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Abstract
The growing demand for large-scale GPU clusters to train large

language models (LLMs) poses a significant challenge to innovation
due to high costs and limited accessibility. While state-of-the-art
simulators address this issue, they assume a uniform infrastructure.
However, device heterogeneity is unavoidable in cloud environ-
ments due to resource sharing, frequent updates in device genera-
tions, and the inherent intra-chip interconnect heterogeneity. We
propose a heterogeneity-aware simulator for distributed LLM train-
ing that takes into account the real-world compute and network
heterogeneity. Our simulator allows for custom configurations and
models the impact of hardware diversity on training time.

CCS Concepts
• Networks→ Network performance modeling; • Computing
methodologies→ Simulation tools.
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1 Introduction and Motivation
In the past decade, the emergence of transformer models,

commonly referred to as large language models (LLMs), such
as GPT [26], Llama [29], and Mixtral [15], has revolutionized
multi-task learning. With frequent LLM releases (fifteen per month
on average [28]) and high training costs (10s of thousands of
GPUs [17]), simulators are crucial for efficient cost and resource
planning. The state-of-the-art simulators, ASTRA-sim [35] and
SimAI [32], provide a full-system simulation framework for
training clusters with homogeneous compute and networking
infrastructure.

While companies like Meta [8] and Alibaba [25] use homoge-
neous GPU clusters, this model is increasingly unsustainable due
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to rapid hardware evolution [9], resource bottlenecks in shared
clouds [13, 18, 34], and intra-chip interconnect bandwidth and la-
tency variability in architectures such as the Grace-Hopper [7]. As
a result, there is a growing need to utilize heterogeneous infras-
tructure for LLM training. Prior works [5, 14, 16, 24, 27, 30, 36–38]
propose an optimal deployment plan for LLM training in a heteroge-
neous cluster comprising multiple GPU types and variable network
bandwidth. However, these solutions are evaluated using costly
real-world deployments [16] or oversimplified simulations [27]. Ex-
isting simulators [6, 10, 32, 35] lack support for key features that
represent compute and network heterogeneity.
Our key idea. We propose to design a heterogeneity-aware dis-
tributed training simulator framework that extrapolates the LLM
infrastructure and accurately predicts the performance of the cus-
tom deployment.

2 Challenges and Design Requirements
To optimize LLM training, state-of-the-art (SOTA) heterogeneity-

aware LLM training solutions [14, 16, 24, 30, 33, 36, 37] explore ideas
such as (a) non-uniform workload partitioning, based on compute
capabilities, e.g., the LLM model’s MLP layer is compute-intensive
and can be assigned to high compute GPUs for speedup [36], (b)
heterogeneity-aware placement of distributed LLM model slices,
i.e., layers and tensors [37]. For example, leverage high bandwidth
interconnects for model slices that communicate large amounts of
data frequently, and (c) heterogeneity-aware training data sharding
and orchestration, e.g., in the case of multimodal data, image/video
data must be trained on high-speed hardware [33]. We identify the
gaps with the existing LLM training simulators, and present the
abstractions (A), and components (C) needed for a heterogeneity-
aware simulator design.
[A1] Abstractions for custom device groups and hybrid par-
allelism strategies. Existing simulators [32, 35] do not have the
provision to specify custom device groups, i.e., the set of heteroge-
neous compute devices that process a specific model slice (model
partition or a set of model layers) or a training data slice. To enable
non-uniform workload partitioning and heterogeneity-aware place-
ment, the LLM training simulator must additionally support ab-
stractions for: (a) heterogeneity-aware device groups across nodes,
(b) custom parallelism configurations (Pipeline parallelism (PP),
Tensor parallelism (TP), and Data parallelism (DP)) with variable
batch sizes, and (c) flexible mapping of parallelism strategies to
device groups.
[A2] Custom cluster and topology specification. The
heterogeneity-aware simulator must provide abstractions to
define diverse interconnects (e.g., PCIe, NVswitch, and NVLink),
bandwidth/latency parameters, and topological arrangements,
enabling accurate simulation of diverse hardware infrastructures.
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[C1] Non-uniform workload partitioning. The heterogeneity-
aware simulator must: (a) distinguish between GPU types (e.g.,
A100 vs. H100) and generate distinct workload traces tailored to
the device group’s role in the parallelism strategy, and (b) correctly
simulate the non-uniform hybrid parallelism (i.e., PP, TP, and DP)
and the collective communication over custom device groups.
[C2] Resharding support for shape mismatch. Training across
heterogeneous device groups with non-uniform parallelism con-
figurations may result in tensor (or activation) shape mismatch
during synchronization. Suppose Llama-2 (70B) [29] with 80 layers
is trained on heterogeneous GPUs with two device groups (DG).
𝐷𝐺1 performs TP on 75 layers over 3 GPUs, and 𝐷𝐺2 performs TP
on 5 layers over 2 GPUs. Due to the mismatch between the tensor
shapes of 𝐷𝐺1 and 𝐷𝐺2, resharding is needed. The simulator must
support automated resharding to adjust tensor shapes and ensure
correctness in collective communication operations.
[C3]Heterogeneity-aware collective communication. Existing
LLM training simulators [32] imitate NCCL [21] collective commu-
nication library optimizations. NCCL optimizes collective communi-
cation for: (a) efficient intra-node communication using bandwidth-
aware graphs, (b) detects and selects efficient inter-node transport,
and (c) maps logical ranks to physical devices to optimize perfor-
mance. However, NCCL assumes GPU homogeneity and works
only for NVIDIA GPUs. A heterogeneity-aware collective commu-
nication must support: (a) Graph generation for efficient collective
communication in a heterogeneous cluster, i.e., clusters with CPU-
only nodes, or asymmetric architecture (e.g., CPU+GPU+NPU), and
(b) must be vendor agnostic.
[C4] Heterogeneous compute and interconnect simulation.
The simulator must accurately measure and simulate the compute
performance based on the bottleneck device in the ongoing trans-
action, and simulate custom network topology, interconnect capac-
ities, and their delays.

3 Design and Preliminary Results
We extend the SimAI [32] simulation framework, which origi-

nally supports homogeneous GPU clusters and communication
interconnects, to incorporate the abstractions and components
discussed in §2. Figure 1 shows the primary components of our
simulation framework with the preliminary results.

The input description component allows the user to feed in the
custom heterogeneous configurations. The abstraction will allow
the user to specify model parameters such as model dimensions,
number of model layers, and training hyperparameters, framework
parameters such as custom device groups, custom parallelism, map-
ping between them, and heterogeneous node and interconnect
attributes such as latency and bandwidth.

Based on the input description, the workload generator profiles
the workload layers on the specified device (e.g., A100 and H100)
using custom device group information to generate the custom
workload file.We implemented a customparser in SimAI’s workload
layer that parses a specific workload file for a given device group
and registers the compute and communication events tied to specific
operations.

The system layer is primarily responsible for logical resource
management and scheduling. Using the framework parameters,

Figure 1: Design of heterogeneity-aware LLM training simu-
lator.

we implemented custom device groups comprising homogeneous
or heterogeneous GPUs for parallelism assignment. The device
groups are then mapped to the hybrid of tensor, data, and pipeline
parallelism based on the mentioned degree of parallelism. After
parallelism mapping, the simulator will reshard the parameters
and use custom channels to register the communication event for
parameter synchronization. Then, the event simulator queues the
registered events and logs all the registered events while simu-
lating the distributed execution timeline using the scheduler. The
scheduler coordinates the event stream between the compute and
network simulators to ensure accurate modeling of event depen-
dencies, resharding delays, and bandwidth contention. Our current
implementation of the system layer only supports heterogeneous
interconnect simulation.

We design a heterogeneity-aware network simulator engine on
top of SimAI’s ns3 module [2]. The engine uses the heterogeneous
host and topology input description to instantiate and configure
a network topology with custom interconnect latency, bandwidth,
and processing delays, including intra-host connections and inter-
host networks.
Setup. We set up the SimAI simulation framework [32] on a node
with A100 and H100 GPUs. We generate the model workloads using
the AICB workload benchmark [1], on A100 and H100 GPUs, to run
simulations for homogeneous and heterogeneous configurations.
We simulate heterogeneity over three LLM models, GPT-6.7B, GPT-
13B, and Mixtral 8x7B with realistic training configurations [3, 4, 11,
19]. We simulate a rail-only topology [31], with each node having
8 GPUs and 8 RoCE NICs with Ampere [22, 23] Hopper [12, 20]
configuration, with its bandwidth and delays.
Results. Our initial results show that a mixed Ampere and Hopper
configuration (50%:50%) results in up to 9% higher flow completion
time (FCT) for GPT-6.7B, a substantial 25.3× increase for GPT-
13B, and a minimal 0.4% increase for Mixtral 8x7B compared to a
homogeneous Ampere setup. Since collective communication is
a blocking operation, the slowest flow dictates overall iteration
time. These results emphasize the need for incorporating compute
heterogeneity and applying scheduling optimizations such as those
proposed in Metis [30] to mitigate tail latency in heterogeneous
training environments.
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