan, K. Ramakrishnan, A. S. Rajan, and C. Maciocco, “Cleang: A

clean-slate epc architecture and controlplane protocol for next generation cellular

http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
http://www.3gpp.org/cups
https://gitlab.eurecom.fr/oai/openairinterface5g/issues/16
https://docplayer.net/6278117-Signaling-is-growing-50-faster-than-data-traffic.html
https://docplayer.net/6278117-Signaling-is-growing-50-faster-than-data-traffic.html
https://blog.3g4g.co.uk/2012/06/on-signalling-storm-ltews.html
https://blog.3g4g.co.uk/2012/06/on-signalling-storm-ltews.html

158 References

networks,” in Proceedings of the 2016 ACM Workshop on Cloud-Assisted Network-

ing, 2016.

[108] M. Pozza, A. Rao, A. Bujari, H. Flinck, C. E. Palazzi, and S. Tarkoma, “A refactor-

ing approach for optimizing mobile networks,” in 2017 IEEE International Con-

ference on Communications (ICC), 2017.

[109] M. T. Raza, D. Kim, K. Kim, S. Lu, and M. Gerla, “Rethinking lte network func-

tions virtualization,” in IEEE 25th International Conference on Network Protocols

(ICNP), 2017.

[110] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker, “A high

performance packet core for next generation cellular networks,” in Proceedings of

the Conference of the ACM Special Interest Group on Data Communication, 2017.

[111] H. Lindholm et al., “State space analysis to refactor the mobile core,” in Proceed-

ings of the AllThingsCellular, 2015.

[112] X. An, F. Pianese, I. Widjaja, and U. G. Acer, “Dmme: A distributed lte mobility

management entity,” Bell Labs Technical Journal, vol. 17, no. 2, pp. 97–120, 2012.

[113] R. Balakrishnan and I. Akyildiz, “Local anchor schemes for seamless and low-cost

handover in coordinated small cells,” IEEE Transactions on Mobile Computing,

vol. 15, no. 5, pp. 1182–1196, 2016.

[114] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable and flexible cel-

lular core network architecture,” in Proceedings of the Ninth ACM Conference on

Emerging Networking Experiments and Technologies, 2013.

[115] ONF, “OpenFlow-enabled SDN and Network Functions Virtualization,”

https://www.opennetworking.org/images/stories/downloads/sdn-resources/

solution-briefs/sb-sdn-nvf-solution.pdf, 2014.

[116] “Behavioral-model,” https://github.com/p4lang/behavioral-model/tree/master/

targets/simple_switch_grpc, 2017.

[117] “Agilio CX SmartNIC,” https://www.netronome.com/m/documents/PB_

NFP-4000.pdf, 2018.

[118] S. Filiposka and I. Mishkovski, “Smartphone user’s tra�c characteristics and

modelling,” Transactions on Networks and Communications, vol. 1, no. 1, Dec.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch_grpc
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch_grpc
https://www.netronome.com/m/documents/PB_NFP-4000.pdf
https://www.netronome.com/m/documents/PB_NFP-4000.pdf

References 159

2013. [Online]. Available: https://journals.scholarpublishing.org/index.php/TNC/

article/view/22

[119] S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani, R. Sherwood, Y. Zhang,

and H. Zeng, “Fboss: Building switch software at scale,” in Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communication,

2018.

[120] J. Sonchack, “Enabling practical software-defined networking security applications

with ofx.” 2016.

[121] A. Jain, S. Lohani, and M. Vutukuru, “Opensource SDN LTE EPC,” https://github.

com/networkedsystemsIITB/SDN_LTE_EPC, 2016.

[122] e. Mikko Saily, “5G Asynchronous Control Functions and Overall Control Plane

Design,” https://ec.europa.eu/research/participants/documents/downloadPublic?

documentIds=080166e5b200001d&appId=PPGMS, 2017.

[123] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,

“Netchain: Scale-free sub-rtt coordination,” in 15th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 18), 2018.

[124] L. Zeno, D. R. K. Ports, J. Nelson, and M. Silberstein, “Swishmem: Distributed

shared state abstractions for programmable switches,” in Proceedings of the 19th

ACM Workshop on Hot Topics in Networks, 2020.

[125] “POX SDN controller.” https://noxrepo.github.io/pox-doc/html/, 2014.

[126] M. Lahn, “Server cost,” https://www.servermania.com/kb/articles/

how-much-does-a-64-core-server-cost/, 2017.

[127] “Cost of Intel Xeon Quad Processsor.” https://www.amazon.in/

Intel-Xeon-Quad-Processor-BX80644E51620V3/dp/B00MU046J4/ref=sr_1_

2?dchild=1&keywords=intel+quad+core+server+processor&qid=1592073708&

s=computers&sr=1-2, 2020.

[128] “Cost of Netronome 10 Gbps CX-4000.” https://colfaxdirect.com/store/pc/

viewPrd.asp?idproduct=3017&idcategory=0, 2020.

https://journals.scholarpublishing.org/index.php/TNC/article/view/22
https://journals.scholarpublishing.org/index.php/TNC/article/view/22
https://github.com/networkedsystemsIITB/SDN_LTE_EPC
https://github.com/networkedsystemsIITB/SDN_LTE_EPC
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b200001d&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b200001d&appId=PPGMS
https://noxrepo.github.io/pox-doc/html/
https://www.servermania.com/kb/articles/how-much-does-a-64-core-server-cost/
https://www.servermania.com/kb/articles/how-much-does-a-64-core-server-cost/
https://www.amazon.in/Intel-Xeon-Quad-Processor-BX80644E51620V3/dp/B00MU046J4/ref=sr_1_2?dchild=1&keywords=intel+quad+core+server+processor&qid=1592073708&s=computers&sr=1-2
https://www.amazon.in/Intel-Xeon-Quad-Processor-BX80644E51620V3/dp/B00MU046J4/ref=sr_1_2?dchild=1&keywords=intel+quad+core+server+processor&qid=1592073708&s=computers&sr=1-2
https://www.amazon.in/Intel-Xeon-Quad-Processor-BX80644E51620V3/dp/B00MU046J4/ref=sr_1_2?dchild=1&keywords=intel+quad+core+server+processor&qid=1592073708&s=computers&sr=1-2
https://www.amazon.in/Intel-Xeon-Quad-Processor-BX80644E51620V3/dp/B00MU046J4/ref=sr_1_2?dchild=1&keywords=intel+quad+core+server+processor&qid=1592073708&s=computers&sr=1-2
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3017&idcategory=0
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3017&idcategory=0

List of Publications

Conference publications

1. Rinku Shah, Vikas Kumar, Mythili Vutukuru, Purushottam Kulkarni. TurboEPC:

Leveraging data plane programmability to accelerate the mobile packet core. In

Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR), 2020.

2. Rinku Shah, Mythili Vutukuru, Purushottam Kulkarni. Cuttlefish: Hierarchical

SDN Controllers with Adaptive O✏oad. In Proceedings of the IEEE 26th Inter-

national Conference on Network Protocols (ICNP), 2018.

Workshop publications

1. Rinku Shah, Aniket Shirke, Akash Trehan, Mythili Vutukuru, Purushottam Kulka-

rni. pcube: Primitives for network data plane programming. In Proceedings of the

IEEE 26th International Conference on Network Protocols (ICNP), 2018.

2. Rinku Shah, Mythili Vutukuru, Purushottam Kulkarni. Devolve-Redeem: Hierar-

chical SDN Controllers with Adaptive O✏oading. In Proceedings of the ACM First

Asia-Pacific Workshop on Networking (APNet), 2017.

161

Acknowledgements

I have learned some of the best life lessons, both personally and professionally, during

the time spent at IIT Bombay. I want to express my gratitude to some of the wonderful

people who have been instrumental in my success.

First, I want to thank my supervisors Prof. Mythili Vutukuru and Prof. Purushottam

Kulkarni (Puru), for their constant motivation, guidance, and valuable feedback. Prof.

Mythili’s passion for her work, clarity of thought, creative ideas to solve a problem, and

knack for fulfilling so much without stressing out is genuinely inspirational. Her belief in

me was extremely encouraging; she is instrumental in imbibing the never-give-up attitude

and taught me to accept nothing less than excellence. Besides being a great advisor,

she has been a mentor and a guide towards personal matters. Thank you, Prof. Mythili.

Prof. Puru’s bird’s eye view towards looking at the problems, rigorous brainstorming, and

microscopic observations played a vital role in shaping my dissertation. Besides being a

great advisor, he has been a mentor and a friend with excellent people skills. Thank you,

Prof. Puru. Stable finances are crucial in a Ph.D. student’s life. During my Ph.D., I had

to resign from my ongoing job to focus on research. My advisors made sure that I do not

have to worry about my finances, which was a great relief.

I want to extend my deep gratitude to my dissertation committee members, Prof.

Umesh Bellur and Prof. Varsha Apte, for their encouragement and valuable feedback.

Prof. Umesh was the first to lend his hand and accept me as his research student.

Your guidance has helped me understand the research process during my initial years.

I switched my research domain but was fortunate to have you on my dissertation commit-

tee and avail your constant guidance. Your out-of-the-box feedback helped me immensely

in the visualization of my research problem from a di↵erent perspective. Thank you, Prof.

Umesh. Prof. Varsha provided critical feedback and has always been motivating. Her en-

ergy has been contagious, inspiring me to get involved in aspects beyond research, such

as organizing social lab events. Thank you, Prof. Varsha.

I want to thank my labmate, Vikas, for being a fantastic co-worker and a great friend.

You were a great support system when we together started to explore the programmable

163

164 Acknowledgements

network hardware domain. I was fortunate to mentor some incredible BTech and MTech

students, Sanjana, Akash, Aniket, Maharishi, Vishal, Arijit, and Kanak. I have learned

a lot from you and had a wonderful time working with you. I am fortunate to mentor

the Ph.D. student, Abhik. I had a fantastic time listening to his crazy but meaningful

discussions.

A special thanks to my labmates, Priyanka, Akanksha, Dhantu, Anshuj, Avinash,

Chandra Prakash, Unais, and Nitin. You have been the source for your unconditional

support, encouragement, and means for rejuvenation under conditions of stress and self-

doubt. Our chai sessions, festive celebrations, and parties were some of the best unforget-

table memories.

My friends Anamika, Priyanka, Shreya, Sridevi, and Sushma; you were always there

by my side in sound as well as testing times; you were the most vital pillar. Your non-

judgemental support helped me let out all my insecurities. The long meaningless chats

during the mess hours, the parties, the night-outs, and the Goa trip are the moments that I

will carry along for life. Thank you, my girl gang.

I want to thank the most important people, without whose support this journey would

have been impossible, my father, Mahendrakumar, my mother, Ranjan, and my sister,

Sweety. They always thought that I could achieve anything in life, and there is nobody

better in the entire world, which is weird but somehow kept the light in me going. Their

belief, love, and support have been the most important reasons for my success. I want

to thank my brother-in-law, Nirav, who used his great sense of humor to motivate me

towards success and supported me during lows. This journey would be incomplete if it

were not with my nephew Parth; he was around three years old when I started my journey.

You always bring a smile to my face, even during times of self-doubt and disappointment.

Your innocence has unknowingly taught me life’s best lessons.

The past seven years have been the most enriching phase of my life, and I look

forward to the beginning of the next chapter of my life.

Rinku Mahendrakumar Shah
IIT Bombay

9 February 2021

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Limitations of traditional SDN controller design
	SDN scalability solutions
	Key ideas
	Challenges
	Thesis contributions
	Summary

	Background and Related Work
	Software-defined networking
	SDN control plane scalability
	Dataplane programming
	A step towards dataplane generalization
	Dataplane programming tools — P4 and P4Runtime
	In-network application computation
	Can we offload any application to programmable hardware dataplane?

	The mobile packet core
	The mobile packet core architecture
	The LTE EPC procedures
	Scalability solutions for the mobile packet core

	Summary

	State Taxonomy of SDN applications
	Application state taxonomy
	State taxonomy proposed by existing hierarchical solutions
	Our state taxonomy proposal
	Proposed hierachical offload design

	What application computations can be offloaded?
	Guide to identify offloadable messages
	Identify offloadable messages for LTE EPC application
	Identify offloadable messages for stateful load balancer

	Summary

	Adaptive Offload of SDN Applications to Local Controllers
	Problem description
	Key idea, challenges, and contributions
	Cuttlefish design and implementation
	Developer input
	The Cuttlefish API
	Cuttlefish API implementation
	The adaptation approach
	Enforcing the offload mode
	Transition between controller modes
	Implementation of use cases

	Evaluation
	Experimental setup
	Efficacy of adaptive offload
	Convergence of adaptive offload
	Summary of results

	Summary

	Offload of SDN Applications to Programmable Switches
	Motivation and problem description
	Key idea and challenges
	TurboEPC design
	Design overview
	Partitioning for scalability
	Replication for fault tolerance

	TurboEPC implementation
	Evaluation
	TurboEPC software prototype
	TurboEPC hardware prototype
	Summary of results

	Summary

	Comparison of Control Plane Scaling Approaches
	SDN control plane scaling approaches
	Comparison of control plane scaling approaches

	Implementation
	Experimental setup
	Evaluation
	Performance comparison of scaling designs
	Impact of distance of the root controller from the end-user

	Choosing the right scalability design
	Checklist to determine offload to programmable hardware
	Choice of the scalability design

	Summary

	Future Work
	TurboEPC extensions for 5G mobile packet core
	Three-tier adaptive hierarchical design
	Summary

	Conclusion
	References
	List of Publications
	Acknowledgements

