
Securing In-Network Traffic Control Systems with
P4Auth

Ranjitha K∗, Medha Rachel Panna∗†, Stavan Nilesh Christian‡, Karuturi Havya Sree∗†, Sri Hari Malla∗†,
Dheekshitha Bheemanath∗†, Rinku Shah§ and Praveen Tammana∗
∗IIT Hyderabad, India. ‡New York University, USA. §IIIT-Delhi, India.

Abstract—In-network traffic control systems built on pro-
grammable data planes enhance network performance. However,
these systems also increase the attack surface and are vulnerable
to attacks not seen before. We focus on a problem that stems
from the fact that a programmable switch data plane trusts and
processes the messages from upper layers in the switch software
(OS, SDK, drivers) and from neighbor nodes in the network.
Since these messages can update the state maintained in the
data plane, which can influence traffic control decisions, it is
important to protect such messages from adversaries aiming to
degrade performance, compromise privacy, bypass security, or,
worst case, network outage.

In this paper, we present P4Auth, a key-based protection
mechanism that ensures the authenticity and integrity of such
messages in in-network systems making fast traffic control
decisions. Our key idea is to move key-based security primitives
to the switch data plane so that it reduces the trusted comput-
ing base and exposure to switch software vulnerabilities while
enabling faster checks in the data plane. To realize this idea,
we design and develop an authentication protocol, secure key
exchange mechanism, and associated data plane primitives. We
prototype P4Auth for Intel Tofino and understand the overheads
of P4Auth. We also demonstrate how P4Auth protects two in-
network systems from man-in-the-middle (MitM) adversaries.

Index Terms—programmable data plane security, in-network
authentication, key exchange protocol

I. INTRODUCTION

High-speed programmable data planes provide opportunities
to design in-network systems that give better performance
for various network functions such as fast reroute [1]–[3],
load balance [4], intrusion detection [5]–[7], in-network com-
pute [8], and measurement [9], [10]. At the core, these in-
network systems have a fast control loop; they monitor traffic
and maintain a network state, infer network conditions from
the state, and act by updating table rules or registers in the
switch data plane. To keep decision-making fast, some systems
implement all three tasks entirely in the data plane, and some
have analysis at the control plane at the cost of slow decision-
making.

Despite the benefits of such in-network systems, they in-
crease the attack surface and are vulnerable to network attacks
not seen before. Attackers can influence control decisions
either by sending adversarial traffic that pollutes the state [11]–
[14] or by tampering with messages that update/report the
state [15], [16].

† Work done while at IIT Hyderabad

processing logic

update read

Packet

DP-DP
message inupdate

Packet
Data plane

Switch
software

DP-DP
message out

3

21

state

Controller
C-DP messages

Fig. 1: Threat model

In this paper, we focus on the latter scenario: we consider
an adversary at the switch control plane [16]–[21] making
unauthorized modifications to the switch state in the data plane
so that control decisions are manipulated. More specifically,
as shown in Fig. 1, we consider two message types that up-
date/report the state: (a) C-DP: messages from/to a controller
(C) to data plane (DP) as in [3], [4], [8], and (b) DP-DP:
network feedback messages that cross one or more links in
the network (e.g., probes) and processed entirely in the data
plane as in [1], [22], [23]. In both cases, the switch data plane
trusts the messages, processes them, and updates its state (e.g.,
registers).

We investigate the following question: how to protect fast
traffic control decisions from MitM adversaries with the ca-
pability to manipulate the switch state using C-DP or DP-DP
messages?

The existing key-based security solutions [24]–[28] for
authentication and message integrity have one main limitation.
They trust the switch software in their solution design and
are thus limited in protecting from an adversary at this layer.
SSL/TLS protocol-based solutions (e.g., P4Runtime [24]) se-
cure communication between a controller and switch control
plane but are not sufficient to protect from an adversary
tampering arguments of function calls (e.g., table rules and
register values) passed to low-level switch software such
as libraries, SDKs, OS, and drivers [16], [19], [21]. The
existing approaches to secure BGP communication (advertise-
ments) [29]–[31] use sophisticated cryptographic primitives,
which may not be feasible to run on a programmable data
plane with restrictions on per-packet operations and no for-
loop support. Without these primitives in the data plane, in-

network DP-DP feedback messages must be forwarded to the
control plane, which introduces delays for in-network fast
reroute systems [1], [23]. To secure DP-DP communication
in the data plane, recent work proposes key-based authentica-
tion techniques designed to run in the data plane [25]–[28].
However, their key management protocol exchanges messages
over untrusted switch control planes or network links; thus,
they are insecure.
P4Auth. In this paper, we propose P4Auth, a key-based protec-
tion mechanism that ensures the authenticity and integrity of
C-DP and DP-DP messages that update/report the switch state.
Our key idea is to run the key-based security operations in the
switch data plane to reduce the trusted computing base and
exposure to vulnerabilities at the switch software [21], [32].
Also, it enables faster checks for in-network DP-DP messages
expected to be processed in the switch data plane.
Challenges. To realize this idea, we have two main challenges.
The first challenge stems from the fact that the key-based
protection approaches are only as good as the secrecy of the
key. This means the secret keys between the controller and
switch data plane (C-DP) and between two switch data planes
(DP-DP) should be established without trusting the switch
control plane. Inspired by TLS security protocol design [33],
we propose an authenticated key exchange protocol (§VI)
using the Diffie-Hellman (DH) algorithm to derive a pre-
master secret, followed by master secret derivation using a
key derivation function (KDF). This approach ensures secure
key exchange and the confidentiality of the shared key. The
second challenge pertains to implementing the data plane
modules (i.e., DH, KDF, HMAC) for secure key exchange
and authentication checks on a data plane with restrictions
on supported per-packet operations and a lack of security
primitives. We address them by (1) carefully integrating a
modified DH [25], [34], replacing exponentiation with AND
and XOR operations while preserving the confidentiality of
keys; (2) designing a custom KDF, inspired from TLS1.3’s
Extract-and-Expand principle [33], [35] that is proven to be
secure [36]; and (3) realizing key-based authentication using
hash-based message authentication code (HMAC) which can
be implemented using simple arithmetic operators such as
AND, XOR, and rotate [28], [37].

The key contributions of this paper are:
• We motivate the need for protecting in-network systems

from adversaries making unauthorized modifications to
the switch state in the data plane using C-DP and DP-DP
messages that update/report the state (§II).

• We design a key-based authentication protocol and asso-
ciated data plane primitives; together, they authenticate
and preserve the integrity of C-DP and DP-DP messages
(§V).

• We design a key management protocol and associated
data plane primitives using which C-DP and DP-DP
securely share secret keys and automatically update the
keys at regular intervals or whenever there is a change in
the network topology (§VI).

• We develop a prototype of P4Auth for two switch targets:

BMV2 software switch [38] and Intel Tofino [39]. We
evaluate P4Auth prototype’s overhead and effectiveness
in terms of protecting against attacks on two in-network
systems (Hula [1], RouteScout [3]) performing fast con-
trol decisions (§IX).

II. ATTACKING IN-NETWORK FAST CONTROL DECISION
SYSTEMS

A. Threat model and attacker goals

Goals. As shown in Fig. 1, an attacker at a compromised
switch OS influences traffic control decisions either (1) by
altering a C-DP update message (e.g., a message with traffic
split ratio among next hops in RouteScout [3]) or (2) by
altering a C-DP report message with traffic statistics from the
switch data plane (e.g., a message with suspicious flow stats as
in Netwarden [5]), or (3) by altering a DP-DP message (e.g.,
a message carrying network path status as in HULA [1]). The
work in this paper aims to prevent unauthorized modifications
to switch state using C-DP and DP-DP messages so that traffic
control decisions are not influenced by adversaries.
Attacker capabilities. Though the threat model is strong,
it is feasible in practice. An attacker can install a backdoor
application (e.g., LD PRELOAD trick [40]) which preloads a
malicious library that can update the messages or parameters
of function calls between the gRPC server agent in the control
plane and the SDK APIs or driver [16]. This way, the attacker
can alter the parameters of function calls related to register
operations (read/write). Similarly, for the DP-DP case, the
malicious library installed at a neighbor switch configures
table rules [41]–[43] such that the rules reroute network
feedback messages to the attacker’s host, which alters the
content and puts the messages back into the network. Another
possible approach is advertising fake network links [44] to a
benign switch, redirecting traffic to the attacker’s host.

The attacker can gain the ability to install backdoor ap-
plications [16], [18]–[21] either by exploiting the switch OS
vulnerabilities (details in §II-B), by malware infection, or
by social engineering a benign operator. For instance, the
attacker may exploit stack buffer overflow vulnerability [45]
and perform remote code execution [20]. In another case, a
malware-infected network administrator system gains access
to one of the network switches via keylogging. Then, the
malware establishes a reverse connection to the adversary
server, installs a backdoor binary, and becomes the pivot for
the backdoor binary [17]. This allows the adversary’s remote
server to access an active shell on the compromised switch.
In yet another case, with BYOD (Bring Your Own Device)
organizational policy, a malicious insider can also exploit and
install backdoor binary compromising the switch [46].
Let us understand the impact of altering C-DP and DP-DP
messages on fast traffic control decisions.
Attack1 - Altering report message. Many in-network sys-
tems configure programmable data planes to monitor network
traffic and maintain a state representing traffic characteristics
in the data plane. A controller in these systems updates/reads

TABLE I: Impact of altering C-DP update/report messages

System Update/report messages between C-DP Impact of altering update/report
messages

FRR Blink [2],
RouteScout [3]

- Blink: C updates per-prefix next hop list maintained in registers.
- RouteScout: C periodically reads per-path latency from registers.

Poisoning of fast rerouting decision

LB SilkRoad [4] C clears the transit table (bloom filter) holding old DIPs after all the
pending connections are added to the connection table.

Manipulating the data plane to use the
wrong VIP during LB

IDS/IPS Netwarden [5],
FlowLens [6]

Netwarden: DP reports inter-packet delays (IPD) of suspicious con-
nections to C. C updates the connection state in the data plane.

Evasion of malicious traffic detection

In-network
cache

NetCache [8] - C periodically clears query statistics maintained in compact data
structures (bloom filter, count-min sketch) in the DP.
- C updates hot keys in the DP.

Inflates time to retrieve the hot key’s
value

Measurement FlowRadar [9],
LossRadar [10]

DP periodically exports encoded flowlet information stored in
FlowRadar and traffic digest in LossRadar to C.

Manipulates monitoring decisions,
poison loss analysis

state

SW

malicious
library

P4RT server

P4RT clientController

Switch DP
path1

path2

0.25 0.15

0.05 0.15
path1 path2

processing logic
Packet

Switch OS

encrypted

plaintext

a
Fig. 2: Altering path latency

S1

S2

S3

S4

S5

path util

P1 40%

P2 50%

P3 80%

Packet

util = 10%

P2

P3

P1

H1

probe packet

util = 30%

util = 50%

util = 20%

P1 – 20%
P2 – 30%
P3 – 10%

Fig. 3: Altering path utilization

Reg Keys

processing
logicpacket

RegC-DP
KeyC-DP

Reg Keys

processing
logic

RegC-DP
KeyC-DP

switch
DP

switch
OS

RegDP-DP
KeyDP-DP

Controller (C)

state state

Fig. 4: C-DP and DP-DP messages

the state (in the registers) periodically for various network
management tasks: traffic engineering [2], [3], load bal-
ance [4], intrusion detection [5], [6], in-network compute [8],
and measurement [9], [10]. Table. I lists how the controller
in various in-network systems updates/reads the state in the
switch data plane and the impact of adversarial modifications’
to update/read messages. For instance, RoutScout, an ISP
scale performance-aware routing system, runs at the network
edge and controls the outgoing traffic path. RouteScout’s [3]
controller (Fig. 2) periodically pulls aggregated latency infor-
mation from the data plane, analyzes the information, and
calculates the traffic split ratio to be followed by the data plane
in the next epoch (e.g., send more traffic to the best path). The
attacker aiming to congest Path 2 may inflate latency on Path
1 such that the controller diverts more traffic to Path 2.

Attack2 - Altering feedback message. Switches in in-
network load-balancing systems [1], [23] and in-network ag-
gregation systems [47]–[49] process control messages from
other switches (or hosts) entirely in the data plane. Altering the
content in control messages can trick the packet-processing al-
gorithm, leading to degradation of network performance (e.g.,
inflates flow completion time (FCT) or job completion times
(JCT)). For instance, consider a sample network topology
implementing HULA [1] as shown in Fig. 3. An adversary on
the S4-S1 link modifies path utilization information in probe
messages traversing the link. Here, the S1 switch is informed

that the path utilization to the destination via S4 is low (10%),
though the actual utilization is relatively high (50%) compared
to the utilization via S2 (20%) and S3 (30%). By doing so,
S1 prefers S4 over S2 or S3 and forwards more traffic to S4,
inflating flow completion times.
Summary. Adversarial modifications to C-DP and DP-DP
messages can (1) mislead fast reroute systems by forwarding
more traffic on a non-best path, (2) reduce the accuracy
of telemetry systems, (3) fail to detect malicious flows in
intrusion detection systems, (4) increase flow completion times
(FCT) in in-network compute systems, or (5) network outage
in the worst case.

B. Vulnerability assessment of existing NOS

To understand the feasibility of the threat models, using
Trivy [50], we did a security scan of SONiC [51], a Linux-
based open-source network operating system (NOS), 202111.3
2023 Mar. version installed on Edgecore Wedge 100BF 32X
Tofino switch [52]. Interestingly, we found a few critical
CVEs which an adversary with non-root access can exploit
to achieve privilege escalation (root access) and execute ar-
bitrary code, allowing the adversary to snoop, alter, or drop
control messages. For instance, CVE-2017-14159 [53] exploits
grant of insecure permissions, whereas CVE-2023-26604 [54]
and CVE-2019-19882 [55] exploit system misconfigurations.
CVE-2022-0563 [56], CVE-2018-7169 [57], and CVE-2016-

2781 [58] exploit other software bugs to achieve privilege
escalation followed by backdoor installation on a compromised
switch.

More specifically, we identified critical bugs with 15 SONiC
docker containers. These containers provide services such as
P4Runtime, route advertisements, network address translation,
switch data store, telemetry, and link discovery. Across these
15 containers, we identified 382 CVEs, with 139 CVEs having
severity levels as CRITICAL or HIGH. Software upgrades can
fix 79 of these CVEs, but the remaining 60 CVEs cannot
be fixed. Also, a total of 22 libraries were identified to have
critical bugs. These libraries provide services such as system
configuration (libc-bin), data transfer (libcurl4, curl), pattern
matching (libpcre2-8-0), and a module for HTTP-based file
upload that uses encoding and compression (urllib3).

III. REQUIREMENTS AND EXISTING SOLUTIONS

Given the threat model, in the section, we present the require-
ments for secure C-DP and DP-DP communication. Also, we
explain the gaps in existing solutions to meet the requirements
and strive to address the gaps.

A. Requirements

[R1] Authentication and integrity of C-DP messages.
Consider RegC-DP is the actual register read/write message or
response message via untrusted switch OS from an authorized
sender S, and the receiver observes Reg’C-DP from a sender S’.
We define requirement R1 as guaranteeing:

S = S′ and RegC-DP = Reg′C-DP (1)

Otherwise, detect and prevent processing messages that do not
hold (1) and raise an alert.
[R2] Authentication and integrity of DP-DP network feed-
back messages. Consider RegDP-DP is the actual feedback
message received by a switch data plane via an untrusted
network from an authorized sender S, and the receiver observes
Reg’DP-DP message from a sender S’. We define requirement
R2 as guaranteeing:

S = S′ and RegDP-DP = Reg′DP-DP (2)

Otherwise, detect and prevent processing messages that do not
hold (2) and raise an alert.
[R3] Secure key management protocol over untrusted
network. Most common key-based solutions to secure com-
munication, such as authentication and message integrity,
require a key management protocol to establish secret keys
and update keys periodically. However, as discussed earlier, a
MitM adversary at a switch control plane or on a network
link can alter the key exchange messages in the protocol,
compromising the confidentiality of the shared secret. More
specifically, consider KeyC-DP is the original key exchange
message sent by an authorized sender SC-DP and the receiver
observes Key’C-DP from a sender S’C-DP. Similarly, it is (SDP-DP,

KeyDP-DP) and (S’DP-DP, Key’DP-DP) between two switch data
planes. We define requirement R3 guaranteeing:

SC-DP = S′
C-DP and KeyC-DP = Key′C-DP

SDP-DP = S′
DP-DP and KeyDP-DP = Key′DP-DP

(3)

If (3) does not hold, we detect and raise an alert.
[R4] Process DP-DP control messages at line rate. In-
network feedback messages should be processed fast (at line
rate); otherwise, the processing delays may lead to inaccurate
reroute decisions, especially in load balancing systems that
adapt fast to congestion on network paths. Therefore, it is
desired to have security primitives with minimal impact on
packet processing delays while doing necessary checks.

B. Existing solutions and limitations

In this section, we discuss the existing approaches in the
SDN security literature and their limitations.
[A1] Detection approaches using rule enforcement ver-
ification techniques are insufficient. We can consider ta-
ble rule enforcement verification techniques (e.g., REV [19],
SDNSec [59]), which check whether table rules are correctly
enforced in the switch data plane. They do so by comparing the
expected network path with a packet’s actual path at runtime.
Similar to our threat model, these works consider an attacker
at the switch control plane with privileges to manipulate table
rules and divert traffic. However, unlike these works, we
consider attacker privileges to manipulate the state maintained
in registers, which do not always alter the packet’s path but
influence the control decisions (e.g., traffic split ratio, block
malicious flow). Moreover, these works try to detect violations
at runtime but do not prevent them before they happen.
[A2] Authentication of DP-DP messages requires novel
security primitives. BGP security works (such as bgpsec
[29], s-bgp [30], psbgp [60]) are designed to process BGP
advertisements (i.e., control message) by upper layers such
as switch control plane or a central controller, where so-
phisticated cryptographic primitives required for certificate
verification and signature checks are feasible to implement.
In contrast, DP-DP network feedback messages are processed
in a data plane without support for loops, restrictions on
allowed per-packet operations, and memory accesses. This
motivates the need for key-based solutions to authenticate
DP-DP messages under these constraints while meeting the
requirements.
[A3] Key management protocols are insecure. Recent work
(DH-AES-P4 [25], P4MACsec [26], Spine [27], secINT [28])
propose key-based protection solutions to authenticate and
verify message integrity in the data plane (R4) and prevent
unauthorized modifications to messages (R1 and R2). How-
ever, these solutions do not provide a secure key management
protocol over untrusted networks (R3). More specifically, with
a MitM attacker at a switch control plane or on a network
link (see Fig. 4), the key exchange messages in the protocol
can be altered or exposed to an attacker. For instance, DH-
AES-P4 [25] proposed a customized Diffie-Hellman (DH) key

Verify digest Compute digest

Controller

RRW

KMG

RRW

INP

KMG

P4Auth

Ve
rif

y
di

ge
st Register read/write

Key management
Co

m
pu

te
 d

ig
es

t

In-network packets De
-p

ar
se

r

Eg
re

ss

Pa
rs

er

In
gr

es
s

P4Auth

Ve
rif

y
di

ge
st Register read/write

Key management Co
m

pu
te

di

ge
st

Switch data plane

P4AuthP4Auth

P4Auth

Fig. 5: P4Auth architecture

S1

Local keySwitch id

AS1

BS2

CS3

Key
value

Key type

ALocal key

1111Port P1

Key
value

Key type

BLocal key

2222Port P1

1111Port P2

Key
value

Key type

CLocal key

2222Port P1

P1

Keys at S1 Keys at S2 Keys at S3

P2

P1

P1

Keys at ControllerController

S2 S3

Fig. 6: Keys maintained at the con-
troller and switches

valueregIndexregIdp4Auth_h (hdrType 0x01)

digestseqNummsgTypehdrType

public_keysaltportNoswitchIdp4Auth_h (hdrType 0x02)

ValuemsgType
(hdrType 0x01)

0x01readReq

0x02writeReq

0x03ack

0x04nAck

ValuemsgType
(hdrType 0x02)

0x01portKeyInit

0x02portKeyUpdate

0x03authKeyExch

0x04initKeyExch

0x05updKeyExch

digestDP-DP control message payload

P4Auth register read/write message format

P4Auth key exchange message format

P4Auth header format(p4Auth_h)

Control message format with P4Auth

Fig. 7: P4Auth protocol message formats

exchange algorithm between two data planes and the algorithm
is designed to run entirely in the data plane, but it does not
consider MitM attacker with a privilege to compromise the
key exchange messages.

IV. P4AUTH DESIGN OVERVIEW

We design P4Auth with two key components to meet the
requirements. Fig. 5 shows P4Auth architecture.
Authentication protocol. To address [R1, R2, and R4], we
design an authentication protocol and associated data plane
primitives; together, they authenticate and preserve the in-
tegrity of messages between C-DP and DP-DP by doing
necessary checks completely in the data plane. We leverage
existing security primitives (such as message digest) and
design our authentication protocol operating in the data plane.
Our key idea is that a sender tags each message with a digest
computed on the message’s data using a shared secret key. The
receiver verifies the digest and raises an alert if the verification
fails, indicating the possibility of a MitM adversary (§V).
Key management protocol. An adversary with the privilege
to access secret keys (R3) can compromise digest verification,
making our detection as good as the confidentiality of the
shared keys. To protect P4Auth from such adversaries, we
design an in-network and secure key management protocol and
associated data plane primitives; together, they securely share
and update secret keys automatically either at regular intervals
or whenever there is a change in the network topology (more
details in §VI).
Design choice. One design choice is to run the P4Auth’s digest
verification/computation module and the associated secret keys
in the switch control plane. However, this will not protect the
module from the same adversaries trying to manipulate the
state in the data plane; thus, it does not satisfy R1, R2, and
R3. As an alternative, we propose to design this module to
run entirely in the data plane. This will reduce the trusted
computing base (facilitating R1, R2, and R3) and enable
faster checks (R4). Specifically, this ensures the module is
not exposed to vulnerabilities at switch OS, SDKs, or other
low-level switch firmware from a third party. Also, checking
DP-DP messages in the data plane is fast and avoids C-DP
communication delays.

V. AUTHENTICATION PROTOCOL

P4Auth’s authentication protocol facilitates the authentica-
tion and integrity of C-DP and DP-DP messages that up-
date/report the state maintained in the switch data plane.

One option to realize a key-based digest verification module
in the data plane is digital signatures, but they pose implemen-
tation challenges on programmable data planes. Digital sig-
nature algorithms (e.g., Rivest-Shamir-Adleman (RSA) [61],
Elliptic Curve Digital Signature Algorithm (ECDSA) [62]) use
modulo, exponentiation, hash, and multiplication operators for
signature generation, which may not be feasible to implement
on a multi-stage PISA-based switch pipeline architecture due
to lack of security primitives and restrictions on per-packet
operations. Inspired by prior works [19], [59], [63], we design
the digest verification module using a standard hash-based
message authentication code (HMAC). HMAC algorithm is
amenable to implementation on high-speed programmable
switches [28], [37] using simple arithmetic operators (AND,
XOR, and rotate).

Each switch data plane has two types of key: (1) local key,
a secret key shared with the controller, and (2) port key, a
secret key for each port connected to a neighbor switch. These
keys are securely shared using our key management protocol
(§VI). Fig. 6 illustrates per-switch local key (Klocal), used for
authenticating messages between controller and switch data
plane, and port keys (Kport), used for authenticating messages
between two data planes.
Protocol messages. Fig. 7 shows the header format of mes-
sages in our authentication protocol. hdrType field specifies
one among register read/write request message, an alert mes-
sage, or a key exchange message. The definition of msgType
depends on hdrType (more details in later subsections). se-
qNum maps a response to its corresponding request. digest
carries the digest computed over two header groups: (1)
p4Auth h fields, excluding digest field, and (2) the message’s
p4Auth payload as shown in Eqn. 4. Key K is either Klocal or
Kport.

digest = HMACK(p4Auth h || p4Auth payload) (4)

Authentication of C-DP messages. For register read/write
request-response messages, we define four messages: readReq,

register
read

register
write

ac
k

m
sg

Ty
pe

=0
x0

3

nAck msgType=0x04

read or
write?

Controller

success

fail

msgType = 0x01

msgType = 0x02

Switch data plane

Co
m

pu
te

 d
ig

es
t

Compute digest Verify digest

Ve
rif

y
di

ge
st

Pa
rs

er

In
gr

es
s

De
-p

ar
se

r
Eg

re
ss

Fig. 8: Register read/write request workflow

M

P4RT server

P4RT client

Controller (C)

Switch
DP

D 0.05 0.15

Switch
OS

digest payload

D 0.25 0.15

D 0.25 0.15

encrypt(M)

P4Auth
D’ = digest(K, payload)

D’ != D

P4Auth
D = digest(K, payload)

M

decrypt(M)

Fig. 9: Detection of unauthorized manipulation using
P4Auth.

writeReq, ack, nAck (Fig. 7). For instance, consider a read
register request (readReq) from a controller to the switch data
plane. The detection module in the data plane computes an
HMAC-based digest using its local key. If it matches the
digest in the incoming message, an ack response message with
the register value and associated digest is sent back to the
controller. Otherwise, the data plane responds with a nAck
message. The workflow for writeReq (Fig. 8) is similar to
readReq except that the request message carries the value to
be written to a register index.
Authentication of DP-DP control messages. In-network
control messages are processed entirely in the data plane and
then advertise the original or updated message to neighbor
switches. In general, the switch state in registers is updated
while processing the control messages [1], [23], [64]. P4Auth’s
detection module in the data plane authenticates such control
messages before updating the state. More specifically, the
sender of a control message computes a digest using the
sender’s egress port key. The digest is verified at the receiver
using the receiver’s ingress port key. P4Auth’s key manage-
ment protocol ensures that both ports use the same key.
Detection of misreported statistics. Consider that C and
switch DP agree on a secret key (K) and the DP wants to share
statistics with C. Fig. 9 shows the detection of unauthorized
modification to latency statistics (Fig. 2) using P4Auth.

VI. SECURING P4AUTH

An adversary at the switch control plane with the capa-
bilities mentioned in §II-A can also view the key exchange
messages between the controller and the switch data plane
and compromise the communication. The existing works [25],
[26], [28] do not consider the MitM adversary at the control
plane while sharing keys, thus insecure. To secure P4Auth

from such adversaries, we propose a secure mechanism to (a)
share the local/port keys, (b) periodically refresh the shared
keys, and (c) automatically update the keys whenever the
network topology changes.
Strawman approaches. Before discussing our solution, we
present two strawman approaches and show why they do not
work. The first naive approach uses static keys (local/port
keys) programmed at compile-time as part of the switch binary.
However, as network topology changes dynamically (e.g.,
events such as switch boot up, port active, and port inactive),
the local/port keys require reconfiguration. Therefore, we need
to change the keys in the P4 binary as per the new topology,
recompile it, stop the switch(es), reload the P4 binary, and
start the switch. Such manual interventions are error-prone
and could result in frequent network downtime. Another
approach is using key exchange protocols such as Diffie-
Hellman (DH) [65] to exchange keys between C-DP and DP-
DP securely. However, the data plane restrictions do not allow
us to implement complex operations such as exponentiation
and modulus required to implement state-of-the-art crypto-
graphic primitives. A modified DH algorithm [25], [34] re-
places exponentiation with AND and XOR operations without
compromising security guarantees, making it amenable to be
implemented on a high-speed programmable switch. However,
the modified DH proposal is based on the assumption of a
secure communication channel between C-DP and DP-DP. A
MitM adversary at the switch OS and between two data planes
(as discussed in §II) makes it essential to authenticate every
message between C-DP and DP-DP.
Our approach. Inspired by TLS1.2 [33] security protocol,
we propose an authenticated key exchange protocol using
the modified DH algorithm [25], [34] to derive a pre-master
secret (i.e., Kpms) followed by master secret (i.e., local/port
key) derivation using a custom key derivation function. Note
that the novelty of this paper is not in the DH algorithm
but in carefully integrating it into the proposed key exchange
protocol. We design P4Auth to meet three functional require-
ments for enabling secure key sharing and management. [F1]
Generate a shared secret between C-DP for protecting C-DP
communication during the generation of a master secret key;
[F2] After establishing the shared secret, C-DP and DP-DP
should securely generate the master secret key (local or port
key); and [F3] Automate key initialization and key exchange
to enable periodic key rollover and to handle network topology
changes.

In the rest of the section, we present design components
that help us achieve the functional requirements: (1) Exchange
of Authentication Key (EAK) satisfies F1 (see §VI-A), (2)
Authenticated DH exchange and key derivation (ADHKD)
satisfies F2 (see §VI-B), (3) Key management protocol (KMP)
satisfies F3 (see §VI-C), and (4) Key Derivation Function
(KDF) satisfies both F1 and F2 (see §VI-D).

A. Exchange of Authentication Key (EAK)

EAK protocol exchange, as shown in Fig. 11, derives an
initial authentication key Kauth which is used for protecting C-

A message with value v, authenticated and
digest computed using key K

msgTypeK(v)

Pre-shared secret shared between the data
plane and controller during switch bootup

Kseed

Key derivation function with key K and salt
as parameters

KDF (K,salt)

Prime numberP

GeneratorG

Modified Diffie-Hellman algorithm that
takes P, G, and the random secret (R) as
input and generates a public key (PK) to be
shared as part of the exchange.
PK = DH’ (P, G, R) = G·R ⊕ P·R

DH’

Modified Diffie-Hellman algorithm that
takes P, G, and the received public key (PK)
as input and generates a shared pre-master
secret using the random secret R and PK.
K = DH’’(P, R, PK) = PK·R⊕ P

DH’’

Fig. 10: Notations

C DP

S1 = PRNG()

S2 = PRNG()
S = S1 || S2
Kauth = KDF (Kseed, S)

S = S1 || S2
Kauth = KDF (Kseed, S)

1

5

2
3

4

EAK

authenticated
using Kseed

Fig. 11: EAK

ADHKD

R1 = PRNG(); S1 = PRNG()
PK1 = DH’ (G, P, R1)

C / DP

R2 = PRNG(); S2 = PRNG()
PK2 = DH’ (G, P, R2)
Kpms = DH’’ (P, R2, PK1)
S = S1 || S2
K = KDF (Kpms, S)

Kpms = DH’’ (P, R1, PK2)
S = S1 || S2

K = KDF (Kpms, S)

DP

2 3

5 4

1

authenticated
using Kauth

Fig. 12: ADHKD

DP communication during the master secret generation phase.
This phase is triggered whenever the switch boots up. All
messages in this step are authenticated using Kseed

1.

1) C generates a random salt, S1.
2) C transmits S1 to DP.
3) DP receives S1, generates a random salt S2 and S (by

concatenating S1 and S2). The authentication key, Kauth,
is generated using a custom KDF as shown in Fig. 13,
with the input parameters, Kseed and S.

4) DP transmits S2 to C.
5) C receives S2 and generates S. The authentication key

Kauth is generated from Kseed and S using the KDF.

B. Authenticated DH exchange and key derivation (ADHKD)

ADHKD protocol exchange generates a master secret, K
(Klocal or Kport), which is used to authenticate messages
between C-DP and DP-DP (see Fig. 12). Note that all key
exchange messages in this phase are authenticated, and the
details of keys used for authentication are explained in §VI-C.

1) C/DP generates a random salt (S1) and a random private
key (R1). A modified DH algorithm generates the public
key (PK1).

2) C/DP transmits PK1 and S1 to DP.
3) DP receives PK1 and S1, and generates its random private

key (R2) and a random salt (S2). Next, using the modified
DH, the DP generates its public key (PK2) followed by
the pre-master key (Kpms) from the received public key
(PK1) and DP’s private key (R2). The final master secret
(K) is derived using a custom KDF with Kpms and S
(concatenation of S1, S2) as inputs.

4) DP sends PK2 and S2 to C/DP.
5) C/DP generates the pre-master key, Kpms, using its private

key (R1) and DP’s public key (PK2). The final master
secret, K, is derived from Kpms and S using a custom
KDF.

Kin =
Kseed

Kpms

Kout =

Kauth

Klocal

Kport

Ki0 || salt

K!"
Ki2𝑃𝑅𝐹

𝑖 = 𝑖 + 1

𝑖 = 0

K#$% = Kn1 || Kn2

(64-bit)
𝑖 = n

𝑖 > 0
Ki0

K!&(64-bit) salt (64-bit)

K!' || K!"|| salt

𝑃𝑅𝐹

Fig. 13: Key derivation function

C DP
1. EAK

2. ADHKD

(a) local key initialization

C DP
ADHKD

(b) local key updation

DP1 DP2

2. ADHKD

C
1. portKeyInit

2 2

(c) port key initialization

DP1 DP2
2. ADHKD

C
1. portKeyUpdate

(d) port key updation

Fig. 14: Local and port key initialization and updation

C. Key management protocol (KMP)

We propose KMP to automate key initialization2 and peri-
odic key rollover. The steps in EAK and ADHKD (Fig. 14)
are realized using five types of messages (Fig. 7).
Key initialization. The key initialization process is triggered
whenever a switch reboots or a port activation event is
observed by the controller (e.g., via LLDP message [26]).
More specifically, local key initialization invokes EAK ex-
change to derive a common authentication key, Kauth, fol-
lowed by ADHKD exchange that derives the local key, Klocal,
(i.e., master secret). The workflow is shown in Fig. 14(a).
Meanwhile, port key initialization comprises only ADHKD
exchange and the exchange messages are authenticated using

1The initial secret (Kseed) is shared with the data plane through the P4
program binary loaded while booting the switch

2during events like switch boot up, port active/inactive

Controller Digest
match?

no

Switch

PacketOut

ActionmsgTyperegId

reg1_write()11234

reg1_read()21234

….....

action reg1_write() {
reg1.write();
Compose ack;
Send ack; }

action reg1_read() {
reg1.read();
Compose ack;
Send ack; }

Compose nAck;
Send nAck;

PacketIn

yes

Fig. 15: Reg. read/write work flow

Klocal. As shown in Fig. 14(c), the controller initiates the port
key initialization using portKeyInit message. P4Auth redirects
ADHKD messages between two data planes via the controller
using initKeyExch message. Then, each data plane derives a
port-specific key Kport for the activated port.
Updating keys. To ensure the security of the secret keys
(local key and port keys), the key must be periodically updated,
securely. For the local key update, as shown in Fig. 14(b)),
the controller initiates the exchange, and the messages are
authenticated using the current local key (updKeyExchKlocal). At
the end of the ADHDK exchange, the new local key (K’local)
is derived between the controller and data plane.

To update a port key (see Fig. 14(d)), the controller sends
portKeyUpdateKlocal message. But, unlike port key initializa-
tion, ADHKD exchange messages for updating port keys are
directly managed by the data planes without involving the
controller, as the data planes already share their port key.
That is, ADHKD exchanges are authenticated using the current
port key shared between DP1-DP2 (Kport). After ADHKD
exchange, a new port key, K’port, is shared between DP1-DP2.
Consistent key updates. The key update mechanism must
ensure that messages are authenticated using the same key. To
implement consistent key updates, the ideas from an existing
work [66] can be borrowed. The control and data planes
maintain two versions (old and new) of the local and port keys.
The sender tags each control message with the key version
used for message authentication, and the receiver uses the
tagged key version to validate the message.

D. Key Derivation Function (KDF)

To generate local and port keys, P4Auth uses a custom KDF
kept private to the controller and the switch data planes (as
part of the P4 binary). The KDF implementation is based
on TLS1.3’s Extract-and-Expand principle [33], [35] that is
proven to be secure [36] and it produces “close-to-random”
keys. As shown in Fig. 13, the KDF takes two inputs, a 64-bit
secret (i.e., Kin) and a 64-bit public material (i.e., salt), and
generates keys by ensuring randomness using a pseudorandom
function (PRF). The PRF can be a hash function such as MD5,
SHA, etc. Since our PRF generates a 32-bit output, the KDF
executes the PRF executed twice to produce the final 64-bit
secret (Kauth or Klocal or Kport).

VII. IMPLEMENTATION

P4Auth prototype is developed on two targets, BMv2 [38]
and Intel Tofino [39]. We use PacketOut messages for C-DP
register read/write requests (readReq, writeReq) and PacketIn

messages for DP-C response or alerts (ack, nAck, and alert).
PacketOut messages are processed in the P4 data plane.
P4Auth data plane has 400 lines of code written in P4 and
the controller is implemented in Python3.
Register read/write request authentication. For register
read/write requests, the controller identifies a register using the
associated identifier (from the p4Info file), and the data plane
identifies the same register by its name. While processing a
request in the data plane, we find which register to read/write
using a table that maps register identifiers to the associated
register name 3. We also instrument P4 code to perform
three tasks: (1) an action routine for reading from or writing
to a register; (2) converts readReq/writeReq message to ack
message (as discussed in §V); and (3) computes digest and
sends response in a PacketIn message. For example, as shown
in Fig. 15, on receiving a PacketOut message with regId as
1234 and msgType as 1, the data plane performs look-up on
reg id to name mapping table and apply associated action
reg1 read.
Key management protocol (KMP). We implement KMP
using modified DH exchange [25]. P4Auth data plane uses
P4’s random() to generate the random secrets and salt at the
controller and data plane. We define a register with N + 1
entries to store the local key and N port keys, where N is
the number of ports. The local key is stored at index zero,
and port keys at port number as the index. We implement our
KDF with CRC32 as PRF and set the rounds to one.
Digest computation. Among the most common hash al-
gorithms, such as MD5, SHA family, and Sip-Hash, we
consider that MD5 is vulnerable to collisions [67]–[70], and
the performance of Sip-Hash family of functions [71] for
shorter inputs is better than SHA family. But Sip-Hash has
implementation challenges [72]. A recent work [37] studies the
implementation feasibility and performance of HalfSipHash
on Intel Tofino [39] target is promising. So, we pick the
HalfSiphash function as the HMAC algorithm. HalfSipHash
starts with four 32-bit state variables. These 32-bit words are
initialized by XORing with the lower and upper 32-bits of the
64-bit key and four other 32-bit constants. Then, c compression
and d finalization rounds are performed on SipHash-c-d. On
the BMV2 target, we implement HalfSipHash as an extern
function named as compute digest. compute digest takes two
input parameters: a 64-bit secret key and a variable list of
arguments over which digest needs to be computed. On the
Tofino target, we use CRC32 as the hash algorithm.

VIII. SECURITY ANALYSIS

P4Auth system assumes that the secret key shared between
data planes and the controller is secure and no adversary can
access them. With this assumption, we discuss the security
boundaries and guarantees of P4Auth and other possible
attacks adversaries can launch against P4Auth system.

3We use reg id to name mapping table (Fig. 15) with keys as register
identifier and register operation (read/write). Each register has two entries,
one each for read and write with action as regName read and regName write,
respectively.

Security of key mgmt. protocol. We highlight two main
design choices for securing the proposed key management
protocol. First, the protocol is built on top of the modified DH
key exchange [34], which is proven to be secure and preserves
the confidentiality of the pre-master keys. Second, since the
authentication key (Kauth) is derived from Kseed which is part of
the switch binary, a MitM adversary with read privilege (§II-A)
may obtain Kseed and possibly compromise DH exchange via
reverse engineering [73]–[75]. We handle this by deriving Kauth

using a KDF with custom logic in the binary, and the logic
is kept secret between C and DP. Reverse engineering the
logic can be further made hard by using binary obfuscation
techniques [75]–[78].
Secret key size. An adversary at the switch control plane can
see the message payload and associated digest and perform
brute force on all 264 possible key values to find the secret key.
A recent work [79] has shown that a 56-bit key can be broken
in only 215 days using commercially available computational
hardware. Therefore, a brute-force attack on a 64-bit key is
feasible. P4Auth periodically changes keys (local and port) to
mitigate such attacks. Setting the periodicity of key updates
to 180 days or lesser can prevent such brute force attacks.
Digest size. The output digest size is 32 bits. An attacker
intending to send a crafted message can try at most 232

different possibilities for the actual digest corresponding to
a crafted message. However, during these adversarial trials of
guessing the digest, an alert is raised, indicating a malformed
digest encountered at the switch data plane or the control
plane, revealing the possibility of the adversary. Thus, P4Auth
is safe from such brute force attacks for guessing the digest.
Denial-of-service (DoS) attack. A denial-of-service attack
can be launched on the controller by manipulating many
messages to the controller or the data plane. There are two
possibilities here. First, if an adversary modifies many request
messages (readReq, writeReq) sent to the data plane, the data
plane finds digests do not match and sends a stream of alert
messages (one for every message) to the controller. This can
jam the controller to the data plane communication link and
overwhelm the controller, causing a DoS attack. Second, many
modified response messages (ACK, nACK, alert) sent to the
controller can overwhelm the controller and lead to a DoS at-
tack. In both cases, upon detecting unauthorized modification,
ideally, the network operator should take appropriate action
(e.g., isolate suspicious switch). If no action is taken, it can
lead to a DoS attack on the controller. To mitigate the first
attack, one can set a threshold on the number of alert messages
sent to the controller in a specific period from the data plane.
To mitigate the second type of attack, the controller should
keep a threshold on the difference in the number of requests
sent and responses received in a specific period. Moreover, a
list of not yet acknowledged sequence numbers can be used
to further defend against such DoS attacks.
Replay attack. An adversary may record writeReq messages
and replay them, leading to an unauthorized modification to
the data plane packet processing behavior. P4Auth is robust

towards such replay attacks; the sequence number field in the
P4Auth header is used to defend against replay attacks. More
specifically, the sequence number in the replayed message and
the one expected by the controller do not match. The switch
data plane can detect this mismatch and send an alert message
to inform the controller. A corner possibility for the attacker
to succeed is if the sequence number wraps around to the
same value as in the recorded message. This can be further
mitigated by allocating more bits (16-bit or 32-bit) to this field
and changing the local and port keys within the wrap-around
time so the replayed message’s digest becomes invalid.

IX. EVALUATION

We evaluate P4Auth for two primary aspects: (1) P4Auth’s
functional evaluation and (2) P4Auth’s performance evaluation
in terms of throughput, latency, scalability, and resource over-
heads. Our evaluation aims to answer five important questions:
(1) How well can P4Auth defend against attacks on in-
network systems making fast traffic control decisions? (2)
How does P4Auth affect C-DP message completion times and
throughput? (3) What are the resource overheads of P4Auth’s
data plane implementation? and (4) How long does it take to
initialize and update keys? (5) How does P4Auth affect packet
processing time as the system scales across multiple switches?

A. Preventing attacks on fast reroute systems

We demonstrate P4Auth’s effectiveness in preventing attacks
on two data plane systems, RouteScout [3] and Hula [1].
Experimental setup. We assume that the attacker has priv-
ileges as per the threat model discussed in section II. Since
RouteScout’s source code is unavailable, we implement it as a
software simulation. We used Hula’s open-source bmv2 switch
implementation [80] to test P4Auth’s effectiveness.
Protecting RouteScout system from an adversary at the
switch control plane. We consider an adversary modifying
register read response messages from the data plane such that
the traffic splitting decision by RouteScout’s controller is influ-
enced (as shown in Fig. 2). For instance, between two paths,
path1 and path2, the controller decides to send more traffic on
path2, though the average delay on path2 is high, which de-
grades the performance. Using P4Auth, the controller detects
unauthorized modification to the response message, refrains
from changing the current traffic splitting ratio, and raises
an alert to the operator. We experiment on the RouteScout
system (1) without an adversary, (2) with an adversary, and
(3) with an adversary and P4Auth. We send packets to the
RouteScout system by replaying CAIDA PCAP traces [81]
for 60 seconds. Fig. 16 shows the distribution of traffic across
path1 and path2. Without an adversary, RouteScout splits
based on the aggregate delay computed on each path. With the
adversary, around 70% of the traffic is rerouted to path 2. With
P4Auth, RouteScout detects unauthorized modifications and
retains the original splitting ratio. This demonstrates P4Auth
defence against adversarial modifications.
Protecting HULA system from a MitM adversary in the
network. We consider a MitM adversary eavesdrops and

Fig. 16: P4Auth prevents imbalance Fig. 17: Preventing congestion on
Path3

0

0.2

0.4

0.6

0.8

Read Write

R
C

T
(in

 m
s)

P4Runtime DP-Reg-RW P4Auth

Fig. 18: Reg. read/write RCT

modifies the probe packets sent over the S1-S4 link (as shown
in Fig. 3), forcing the HULA system to reroute all the traffic to
the S1-S4 link. If the adversary modifies the probeUtil value,
S1 detects this modification, ignores the message, and raises
an alert to the controller. We evaluate P4Auth defence by
sending probe packets from S5 towards S1 and data packets
from S1 towards S5. We experimented on the HULA system
(1) without a MitM adversary, (2) with the MitM adversary
(as mentioned in II-A), and (3) with P4Auth and the MiM
adversary. Fig. 17 shows the distribution of traffic across three
paths, S1-S2, S1-S3, and S1-S4. The HULA system distributes
traffic equally among the three available paths when there is
no adversary. With the adversary, the HULA system reroutes
more than 70% of the traffic through the compromised link
(S1-S4). With P4Auth, S1 ignores the probe packets upon
detecting unauthorized modification and blocks traffic on the
compromised link.

B. Performance evaluation

Experimental setup. We deployed P4Auth on Aurora 610
Intel Tofino [82] switch with ONL1.4 NOS. We compiled
P4Auth using Barefoot’s software development environment,
bf-sde 9.9.0. As a base for our evaluation, we add P4Auth’s
data plane modules (DH, KDF, HMAC, register read/write)
to a P4 program that performs destination-based layer-3 port
forwarding with two match-action tables and one register. We
use the packet test framework (PTF) provided by SDE to
generate messages and receive responses at the controller.
Parameters and metrics. We evaluate the impact of P4Auth
on register read-write performance using two metrics: (a)
throughput in terms of requests completed per sec and (b) end-
to-end latency in terms of request completion time. During
the experiment, the control messages were crafted and sent
sequentially. All experiments ran for 30 seconds, 10 times,
and the reported metrics averaged over these different runs.
We compare these metrics for three P4 versions of basic L3-
layer port forwarding. Their implementation varies in how
they perform register read and write: (1) P4Runtime performs
register read and write using P4Runtime API stack, (2) DP-
Reg-RW performs register read and write using PTF’s python
library, and (3) P4Auth extends DP-Reg-RW and include se-
curity primitives proposed by P4Auth. The third version helps
to understand the actual overheads introduced by P4Auth.

TCAM SRAM Hash Units PHV

Baseline 8.3% 2.5% 1.4% 11%

With P4Auth 8.3% 3.6% 51.4 % 23.1%

TABLE II: Hardware resource overhead

Impact on read-write performance. Fig. 18 and Fig. 19
show register read/write request completion time (RCT) and
throughput, respectively. An interesting observation is that
P4Runtime’s register read throughput is 1.7 times better than
write throughput. This is because the read includes composing
the index initialization, whereas the write includes composing
both the register index and the data. There is not much
difference in register write throughput among P4Runtime, DP-
REG-RW and P4Auth. We observe that P4Auth has minimal
impact on register read/write throughput and RCT. Compared
to DP-REG-RW, P4Auth’s read throughput is decreased by
4.2% and write throughput by 2.1%. This drop is due to digest
computation and verification in the data plane.

Resource overhead. Table. II shows the switch resource
utilization for the P4 programs, Baseline and With P4Auth.
P4Auth adds code for (1) authentication protocol – requires
extra PHV resources, (2) digest computation and verification –
requires extra Hash Units, (3) key management – requires both
PHV, Hash Units, (4) key register (64-bit) to store local key
and port keys – consumes SRAM resources, and (5) register
mapping table to map register id to the associated register
name (see §VII) – consumes SRAM resources. Digest compu-
tation, verification, and KDF increase hash unit consumption
and PHV utilization. However, this increase is constant, i.e.,
the usage does not vary based on the P4 program or network
topology. The SRAM consumption depends on the key register
and register mapping table size. The size of the key register
is proportional to the number of switch ports (i.e., neighbor
switches, see §V), M , which caps the SRAM usage for key
registers to 64∗(M+1) bits (additional 1 is for the local key).
The number of entries in the register mapping table depends
on the number of registers in the P4 program. For instance,
if a P4 program has K registers, the register mapping table
will have 2 ∗K entries, each consuming 40 bits (32-bit regId
and 8-bit msgType). It scales well, as the increase in SRAM
consumption is proportional to the number of registers and
neighbor switches, which is linear in practice.

Key management protocol (KMP) RTT. Key management

0
600
1200
1800
2400
3000

Read Write

Th
ro

ug
hp

ut

(r
eq

s/
se

c)
P4Runtime DP-Reg-RW P4Auth

Fig. 19: Read/write throughput Fig. 20: KMP RTT
Fig. 21: In-network control message
processing time

round-trip time (RTT) is the time elapsed from the first
message exchange of key initialization/updation until the key
derivation. For local key initialization, we execute EAK fol-
lowed by ADHKD sequentially for 30 seconds and collect
RTT samples, and for local key updates, we execute only
ADHKD and collect RTT samples. For port key initialization
and update, we require at least two Tofino switches, which we
do not have, so we limit ourselves to an approximated RTT
computed by adding ADHKD computation time in the data
plane with the propagation time between C-DP or DP-DP.

Fig. 20 shows the average key management RTT that in-
cludes 4 and 5 message exchanges for local key and port key
initialization, respectively. It is 2 and 3 message exchanges
for updating keys. P4Auth takes 1-2 milliseconds for key
initialization and less than a millisecond for key updation.
Since few message exchanges are part of key management,
P4Auth does not impact the ongoing traffic nor overwhelm the
C-DP and DP-DP bandwidth. Though port key initialization
comprises only ADHKD, it takes the longest as the key
exchange messages between DP-DP are redirected via the
controller (see §VI-C), which checks digest in both directions
as part of redirection. Key updation takes less time than
initialization as fewer messages are exchanged. It is worth
noting that even though port key updation exchanges three
messages, it takes less time than local key updation as the
exchange between DP-DP is faster than the C-DP exchange.

C. Scalability across multiple switches

We deployed P4Auth with Hula on the BMV2 switch. As
Hula probe message carrying link utilization traverses mul-
tiple switches, P4Auth implemented on each on-path switch
performs digest verification. We study the impact of P4Auth
on probe message traversal time (time the probe packet
spends in the network traversing multiple hops) by varying
the number of switches in the network. We evaluate P4Auth
on BMV2 target by running Hula with and without P4Auth.
Fig. 21 shows the impact of P4Auth on Hula probe packet
traversal time as the number of hops increases. We observe that
P4Auth’s overhead increases linearly as the number of hops
increases. With 2 hops, P4Auth increases the traversal time by
0.95%, whereas with 10 hops, it becomes 5.9%. This increase
is minimal and does not pose any significant overhead. On
a single hardware switch, the data packet processing time is
only 6% more for P4Auth compared to the base case.

X. RELATED WORK

Vulnerabilities of P4 data planes. Prior work [11], [15],
[16], [21], [84] highlights vulnerabilities of P4 programma-
bility and statefulness to various security attacks. Agape et
al. [21] identifies potential attacks and vulnerabilities related
to the P4 language, compiler, controller, P4 Runtime, and
switch firmware. Also, a small fraction of adversarial input
traffic can degrade the performance of data-driven data plane
systems [15], [16]. [84] demonstrates attacks and undefined
system behavior due to buggy P4 programs. [11] highlights
that resource-constrained programming models of hardware
switches lead to vulnerable system designs. P4Auth com-
plements these studies towards securing in-network control
systems from adversarial manipulation of the data plane state.
P4 verification. P4 verification works leverage static analysis
techniques [49], [85]–[93] to find properties under violation for
a given P4 program and switch state (i.e., table rules, registers).
This approach is computationally expensive to predict all pos-
sible states at runtime and distinguish between legitimate and
attacker-influenced control decisions. Also, modifications to
table rules and registers do not always alter the packet’s path.
P4Auth complements these works by protecting adversarial
manipulation to the switch state at runtime.
Key-based protection solutions. Prior research (e.g., DH-
AES-P4 [25], P4MACsec [26], Spine [27], secINT [28])
focuses on securing DP-DP in-network messages by providing
authentication, confidentiality, and message integrity using
key-based protection solutions. However, these works do not
address the need for a secure key management protocol to
facilitate key agreement over untrusted networks (C-DP and
DP-DP). Our work acknowledges the presence of a MitM ad-
versary at C-DP and DP-DP and implements an authenticated
key exchange mechanism over the untrusted network.
Detection approaches using packet path validation.
REV [19] and SDNSec [59] detect compromised switches by
comparing the expected network path with a packet’s actual
path at runtime. They employ cryptographic techniques to
validate packet data paths, send probes to test forwarding
behavior [94], [95], or monitor statistics collected across
multiple switches [96], [97] to find misbehaving switches.
An attacker can manipulate register state, without altering the
packet’s path or statistics collected across switches, but can
influence control decisions and go undetected. These solutions

Operation
Single key initialization and update Maximum controller overhead in

a network with m switches and n
links

Controller overhead when
m=25, n=50 [83]#messages exchanged #bytes

local
key

port key local
key

port key #messages
exchanged

#bytes #messages
exchanged

#bytes

Key initialization 4 5 104 138 4m + 5n 104m + 138n 350 9.5KB

Key update 2 3 60 78 2m + 3n 60m + 78n 125 5.4KB

TABLE III: P4Auth scalability with multiple simultaneous key initializations/updates

attempt to detect violations at runtime, whereas P4Auth is
designed to prevent manipulation at runtime.

XI. DISCUSSION

P4Auth scalability. The key initialization/update process, as
described in Fig. 14, triggers 2-5 message exchanges (§IX-B)
between C-DP and C-DP1-DP2. Consider a network of m
switches and n links. In this network, P4Auth triggers at
most 4m + 5n message exchanges for key initialization and
2m + 3n for key update (Table. III). Production networks
often adopt multi-node logically centralized but physically
distributed controller architecture [83], [98], [99], where one
primary controller node is responsible for processing events
from a specific subset of switches. Consider an example
WAN topology with 205 [83] switches, 414 links, and 8
ONOS controllers. Simultaneous key initialization4 triggers
up to 350 messages with 9.5KB of data in total, at a single
controller; it is 125 messages with 5.4KB of data for key
updates. Considering 2ms per key initialization (Fig. 20), it
takes 150ms to finish (improves significantly when done in
parallel), and it is 75ms to update all keys with 1ms per key
update. This analysis indicates that overheads are small and
thus scale well. Additionally, controllers can carefully batch
the key updates to control the number of concurrent updates.
Enhancing security by extending P4Auth. We design
P4Auth as a generic authentication and key management
framework to enable the plugging of various cryptographic
primitives for enhanced security. More specifically, we cover
three pluggable primitives in P4Auth: (1) asymmetric key
cryptographic primitive for sharing the common secret (§VI),
(2) hash function for authentication (§V), (3) PRF for key-
material generation (§VI-D). These primitives in P4Auth
framework can be replaced with complex and more se-
cure hardware-offloaded target-specific native implementa-
tions [100], [101] such as cryptographic hash functions (e.g.,
MD5, SHA1) for digest computation and as the PRF, and
for public-key key exchange algorithms (e.g., DH, RSA).
Additionally, P4Auth can be extended to support symmetric
key encryption and decryption of C-DP and DP-DP commu-
nication by deriving more symmetric keys from the master
secret using KDF.
Digest size and computation overhead Since the tofino
switch natively supports 32-bit operations, as the digest size
increases (e.g., 64-bit to 256-bit), the digest computation
and verification require more compute cycles (multiplied by

4Assuming each controller is responsible for 25 switches and 50 links on
average

a factor of 2) and more hardware resources. For instance,
compared to a 32-bit digest, the hash distribution units and
the pipeline stages required for a 256-bit digest are increased
by 560% and 100%, respectively. More pipeline stages mean
more packet recirculations, which increases C-DP and DP-DP
authentication time (100s of ns per recirculation).
Pre-master secret key enhances security. P4Auth uses
modified DH as the asymmetric cryptographic primitive for
exchanging the secret key, that is, pre-master secret (§VI
and Fig. 12). The modified DH [25], [34] replaces modulo
arithmetic by XOR operations to be amenable to imple-
mentation on switch hardware. XOR-based cryptography is
considered secure if the private key is random and never
reused. But, on the Tofino hardware, we may not guarantee
that the private key (PK2) generated using PRNG is crypto-
graphically strong and never reused. To strengthen the secret
key, P4Auth uses KDF that leverages the PRF to randomize
the secret key further (Fig. 13), at the cost of additional
computation and switch resources (i.e.additional Hash Units)
for KDF execution. Moreover, P4Auth key exchange security
can be enhanced with futuristic switch hardware that natively
supports cryptographically strong asymmetric and symmetric
key cryptographic primitives; the KDF primitive can derive
multiple cryptographically unrelated keys for authentication
and encryption and derive initial values and nonces (§VI-D).

XII. CONCLUSION

In this paper, we propose P4Auth to protect fast traffic con-
trol decisions in in-network systems from MitM adversaries
at switch software influencing the decisions by manipulating
the switch state in the data plane. We design and develop (1)
a key-based authentication protocol to ensure the authenticity
and integrity of C-DP and DP-DP messages that update/report
the state, and (2) a key management protocol using which C-
DP and DP-DP securely share and manage secret keys. We
prototype P4Auth for two P4 targets, BMV2 and Intel Tofino
hardware switch, and evaluate its effectiveness, performance,
and resource overheads.

XIII. ACKNOWLEDGEMENT

We thank our shepherd, Fernando Pedone, and other review-
ers for their insightful feedback. We thank Devansh, Prashanth,
Shiv, and Harish for their feedback and help on the earlier
drafts. This work is supported by the National Security Council
Secretariat (NSCS), India, and the Prime Minister Research
Fellowship (PMRF).

REFERENCES

[1] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in ACM
SOSR, 2016.

[2] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in USENIX NSDI, 2019.

[3] M. Apostolaki, A. Singla, and L. Vanbever, “Performance-driven inter-
net path selection,” in ACM SOSR, 2021.

[4] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in ACM SIGCOMM, 2017.

[5] J. Xing, Q. Kang, and A. Chen, “NetWarden: Mitigating network covert
channels while preserving performance,” in USENIX Security, 2020.

[6] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos,
and A. Madeira, “Flowlens: Enabling efficient flow classification for
ml-based network security applications.” in NDSS, 2021.

[7] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A High-Performance Switch-Native
approach for detecting and mitigating volumetric DDoS attacks with
programmable switches,” in USENIX Security, 2021.

[8] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in ACM SOSP, 2017.

[9] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in USENIX NSDI, 2016.

[10] ——, “Lossradar: Fast detection of lost packets in data center net-
works,” in ACM CoNEXT, 2016.

[11] L. Wang, P. Mittal, and J. Rexford, “Data-plane security applications
in adversarial settings,” ACM SIGCOMM Computer Communication
Review, vol. 52, no. 2, pp. 2–9, 2022.

[12] D. Pathak, S. Harish, S. P. Chinta, D. K. Reddy, and P. Tammana,
“Anomaly detection in in-network fast reroute systems,” in IEEE IFIP
Networking, 2024.

[13] A. Sanghi, K. P. Kadiyala, P. Tammana, and S. Joshi, “Anomaly
detection in data plane systems using packet execution paths,” in ACM
SIGCOMM workshop on secure programmable network infrastructure,
2021.

[14] H. SA, K. S. Kumar, A. Majee, A. Bedarakota, P. Tammana, P. G.
Kannan, and R. Shah, “In-network probabilistic monitoring primitives
under the influence of adversarial network inputs,” in Proceedings of
the 7th Asia-Pacific Workshop on Networking, 2023, pp. 116–122.

[15] R. Meier, T. Holterbach, S. Keck, M. Stähli, V. Lenders, A. Singla,
and L. Vanbever, “(self) driving under the influence: Intoxicating
adversarial network inputs,” in ACM HotNets, 2019.

[16] C. Black and S. Scott-Hayward, “Adversarial exploitation of p4 data
planes,” in 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 2021, pp. 508–514.

[17] G. Pickett, “Staying persistent in software defined networks,” Black
Hat Briefings, 2015.

[18] P.-W. Chi, C.-T. Kuo, J.-W. Guo, and C.-L. Lei, “How to detect a
compromised sdn switch,” in IEEE NetSoft, 2015.

[19] P. Zhang, H. Wu, D. Zhang, and Q. Li, “Verifying rule enforcement
in software defined networks with rev,” IEEE/ACM Transactions on
Networking, vol. 28, no. 2, pp. 917–929, 2020.

[20] K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A. Feld-
mann, and S. Schmid, “Taking control of sdn-based cloud systems via
the data plane,” in ACM SOSR, 2018.

[21] A.-A. Agape, M. C. Danceanu, R. R. Hansen, and S. Schmid, “Charting
the security landscape of programmable dataplanes,” arXiv preprint
arXiv:1807.00128, 2018.

[22] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L. J. Wobker et al.,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, 2015.

[23] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra:
A programmable system for performance-aware routing,” in USENIX
NSDI, 2020.

[24] (2021) P4Runtime. [Online]. Available: https://p4.org/p4-spec/
p4runtime/main/P4Runtime-Spec.html

[25] I. Oliveira, E. Neto, R. Immich, R. Fontes, A. Neto, F. Rodriguez, and
C. E. Rothenberg, “Dh-aes-p4: on-premise encryption and in-band key-
exchange in p4 fully programmable data planes,” in IEEE NFV-SDN,
2021.

[26] F. Hauser, M. Schmidt, M. Häberle, and M. Menth, “P4-macsec:
Dynamic topology monitoring and data layer protection with macsec
in p4-based sdn,” IEEE Access, vol. 8, pp. 58 845–58 858, 2020.

[27] T. Datta, N. Feamster, J. Rexford, and L. Wang, “{spine}: Surveillance
protection in the network elements,” in USENIX FOCI, 2019.

[28] D. Kong, Z. Zhou, Y. Shen, X. Chen, Q. Cheng, D. Zhang, and C. Wu,
“In-band network telemetry manipulation attacks and countermeasures
in programmable networks,” in IEEE/ACM IWQoS, 2023.

[29] G. Huston and R. Bush, “Securing bgp with bgpsec,” in The Internet
Protocol Forum, vol. 14, no. 2, 2011.

[30] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (s-
bgp),” IEEE Journal on Selected areas in Communications, vol. 18,
no. 4, pp. 582–592, 2000.

[31] T. J. G. P. d. Vale, “Securing the internet at the exchange points,” Ph.D.
dissertation, 2022.

[32] (2022) Software-Defined Networks: A Systems Approach. [Online].
Available: https://sdn.systemsapproach.org/future.html

[33] (2008) The Transport Layer Security (TLS) Protocol Version 1.2.
[Online]. Available: https://dl.acm.org/doi/pdf/10.17487/RFC5246

[34] S. H. Jeon and S. K. Gil, “Optical secret key sharing method based on
diffie-hellman key exchange algorithm,” Journal of the Optical Society
of Korea, vol. 18, no. 5, pp. 477–484, 2014.

[35] (2010) HMAC-based Extract-and-Expand Key Derivation Function
(HKDF). [Online]. Available: https://datatracker.ietf.org/doc/html/
rfc5869

[36] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf
scheme,” in Annual Cryptology Conference. Springer, 2010, pp. 631–
648.

[37] S. Yoo and X. Chen, “Secure keyed hashing on programmable
switches,” in ACM SIGCOMM SPIN, 2021.

[38] (2016) BMV2 software switch. [Online]. Available: https://github.
com/p4lang/behavioral-model

[39] (2020) Intel Intelligent Fabric Processors. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch.html

[40] R. Cieslak. (2013) Dynamic linker tricks: Using
ld preload to cheat, inject features and investigate
programs. [Online]. Available: https://rafalcieslak.
wordpress.com/2013/04/02/dynamic-linker-tricks-using-ld
preload-to-cheat-inject-features-and-investigate-programs/

[41] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
Attacking an sdn with a compromised openflow switch,” in Secure
IT Systems: 19th Nordic Conference, NordSec 2014, Tromsø, Norway,
October 15-17, 2014, Proceedings 19. Springer, 2014, pp. 229–244.

[42] E. Christensson, “Man in the middle attacks on software defined
network,” 2023.

[43] M. Brooks and B. Yang, “A man-in-the-middle attack against openday-
light sdn controller,” in Proceedings of the 4th Annual ACM Conference
on Research in Information Technology, 2015, pp. 45–49.

[44] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and countermeasures.” in
NDSS, 2015.

[45] (2016) Nist - national vulnerability database. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2016-2074

[46] A. Shaghaghi, S. S. Kanhere, M. A. Kaafar, E. Bertino, and S. Jha,
“Gargoyle: A network-based insider attack resilient framework for
organizations,” in 2018 IEEE 43rd Conference on Local Computer
Networks (LCN), 2018.

[47] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-
ishnamurthy, M. Moshref, D. R. Ports, and P. Richtárik, “Scaling dis-
tributed machine learning with in-network aggregation,” arXiv preprint
arXiv:1903.06701, 2019.

[48] H. Ke, P. Li, S. Guo, and M. Guo, “On traffic-aware partition and
aggregation in mapreduce for big data applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 3, pp. 818–828, 2015.

[49] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. M.
Swift, “Atp: In-network aggregation for multi-tenant learning.” in
USENIX NSDI, 2021.

[50] (2019) Trivy. [Online]. Available: https://aquasecurity.github.io/trivy/
v0.42/

[51] (2023) Software for Open Networking in the Cloud. [Online].
Available: https://sonicfoundation.dev/

[52] (2024) Wedge 100bf-32x 32 x 100g qsfp28 switch ports with tofino
32d. [Online]. Available: https://www.edge-core.com/productsInfo.
php?cls=1&cls2=5&cls3=181&id=335

[53] (2017) NIST - National Vulnerability Database, CVE-2017-14159.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2017-14159

[54] (2023) NIST - National Vulnerability Database, CVE-2023-26604.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2023-26604

[55] (2019) NIST - National Vulnerability Database, CVE-2019-19882.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2019-19882

[56] (2022) NIST - National Vulnerability Database, CVE-2022-0563.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2022-0563

[57] (2018) NIST - National Vulnerability Database, CVE-2018-7169.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2018-7169

[58] (2016) NIST - National Vulnerability Database, CVE-2016-2781.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2016-2781

[59] T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “Sdnsec:
Forwarding accountability for the sdn data plane,” in 2016 25th
International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2016, pp. 1–10.

[60] T. Wan, E. Kranakis, and P. C. van Oorschot, “Pretty secure bgp,
psbgp.” in NDSS, 2005.

[61] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining dig-
ital signatures and public-key cryptosystems,” Commun. ACM, vol. 21,
no. 2, p. 120–126, feb 1978.

[62] (2009) P416 Intel Tofino Native Architecture – Public Version.
[Online]. Available: https://csrc.nist.gov/csrc/media/publications/fips/
186/3/archive/2009-06-25/documents/fips 186-3.pdf

[63] F. Pereira, N. Neves, and F. M. Ramos, “Secure network monitoring
using programmable data planes,” in IEEE NFV-SDN, 2017.

[64] W. Wang, X. C. Wu, P. Tammana, A. Chen, and T. E. Ng, “Closed-
loop network performance monitoring and diagnosis with spidermon,”
in USENIX NSDI, 2022.

[65] (2001) Diffie–Hellman key exchange. [Online]. Available: https:
//en.wikipedia.org/wiki/Diffie%E2%80%93Hellman key exchange

[66] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent up-
dates,” in Second ACM SIGCOMM HotSDN, 2013.

[67] X. Wang and H. Yu, “How to break md5 and other hash functions,”
in Advances in Cryptology–EUROCRYPT 2005: 24th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings 24.
Springer, 2005, pp. 19–35.

[68] M. Stevens, A. Lenstra, and B. De Weger, “Chosen-prefix collisions
for md5 and colliding x. 509 certificates for different identities,” in
Advances in Cryptology-EUROCRYPT 2007: 26th Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Barcelona, Spain, May 20-24, 2007. Proceedings 26. Springer,
2007, pp. 1–22.

[69] A. Sotirov, M. Stevens, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A.
Osvik, and B. de Weger, “Md5 considered harmful today, creating a
rogue ca certificate,” in 25th Annual Chaos Communication Congress,
no. CONF, 2008.

[70] F. Mendel, C. Rechberger, and M. Schläffer, “Md5 is weaker than
weak: Attacks on concatenated combiners,” in Advances in Cryptology–
ASIACRYPT 2009: 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan,
December 6-10, 2009. Proceedings 15. Springer, 2009, pp. 144–161.

[71] J.-P. Aumasson and D. J. Bernstein, “Siphash: a fast short-input
prf,” in Progress in Cryptology-INDOCRYPT 2012: 13th International
Conference on Cryptology in India, Kolkata, India, December 9-12,
2012. Proceedings 13. Springer, 2012, pp. 489–508.

[72] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmüller, H. Stubbe,
T. Wild, A. Herkersdorf, and G. Carle, “Cryptographic hashing in p4
data planes,” in ACM/IEEE ANCS, 2019.

[73] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in ACM SIGACT-SIGPLAN POPL, 1977.

[74] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” ser.
TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008, p.
337–340.

[75] C. Black and S. Scott-Hayward, “Defeating data plane attacks with
program obfuscation,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–13, 2023.

[76] S. Banescu and A. Pretschner, “A tutorial on software obfuscation,”
Advances in Computers, vol. 108, pp. 283–353, 2018.

[77] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang, “On the (im)possibility of obfuscating
programs,” J. ACM, vol. 59, no. 2, may 2012. [Online]. Available:
https://doi.org/10.1145/2160158.2160159

[78] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Comput. Surv., vol. 49, no. 1,
apr 2016. [Online]. Available: https://doi.org/10.1145/2886012

[79] C. Tezcan, “Key lengths revisited: Gpu-based brute force cryptanalysis
of des, 3des, and present,” Journal of Systems Architecture, vol. 124,
p. 102402, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1383762122000066

[80] (2018) Hula-hoop. [Online]. Available: https://github.com/rachitnigam/
Hula-hoop

[81] (2022) CAIDA Macroscopic Internet Topology Data Kit
(ITDK) . [Online]. Available: https://www.caida.org/catalog/datasets/
internet-topology-data-kit/

[82] (2024) Aurora 610. [Online]. Available: https://netbergtw.com/
products/aurora-610/

[83] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in ACM HotSDN, 2014.

[84] M. V. Dumitru, D. Dumitrescu, and C. Raiciu, “Can we exploit buggy
p4 programs?” in ACM SOSR, 2020.

[85] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos, “Verification
of P4 Programs in Feasible Time using Assertions,” in ACM CoNEXT,
2018.

[86] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging P4 Programs with Vera,” in ACM SIGCOMM, 2018.

[87] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “P4V: Practical
Verification for Programmable Data Planes,” in ACM SIGCOMM, 2018.

[88] D. Dumitrescu, R. Stoenescu, L. Negreanu, and C. Raiciu, “bf4:
towards bug-free P4 programs,” in ACM SIGCOMM, 2020.

[89] Y. Zhou, J. Bi, T. Yang, K. Gao, C. Zhang, J. Cao, and Y. Wang,
“KeySight: Troubleshooting Programmable Switches via Scalable
High-Coverage Behavior Tracking,” in IEEE ICNP, 2018.

[90] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic
Test Packet Generation,” in ACM CoNEXT, 2012.

[91] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas, “P4pktgen:
Automated test case generation for p4 programs,” in ACM SOSR, 2018.

[92] F. Ruffy, T. Wang, and A. Sivaraman, “Gauntlet: Finding Bugs in
Compilers for Programmable Packet Processing,” in USENIX OSDI,
2020.

[93] A.-A. Agape, M. C. Danceanu, R. R. Hansen, and S. Schmid, “P4fuzz:
Compiler fuzzer for dependable programmable dataplanes,” in ACM
ICDCN, 2021.

[94] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every
flow on the right track?: Inspect sdn forwarding with rulescope,” in
IEEE INFOCOM, 2016.

[95] Y.-C. Chiu and P.-C. Lin, “Rapid detection of disobedient forwarding
on compromised openflow switches,” in IEEE ICNC, 2017.

[96] A. Kamisiński and C. Fung, “Flowmon: Detecting malicious switches
in software-defined networks,” in Proceedings of the 2015 Workshop
on Automated Decision Making for Active Cyber Defense, 2015, pp.
39–45.

[97] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: detecting
security attacks in software-defined networks.” in NDSS, 2015.

[98] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks,” in USENIX
OSDI, 2010.

[99] Y. Ganjali and A. Tootoonchian, “{HyperFlow}: A distributed control
plane for {OpenFlow},” in 2010 Internet Network Management Work-
shop/Workshop on Research on Enterprise Networking (INM/WREN
10), 2010.

[100] (2016) Netronome Agilio CX SmartNICs. [Online]. Available:
https://www.netronome.com/products/agilio-cx/

[101] (2023) AMD Pensando™ Networking. [Online]. Avail-
able: https://www.amd.com/en/products/accelerators/pensando.html#
featured-products

