Detecting Manipulation to Table Rules in the
Programmable Data Planes

Ranjitha K*, Karuturi Havya Sree*T, Devansh Garg®, Stavan Nilesh Christian*, Dheekshitha Bheemanath*T,
Rinku Shah® and Praveen Tammana*
*IIT Hyderabad, India. fNew York University, USA. §IIIT—Delhi, India.

Abstract—Network management systems built on pro-
grammable data planes enhance network performance, security,
and reliability. However, these systems also increase the attack
surface and, hence, are vulnerable to attacks not seen before. We
focus on a problem that stems from the fact that a switch data
plane trusts the control messages (e.g., table update messages)
from upper layers in the switch control plane (OS, SDK, drivers).
Since these control messages define the packet forwarding behav-
ior, unauthorized modification to the messages by an adversary
at any of these layers can lead to poor performance, privacy
compromise, security bypass, and network outage.

In this paper, we present P4TVal, a P4 Table rule Validation
system that detects unauthorized updates to table rules. Our key
idea is early detection, where a table rule update is promptly
followed by an authenticated rule validation. To realize this idea,
we craft and send custom packets to hit specific table rules in the
data plane and validate the table rules actually applied to them.
We prototype P4TVal for Intel Tofino and BMV2 and demonstrate
how P4TVal can detect unauthorized modifications to table rules.
Our evaluation shows that P4TVal’s early detection reduces the
detection time by 10X compared to the state-of-the-art approach.

Index Terms—programmable data plane security, securing table
update, detecting forwarding table manipulation attack.

I. INTRODUCTION

High-speed programmable Data Planes (PDPs) (e.g., smart-
NICs [1], switch [2]) and domain-specific network languages
(e.g., P4 [3], NPL [4]) have opened up a wide range of op-
portunities to solve network management problems considered
difficult and complex in traditional closed and fixed ASIC-
based data planes. They enable faster development of novel
network protocols, network function acceleration [5], [6], and
in-network computing [7].

Leveraging the PDP capabilities, many data-driven fast
control-loop systems ( [5], [7]-[15]) improve network perfor-
mance by quickly adapting to the dynamic network events (e.g.,
congestion, failures, intrusion detection). These fast control-
loop systems execute their data plane logic on network traffic
by applying table rules and by updating state in the data plane.
More specifically, they perform the following tasks: (a) main-
tain network statistics in the data plane memory, (b) analyze
the statistics, and (c) take action either by updating switch
table rules, state in the switch memory, or by configuring flow
rate. To keep decision-making fast, some systems implement
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all three tasks entirely in the data plane, and some of them
move analysis to the control plane at the cost of slow decision-
making.

Though fast control-loop systems provide better performance
and security, they also open up a wide range of new attacks
never seen before. Third-party switch operating systems often
have exploitable vulnerabilities [16], [17], exposing the switch
control plane to various attacks. Many recent works [18]-[20]
describe various threat models and attack targets in P4-based
data plane systems. In this work, we consider an adversary at
the switch control plane (CP) as shown in Fig. 1 who intercepts
and modifies the table update (install/update/delete) control
message from the controller (C), where the message alters
the packet forwarding behavior by updating match-action table
(MAT) rules in the switch data plane (DP). The adversary
can also modify the report sent by the DP in response to a
table read control message from the controller. Such a Man-
in-the-Middle (MitM) adversary can also make unauthorized
modifications to data plane table rules (table rule modification
attack), causing forwarding anomalies. The adversary can also
hide these modifications from being detected by the controller
by modifying the table read response.

Attacks on in-network systems tailor-made for enhanced
performance and security can hinder the very purpose of the
system. For instance, P4Knocking [6] offloads host-based port
knocking to the network for enhanced performance. However,
[19] shows that P4Knocking is subject to the MitM table rule
modification attack discussed above. By modifying the table
rule, the MitM attacker bypasses security, defeating the very
purpose of the system. Similarly, fast reroute systems (e.g.,



Blink [9], RouteScout [21]) designed to do performance-aware
routing for enhanced performance are also subject to such MitM
attacks. The attacker at the CP can modify the table update
control messages from the controller so that the traffic is routed
to a non-optimal path. This adversely affects the performance,
defeating the purpose of the system.

Existing solutions to prevent or detect unauthorized mod-
ifications to control messages are not sufficient or too slow
to detect the attack. Control messages exchanged between
the C-DP (controller and the switch data plane) following
P4Runtime [22] are SSL/TLS protected. However, this pro-
tection is insufficient if the attacker resides in the CP. Key-
based authentication schemes [23]-[26] are designed to run
completely in the DP, so they protect updates to DP state that
originate from another DP. However, as per the P4 standard
[3], the table updates do not happen from the DP; the DP
can only look up tables, but not update table rules. Hence,
authenticating control messages from the DP is not sufficient.
Other detection approaches, such as active probing [27], [28]
and distributed statistics collection [29], [30], perform periodic
monitoring either by sending active probes or by collecting
statistics. A closely related work, REV [31], considers a threat
model similar to one shown in Fig. 1. It uses a packet path
validation approach, where it captures each packet’s actual path
and compares it with the expected path to find deviation. This
requires the packet to traverse the network, collecting the packet
path information before the controller identifies any deviation.
However, these approaches are too slow to detect the attack (in
the order of seconds), allowing multiple data packets to follow
the unintended path.

P4TVal. In this paper, we take a step towards quickly detecting
unauthorized modifications to data plane table rules (in a few
milliseconds). We propose P4TVal, a P4 Table rule Validation
system that detects unauthorized modifications to table rules
by following an early detection approach where rule validation
promptly follows a rule update. More specifically, P4TVal fol-
lows two steps: (1) P4TVal performs the table update (e.g., via
P4Runtime); (2) validates whether the update is reflected in the
table as expected. PATVal does rule validation by comparing the
rule at the DP with that at the controller (more details in §IV).
This allows P4TVal to quickly detect table rule modification
attacks and reduce the data packets sent on the unintended
paths.

Table read control messages are sent by the controller to
ensure the consistency of rules between C-DP. Since P4TVal
detects unauthorized modifications to table rules before reading
them, we do not foresee the attacker modifying the table
read responses. Hence, P4TVal does not perform any explicit
validation for table reads (more details in §IV-E).

Challenges. We encounter multiple challenges while designing
P4TVal. Firstly, given that we only trust the controller and
the DP, and only the controller can initiate rule updates, any
validation must happen at the controller. However, retrieving
the table rule from the DP, as seen by a packet in the DP, for
validation at the controller is challenging. This is because of

the computational and resource constraints of PDPs (details in
§IV-B). Secondly, table rules may comprise wildcard matches,
such as Longest Prefix Match (LPM), and range matches.
Validation of these rules is non-trivial as multiple packets can
match with a single rule (details in §1V-C). Thirdly, the MitM
adversary at the CP can evade rule validation (details in §IV-D).

Key contributions. The key contributions of this paper are:

« We motivate the need for protecting in-network systems
from adversaries making unauthorized modifications to
data plane table rules (§II).

o We design a detection system that validates the table rules
installed in the data plane (§IV).

« We develop a prototype of P4TVal for two switch targets:
BMV2 software switch [32] and Intel Tofino [2]. We
evaluate P4TVal prototype’s effectiveness by detecting at-
tacks on one example in-network system, P4Knocking [6]
(§VID).

« We implement a closely related work, REV [31], in BMV2
and compare P4ATVal’s early detection approach against
REV’s packet path validation approach. We also evaluate
P4TVal overhead in terms of impact on CP and DP
performance, and hardware resource utilization (§VIII).

II. THREAT MODEL

Attacker goals. An attacker at a compromised switch OS alters
data plane packet forwarding behavior, causing forwarding
anomalies in the network by modifying the table update
control message from the controller. The attacker also alters
the report sent to the controller from the data plane as part
of table read control message. This work aims to detect such
modifications and thereby minimize the impact of adversarial
manipulations on data plane packet forwarding.

Attacker capabilities. We consider an adversary who

achieves a compromised switch by installing backdoor
applications [16], [19], [31], [33]-[35] either by exploiting the
switch OS vulnerabilities or by malware infection or by social
engineering a benign operator or by a malicious insider. More
specifically, an adversary may exploit stack buffer overflow
vulnerability [36] and perform remote code execution [16]. In
another case, a malware-infected network administrator system
gains access to one of the network switches via keylogging.
Then, the malware establishes a reverse connection to the
adversary server, installs a backdoor binary onto the switch,
and becomes the pivot for the backdoor binary [17]. This
allows the adversary’s remote server to access an active shell
on the compromised switch. The access can be a root or a
normal user, depending on the stolen credentials.

On achieving remote shell access to the switch as described
above, the adversary can then install a backdoor application
(e.g., LD_PRELOAD trick [37]) which preloads a malicious
library that can modify the parameters of function calls between
the gRPC server agent (P4Runtime server) and the SDK APIs
or the driver [19] to update (add/delete/modify) table rules. The
adversary can also falsify the table read reports generated by
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Fig. 2. Attack on P4Knocking system

the switch data plane. Note that the adversary can only modify
the function call parameters of an ongoing control message
processing. We do not consider crafted table updates injected
by the adversary because initiating the low-level driver calls is
non-trivial, as this requires compromising the gRPC channel.
To summarise, we trust the controller and the switch data
plane (DP), but not the switch control plane (CP). The MitM
adversary at the CP can modify the table update/read message
from/to the controller.
Example table rule modification attack on P4Knocking
system. Port knocking is an authentication mechanism used
to hide services from unauthorized users, thereby avoiding
undesired connection trials. A service port appears closed until
the user generates a connection attempt on a pre-configured set
of closed ports and gets access.
Port knocking in P4. P4Knocking [6] is a P4 implementation
of port knocking that allows seamless deployment of firewall
functions in the data plane. Access to a service port is allowed
only if the host requesting access sends a series of packets
with the correct sequence of TCP destination port numbers
(secret knock sequence). P4Knocking implements this using
a P4 register by storing an integer from O to 3, indicating
the number of consecutive packets received from a given host
(IP address) that satisfy the secret knock sequence. Once the
register value for an IP address is equal to 3, then the traffic
from that IP address is allowed to pass through the firewall.
To reduce memory footprint, PAKnocking uses an optimization
where a 16-bit ID is used to index the register array instead of
32-bit IP addresses. These IDs are assigned by the controller
on receiving a Packetln from the DP. This ID to IP address
mapping is maintained in a table ip_2_id_tb.

Attack. Black et al., in their work [19], demonstrate attacking
P4Knocking by editing the arguments of the table update (add)
control message while inserting an entry to ip_2_id_tb table
(Fig. 2). They modified the entry so that the attacker’s IP
address gets mapped to an already existing ID, thus allowing
the attacker’s traffic to bypass the firewall.

III. REQUIREMENTS AND RELATED WORKS

An ideal solution to the MitM attack making unauthorized
modifications to data plane rules (discussed in §II) is to prevent
the attack in the first place; however, programmable data plane

constraints make it non-viable. Preventing the attack requires
updates to table rules from the DP because, according to our
threat model, we only trust the DP and not the CP (§II). How-
ever, as per the P4 language standard, ingress packets (or cus-
tom messages) cannot update table entries. More specifically,
while processing a packet, the DP can look up table entries,
but updates to table entries are not allowed; only the CP (OS,
SDK, or drivers) can update table entries. This decision was
taken by the community considering the complexity involved
in implementing the ability to modify tables in the data plane
[38]. This constraint makes attack detection the only viable
solution.

A. Requirements

Given the specific design purpose of in-network systems
and the constraints discussed above, we present the following
requirements to secure table rule updates.

[R1] Early detect. Attack must be detected as early as possible
such that its impact is negligible. More specifically, the time
to detect the attack should be near real-time such that the
impact of the attack in terms of the number of data packets
compromised on the unintended path is negligible.

[R2] Single source-based detection. The detection system
must be dependent only on the information received from a
single data plane. Independent of other switches in the network,
the detection system must accurately detect the MitM attack on
any particular switch. This is necessary as in-network systems
tailor-made for specific purposes are often deployed as stand-
alone systems.

[R3] Robust. Compromising the detection system must be
hard for the adversary; the detection system must be robust
towards attacks from the MitM adversary at the CP.

B. Related works and research gap

P4 data planes are vulnerable. Prior work [18]-[20], [34],
[39] highlights how programmability and statefulness make P4
data planes vulnerable to various security attacks. Agape et al.
[34] present the security landscape and characterize the attack
surface of p4-based SDN systems. Authors of [18], [19] provide
an elaborate analysis of P4-SDN architecture and showcase
possible attacks that alter the switch’s forwarding behavior
on multiple data plane systems. [39] shows how buggy P4
programs can be exploited to attack the data plane. [20] high-
lights common design pitfalls in switch-based applications due
to resource-constrained programming, making system design
vulnerable to adversarial exploitation. We complement these
works by taking a step towards securing programmable data
planes from manipulation of packet forwarding behavior.

Prevention approaches using authentication in the data
plane are insufficient. Multiple works [23]-[26] suggest se-
curing communication between two data planes by applying
authentication, integrity, and encryption. They prevent unau-
thorized modifications to data plane states by authenticating
control messages in the DP. Their approach only considers
control messages modifying the data plane state (register
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Fig. 3. Detecting unauthorized table rule modifications using P4TVal

read/write); they do not consider control messages that update
table rules. As per the P4 language standard, DP can only look
up table entries; updates to table entries are not allowed. Hence,
solutions to authenticate control messages in the data plane do
not work for table update control messages, failing to meet R1.
Our work complements these works by securing table update
control messages.

Detection approaches based on packet path tracking are
slow. Packet path validation approaches [31], [40] and probe-
based approaches [27], [28], designed for securing SDN-
OpenFlow data plane, ensure rule enforcement in the switch
data plane by validating the path the data packet takes by
comparing the packet’s actual path with the expected path. This
approach detects adversarial manipulations to table updates.
However, it takes longer to detect because this requires the
data/probe packet to traverse the network and collect the path
information before the controller can process and detect the
attack. This allows multiple data packets to get compromised
on the unintended path. Also, as the size of the network grows,
the time to detect increases with increasing number of switches
in the network. Moreover, malicious switches in the network
can manipulate the path-tracking information in the packet to
evade detection, thus failing to meet R1, R2, and R3.
Distributed monitoring approaches compromise accuracy
with malicious switches in the network. Statistics-based
approaches [29], [30], [33], [41] use distributed statistics col-
lected periodically from multiple switches to find forwarding
anomalies; it takes tens of seconds to detect the anomaly,
thus failing to meet R1. Also, these works assume that a
majority of switches in the network are benign. However,
malign switches can misreport statistics, adversely affecting the
detection accuracy and thus failing to meet R2, and R3.

IV. DESIGN

A. Overview

We design P4TVal, a system to detect unauthorized modifi-
cations to data plane table rules. We achieve this by validating

the table rules after the controller updates them. This takes us
to the question "how to validate the data plane table rules?”.

Digest-based validation is slow and has high overheads.
One approach is to validate the rules from the DP. To achieve
this, we can add an action parameter to the table that holds
the digest computed over the rule using a secret key shared
between C-DP. On packet arrival, the DP computes the digest
for the rule and validates it against the digest present in the
rule. However, this approach delays the detection until a data
packet hits the rule (thus does not hold R1). This approach
requires an additional digest field added to each table rule in
the DP, increasing the memory footprint. Moreover, an update
to the secret key requires updating the digest for all the DP
rules, incurring high overhead at the controller. Since the root
of trust is at the controller, P4TVal chooses to validate the rules
at the controller.

P4TVal. We design P4TVal, a system to validate data plane
table rules and detect unauthorized modifications to the rules.
Our key idea is to validate the DP table rules from the
controller by following an early-detect approach (meets R1).
More specifically, as shown in Fig. 3, we allow updating the
table rule by the controller (step 1), which is immediately
followed by an authenticated rule validation (step 2). In step 2,
we send a custom test packet to the DP with headers matching
the table rule. PATVal’s P4 logic processes the test packet in
the data plane, retrieves the table rule information matched with
the test packet from DP (meets R2), and shares the information
with the controller for validation.

To realize this idea, P4TVal addresses multiple challenges
while retrieving rule information and validating the information
at the controller.

[C1] Retrieving and sharing the DP rule applied on the test
packet. Validating the DP rule at the controller requires P4TVal
to retrieve the information of the rule applied on the test packet
and share it with the controller. The challenge is retrieving
and sharing under programmable data planes’ constraints on
allowed per-packet operations. We address this by carefully
identifying the rule information needed for validation and
formatting the response (i.e., verify message) that carries the
information to the controller (details in §IV-B).

[C2] Validating wildcard rules. Wildcard rules with LPM
and range match types match with multiple data packets. For
instance, LPM match entry with prefix length N can match to
20G2N) destination address. Sending 242N custom test packets
to validate the rule is inefficient. We address this challenge by
carefully identifying the modifications the attacker can make
and validating the boundaries of such match types (more details
in §1V-C).

[C3] Protecting validation from MitM adversary. The MitM
attacker at the CP can evade rule validation by compromising
the table information retrieved from the DP. We address this
challenge by protecting the rule validation using end-to-end
authentication between C-DP (meets R3). More details on the
authentication process are in §IV-D.
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B. Rule validation

Our key idea is to retrieve the table rule information as seen
in the DP and compare it against the actuals at the controller.
To achieve this, we find answers to two questions:

What information about table rules is needed for valida-
tion? A table rule comprises: (1) a match field (key), (2) an
action field, and (3) action parameters. The MitM attacker at
the CP (as discussed in §II) can modify any of these three parts
in a table rule. So, to detect the attack, we need to validate the
match, action, and action parameters of the installed table rule
with that of the controller.

How do you retrieve the table rule information? To retrieve
the table rule information, we send a custom message contain-
ing a test packet with headers set to match the rule’s match field
such that the test packet hits the table rule. Upon hitting the
rule, the DP captures the set of actions and action parameters
applied to the test packet using a common data structure,
action_h (as shown in Fig. 4), shared between the controller
and the data plane. action_h structure has action parameters
(as fields) of all actions of every table. To summarize, action_h
contains the information of the table rule applied on the test
packet and returned to the controller, where it is validated.

Validating table rule. To retrieve and validate table rule
information, P4TVal uses two messages: (1) test, and (2) verify.
The format of these messages is shown in Fig. 5(a). hdrType
field specifies one among test message, verify message or an
alert message. digest field is used for protecting fest and verify
messages from MitM adversary (more details later). segNum
maps a response to its corresponding request.

After a rule update, the controller promptly sends a test
message containing a sample packet with header values that
match the table rule to be validated (step 2 in Fig. 3). Currently,
we manually construct the test message. Instead, one can
automatically generate test packets using packet generation
tools like p4pktgen [42]. On receiving the fest message, DP
processes the sample packet in the fest message like any other
data packet and retrieves the actions and associated action pa-
rameters applied in the action_h header (as shown in Fig. 5(b)).
At the end of the processing pipeline, DP constructs and sends
the verify message (contains action_h) to the controller.

On receiving the verify message, the controller checks
whether the observed actions applied to the sample packet,
that is, action_h header values are the same as the expected
set of actions determined from the table update request in the

previous step. For instance, if the table update request adds or
modifies an entry, the controller checks whether the observed
action parameters and the table entry’s action parameters are
the same. If the table update request deletes an entry, then it
checks whether the observed action parameters are set to either
null or the default action, as the sample packet is expected not
to hit the deleted entry. If the observed action parameters do not
match the expected ones, the controller raises an alert. Note that
the mismatch could be due to some bugs in the stack [43] or
adversarial manipulation. Nevertheless, P4TVal helps to detect
the mismatch such that the network operator can debug the
issue further. Additionally, the controller also raises an alert if
it fails to receive a verify packet in response to the fest packet.

C. Handling different match-types

A table rule may have multiple match fields with one of three
types: exact, range, or LPM. A single test message is sufficient
to validate a table rule with only exact type fields. However,
multiple messages are required to validate a table rule with
range or LPM type. One key observation is that validating lower
and upper bound values in these two match types is sufficient
to detect adversarial manipulation.

Handling LPM match. Consider the destination IP address
field of the LPM match type where an adversary can modify
either prefix or prefix length. To detect any modification to
the prefix, a single test message with the destination address
the same as the prefix is sufficient. In the case of prefix
length modification, an adversary can either increase the prefix
length (i.e., decrease the number of IP addresses in a subnet)
or decrease the prefix length (i.e., increase the number of IP
addresses). In the former case, a test packet with a destination
IP address set to the last IP address of the original subnet
is expected to hit the user-programmed rule, but it will not;
thus, applied actions would differ from the expected one. In
the latter case, a test packet with a destination IP address
set to the (N-1)th bit of the first IP address of the actual
subnet is expected to miss the user-programmed rule, but it
will be a hit because the original subnet is a subset of modified
larger subnet. In summary, P4TVal requires at least three test
messages to validate a table entry of type LPM.

Handling range match. Consider a table entry with range
match type, say range(rl, r2). An adversary can modify rl, r2,
or both rl and r2. In this case, we need four test messages with
match values set to rl, r2, rl1-1, and r2+1. For example, if the
range (50,100) is modified to range (60,120) by an adversary,
there are four test messages with match values set to 50, 100,
49, and 101. The test packet with a matching key set to 50 is
expected to hit the table rule, but it will be a miss; thus, applied
actions would differ from the expected one.

To summarize, to validate a table rule with M LPM type
fields, N range type fields, and P exact type fields, at most
M %3+ N x4+ Px1, test messages are required. For example,
if a table rule has one LPM, one range, and one exact match
type field, 8 test messages are required to validate the table
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rule. It is worth noting that the number of test messages is
independent of the prefix length or the range size.

D. Protecting rule validation

The adversary at the CP can modify the test and verify
packet and compromise the detection mechanism. To prevent
the adversary from evading detection, P4TVal ensures the in-
tegrity and authentication of fest and verify packets completely
in the DP. Our requirement to authenticate fest and verify
aligns with the objective of existing works that perform key
exchange [23] and key-based authentication [26] in the DP.
Taking inspiration from these works, we use key-based HMAC
to generate message digest and ensure the authenticity and
integrity of fest and verify packets. We assume the secret key
is already shared between the controller and the DP.

Authenticating test message. Before sending the fest message,
the controller computes the digest over two fields: auth_h and
the packet payload, using the secret key shared between C-DP.
On receiving the fest message, the DP first computes the digest
on the same fields using the shared key and compares it with
the digest in the fest message. If the digest verification fails,
the DP sends an alert. If the digest matches, DP processes the
packet and updates the action parameters as the packet traverses
the processing pipeline. At the end of the processing pipeline,
the DP constructs the verify message with msgType (0x02) and
digest (computed over action_h header values, hdrType, and
msgType using the shared secret). On the other hand, if the
digests do not match, it sends a nAck message with msgType
set to 0x03 and digest computed over msgType and segNum.

Authenticating verify message. On receiving the verify mes-
sage, the controller performs digest verification to ensure the
integrity of the message. On successful verification, the con-
troller validates the table rule as discussed in the above section.
If the verify message digest verification fails, or the observed
action parameters do not match the expected one, the controller
raises an alert.

E. Validation of table reads

In general, SDN controllers (e.g., ONOS) report inconsis-
tency [19] whenever there is a mismatch between the logs
maintained at the controller and the table rules read. However,
an attacker could modify both table update requests and read
responses such that the controller cannot detect the mismatch.
With P4TVal’s detection of unauthorized modifications to up-
dates (as described earlier) and the network operator’s actions
to ensure table rules in the DP and the table entry logs at the
controller are the same, any modifications to the table read
responses can be detected by the controller.

V. IMPLEMENTATION

This section presents the implementation details of P4TVal

prototype developed on BMv2 [32] and Tofino [2] target. We
instrument the P4 program for two purposes: (1) to retrieve
table rule information from the DP (for validation) and (2)
to perform digest computation and verification (for authentica-
tion). We added around 70 lines of P4 code. We implement the
controller in Python3.7 using approximately 50 lines of code
to perform digest computation verification and rule validation.
Retrieving table rule information. To retrieve the table
rule information, DP generates verify message for every test
message. For this, we instrument the P4 code with (1) action_h
structure; and (2) instructions in each action block for copying
action parameters to the respective field in action_h. At the end
of the packet processing pipeline, action_h contains all action
parameters of the actions applied on a packet as it traverses
the switch pipeline. We implement test and verify packets as
PacketOut and Packetln, respectively.
Digest computation and verification. Code for digest com-
putation and verification is added at the start and end of the
ingress pipeline. We used CRC32 as the hash algorithm for
digest computation, and the secret key shared between C-DP
for digest computation is stored in the register. We limited
ourselves to using 32-bit digest as Tofino inherently supports
only 32-bit ALUs.



VI. SECURITY GUARANTEES

In this section, we present the security analysis of P4TVal.
P4TVal assumes that the secret key is securely shared between
C-DP and no adversary has access to it. With this assumption,
we discuss the security guarantees of PATVal and other possible
attacks adversaries can launch against P4TVal.

Digest size. The output digest size is 32 bits. An attacker
intending to modify the message can try at most 232 different
possibilities for the actual digest corresponding to the message.
However, during these adversarial trials of guessing the digest,
an alert is raised, indicating a malformed digest encountered
at the DP or the controller, revealing the possibility of the
adversary. Thus, P4TVal is safe from such brute force attacks
for guessing the digest.

Denial-of-service (DoS) attack. A denial-of-service attack can
be launched on the controller by manipulating many messages
to the controller or DP. There are two possibilities here.
First, if an adversary modifies many test messages sent to the
DP, the DP finds digests do not match and sends a stream
of alert messages (one for every message) to the controller.
This can jam the C-DP communication link and overwhelm
the controller, causing a DoS attack. Second, many modified
response messages (nAck or verify) sent to the controller can
also overwhelm the controller and lead to a DoS attack. In both
cases, upon detecting unauthorized modification, ideally, the
network operator should take appropriate action (e.g., isolate
suspicious switch). If no action is taken, it can lead to a DoS
attack on the controller, as explained earlier. In this situation,
to mitigate the first type of attack, one can set a threshold
on the number of alert messages sent to the controller in a
specific time period from the DP. To mitigate the second type of
attack, the controller should keep a threshold on the difference
in the number of requests sent and responses received in a
specific time period. Moreover, a list of sequence numbers not
yet acknowledged can help to defend such attack.

Replay attack. An adversary may record fest or verify mes-
sages and replay them. Since fest message does not modify
table rules, it does not affect DP packet processing behavior.
Replaying them can only cause a DoS attack, which can be
addressed as explained above.

VII. USECASE

In this section, we demonstrate how an attack on the data
plane system, P4Knocking [6], can be detected using P4TVal.
We assume that the attacker has privileges as per the threat
model discussed in section II.

Detection using P4TVal. We recreated the attack on the
P4Knocking system shown in Fig. 2 by modifying functions
in the switch device_manager layer such that the table add
request from the controller is modified (MitM attack). With
P4TVal (as shown in Fig. 6), after processing the table add
request, the controller sends a fest message with a sample
packet which hits the newly inserted rule (i.e., key 10.0.3.3) in
the table ip_2_id_tb. PATVal copies the action parameter (i.e.,
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Fig. 6. Detecting attack on P4Knocking system with P4TVal

123) of the rule it hits to verify message and sends the same to
the controller. On receiving the verify message, the controller
verifies whether the value received (123) is the same as what
it sent (456) in the table add request. Here, the values don’t
match; thus, the controller detects that the table rule has not
been added as expected. Since test and verify are authenticated
using the shared secret key, any attempt by the adversary to
modify them will be detected by the DP and the controller,
respectively.

VIII. EVALUATION

Our evaluation aims to answer four important questions: (1)

How quickly does P4TVal detect table rule modification attack
(§VIII-A)?, (2) Does P4TVal impact the performance of the
P4 application that runs on a P4 switch target (§VIII-B)?, (3)
What is the impact of P4TVal on the control plane performance
(§VIII-C)?, and (4) How much additional hardware resource is
required to implement P4TVal (§VIII-D)?
Experimental setup. We deployed P4TVal on Aurora 610 Intel
Tofino [44] switch that runs on ONL1.4 NOS. We compiled
P4TVal using bf-sde 9.9.0, the Intel Tofino’s SDE (software
development environment). We use a data plane program
written in P4 language that performs destination-based layer-
3 port forwarding as the Baseline for our evaluation. This
program comprises two match-action tables and one register
implementation. To evaluate the overheads caused by P4TVal,
we instrument the baseline program to use P4TVal to detect
unauthorized modifications to table rules. We use the packet
test framework (PTF) available with Tofino SDE to generate
table update message and test message and to receive verify
message.

A. P4TVal early-detect

To study the improvement in attack detection time that
P4TVal achieves with the early-detect approach, we compare
P4TVal with a closely related work, REV [31]. REV performs
rule enforcement by validating the packet’s observed path with
the expected path. We implemented REV in BMV2 and studied
the time REV took to detect the attack. We simulated the
attack by modifying the table rule via the switch CLI. We
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latency in the data plane.

TABLE I
IMPACT OF P4TVAL ON TABLE ADD THROUGHPUT AND LATENCY

Fig. 7. Detection time with in-
creasing network size

Program| Avg. throughput (req/sec) | Avg. req. completion time (in ms)
Baseline 1360.14 0.71
P4TVal 585.69 1.77

also increased the number of switches in the network and
studied the attack detection time. As depicted in Fig. 7, we
observe that PATVal reduces the attack detection time by 10
times when the network comprises only two switches. As the
number of switches increases, the time to detect the attack
increases linearly with REV. However, with P4TVal, the time
to detect remains constant irrespective of the number of hops
as the verification is done with each standalone DP (meeting
requirement R3, sole source detection).

B. Impact on data plane performance

To understand the impact of P4TVal on data plane processing
time, we sent 5000 IP packets to the DP that runs Baseline
and P4TVal P4 programs. We collected the time spent by
each packet in the Ingress pipeline of the DP as P4TVal adds
additional processing only in the Ingress pipeline. Fig. 8 shows
the CDF plot of the processing latency. We observe that P4TVal
adds latency of ~ 50ns. This is because P4TVal adds a few
conditional and assignment operations for authentication and
table rule validation, respectively. The number of conditions
is constant, but the number of assignment operations increases
linearly with the number of tables the packet hits. Thus, scaling
to P4 programs with many tables will have an incremental
increase in the processing latency.

C. Impact on control plane performance

We study the impact of P4TVal on control plane performance
using two metrics: (1) average throughput (table updates com-
pleted per sec), and (2) average request completion time. We
sent table update control messages sequentially for 30 seconds
and reported the average value. Table I shows the throughput
and the request completion time for table update requests for
Baseline and P4TVal. We observe that the throughput of table
add is decreased by ~ 55% for P4TVal, when done sequentially.
This decrease is due to the additional validation (test packet
composition and transmission, followed by verification of verify
packet) that P4TVal does. We observe (from Table I) that
the validation process (relying on the PTF python stack), on
average, takes more than a millisecond. It is worth noting that
this throughput decrease is reported for the worst case scenario
where table add followed by validation is done sequentially.

TABLE II
P4TVAL OVERHEAD IN TERMS OF HARDWARE RESOURCE UTILISATION

Hardware Resource
Program -
TCAM | SRAM | Hash Units PHV
Baseline 8.3% 2.3% 0% 11.1%
P4TVal 8.3% 2.3% 15.3% 12.5%
TABLE III

PHYV UTILIZATION WITH P4TVAL AS WE SCALE THE NUMBER OF
ACTION HEADER FIELDS.

#fields in | 1 2 4 8 16 32 64 80
action_h
PHV Utl | 12.6| 133 | 143 | 162 | 20.1 | 27.8 | 43.1| 50.8
(in %)

However, parallel table rule validation by the controller can
further bring down the throughput drop to ~ 30%.

D. Resource overhead

Table II shows the switch resource utilization for Baseline
and P4TVal. P4TVal adds code for (1) digest computation and
verification (Hash Units), and (2) action_h header definition
(PHV), and (3) copying the action parameters to action_h
header in each action block (PHYV).

P4TVal implementation introduces digest computation and
verification that increases the hash unit utilization, but this
increment is constant, i.e., the usage does not vary based on the
P4 program or network topology. However, P4TVal’s codebase
grows with the increase in the number of actions and action
parameters within a P4 program (see Fig. 4). For instance, a
program with M tables, IV actions per table, and P action
parameters per action requires M x N x P fields in the action_h
header. The header parameters and values are stored in PHV
(packet header vector) containers. As the hardware supports
limited PHV containers, this poses a scalability challenge on
the number of tables that PATVal can support. Table III shows
that the port forwarding program with P4TVal was able to scale
up to 80 action parameters. Note that the PHV containers are
distributed among the ingress and egress pipelines, so our P4
program that runs within the ingress pipeline can use up to a
maximum of 50% PHV resources.

How can we scale the number of P4 program tables with
P4TVal? One of the optimizations could be achieved by re-
placing the action parameters for each table action (P) with a
32-bit digest. This will reduce the PHV resource usage from
M %« N x P to M % N, ie., the P4 program tables can scale
by Px. This optimization will induce an acceptable amount
of increase in Hash Unit usage. Alternatively, path-profiling
techniques such as DBVal [43]) make use of Ball-Larus [45]
encoding to uniquely identify the table and action executed by a
packet. Using such techniques, P4TVal can reduce the number
of fields per table to two, (1) to store unique path code and (2)
to store the digest of action parameters, thereby reducing the
number of header fields to M x 2. We plan to incorporate these
optimizations into P4TVal as future work.



IX. CONCLUSION

In this work, we motivate the need for detecting adversarial
manipulation of packet forwarding behavior in P4 data planes
by presenting a threat model and associated attack. We propose
P4TVal, a system that detects unauthorized modifications to
table rule updates using authenticated rule validation. With an
example use case, we show the efficacy of P4TVal in detecting
adversarial modifications of control messages. We prototype
P4TVal on BMV2 and Tofino targets and present the evaluation
of the prototype implemented on the Tofino switch in terms of
its impact on control message processing, resource overhead,
and data plane packet processing.
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