
Poster: Reducing Data Movement Tax for Serialization in
Microservices

Siddharth
Nayak
IIIT-Delhi
India

Vishesh
Rangwani
IIIT-Delhi
India

Kartikay
Dubey∗
IIIT-Delhi
India

Rajorshi
Mondal∗
IIIT-Delhi
India

Tushar
Gupta∗
IIIT-Delhi
India

Rinku
Shah

IIIT-Delhi
India

Abstract
Small-scale public cloud providers cannot adopt serialization data-
copy optimizations that leverage hardware acceleration or kernel-
bypass zero-copy paradigm (e.g., DPDK) because of (1) accelerator
deployment costs, (2) securing kernel-bypass zero-copy serializa-
tion communication relies on encryption at the NIC hardware, and
(3) kernel-bypass solutions require developers to rewrite the busi-
ness logic. We propose a serialization library that leverages the
kernel scatter-gather communication primitives to reduce serializa-
tion data copy costs without using custom hardware or a custom
network stack.

CCS Concepts
• Networks → Programming interfaces.

Keywords
serialization; scatter-gather; Linux API; microservices

ACM Reference Format:
Siddharth Nayak, Vishesh Rangwani, Kartikay Dubey, Rajorshi Mondal,
Tushar, Gupta, and Rinku, Shah. 2024. Poster: Reducing Data Movement Tax
for Serialization in Microservices. In Proceedings of the 20th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’24), December 9–12, 2024, Los Angeles, CA, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3680121.3699882

1 Introduction
Modern cloud applications (e.g., Uber and 5G RAN core) with 𝜇𝑠-
scale processing times have strict latency requirements (i.e., 10s
to 100s of 𝜇𝑠). A single client request involves traversing multi-
ple microservices and forces per-hop data (de) serialization (e.g.,
more than 20% of the requests traverse > 50 hops [1]), resulting in
serialization latency domination over request processing time.

The data serialization process involves three key steps: (1) Ini-
tialization: allocate an empty buffer to hold the serialized data, (2)
Encoding: convert the application-specific data structures to wire
format for transmission, and (3) Data copy: moving data from ap-
plication data structures into the memory buffers for transmission.
“Data copy" is identified as the root cause of the bottleneck [3].

∗Student authors with equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’24, December 9–12, 2024, Los Angeles, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1108-4/24/12
https://doi.org/10.1145/3680121.3699882

bitmap
000..101 45

list hdr
(#elements)

2

 string hdr
 (len)

4

data
foo1

 string hdr
 (len)

3

data
bar

id b

b[0] b[1]

msg hdr (4B)

Figure 1: 𝜇Ser wire format for a message with three fields, id (int)
and b (repeated string), with values 45, "foo1", and "bar", respectively.

There are three ways to implement data movement: (1) Two-copy:
(a) Data is copied from the application data structures to contiguous
memory buffers allocated in the user space, (b) serialized buffers
copied from the user space to kernel network buffers, and (c) copy
from network buffers to the NIC; (2) One-copy: (a) The system uses
a scatter-gather vector with data object addresses and length. The
kernel copies data from memory regions specified in the scatter-
gather array to kernel network buffers, (b) copy data from network
buffers to the NIC, and (3)Zero-copy:Data is copied from application
data structures directly to the NIC via zero-copy scatter-gather I/O.

Popular serialization libraries such as Protobuf, FlatBuffers, and
Cap’n Proto use two-copy approach and incur high serialization
latency. Existing works propose hardware accelerators for serial-
ization, for example, on-CPU , fixed-function , and on-NIC [2] ac-
celerators. However, such solutions warrant the need for hardware
security accelerators for encrypted communication between mi-
croservices. Another solution approach [3] leverages kernel-bypass
zero-copy I/O techniques such as DPDK to reduce data movement
cost. However, this approach has two challenges: (1) it lacks secure
microservice communication support, and (2) it requires changes
to the business logic and the host networking stack. Our key idea is
to reduce serialization latency by leveraging existing Linux scatter-
gather communication primitives, one-copy and zero-copy, without
relying on custom NIC or network stack changes. We build the
prototype of the serialization library, 𝜇Ser, to enable our idea.

We present the following contributions in this paper. (1) Initial
prototype of 𝜇Ser serialization library, (2) Insights on kernel process-
ing overheads and performance analysis for two-copy, one-copy,
and zero-copy kernel communication primitives.

2 Design
𝜇Ser comprises three components: an interface definition language
(IDL), wire format, and the 𝜇Ser library.
IDL.The IDL describes the syntactic structures of the message
schema, similar to Protobuf’s IDL. Unlike state-of-the-art serial-
ization libraries, 𝜇Ser generates code to read and write structured
data at runtime instead of compile-time. However, this approach
introduces overheads required for runtime checks, which we plan
to solve in our future work.
Wire format. Inspired by Cornflakes[3], the wire format (see Fig. 1)
consists of a header with a 4-byte bitmap followed by data stored

17

https://orcid.org/0009-0008-4071-1022
https://orcid.org/0009-0008-4071-1022
https://orcid.org/0009-0001-8375-657X
https://orcid.org/0009-0001-8375-657X
https://orcid.org/0009-0005-3929-4231
https://orcid.org/0009-0005-3929-4231
https://orcid.org/0009-0000-9171-9843
https://orcid.org/0009-0000-9171-9843
https://orcid.org/0009-0002-7016-5129
https://orcid.org/0009-0002-7016-5129
https://orcid.org/0000-0001-9823-4515
https://orcid.org/0000-0001-9823-4515
https://doi.org/10.1145/3680121.3699882
https://doi.org/10.1145/3680121.3699882
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3680121.3699882&domain=pdf&date_stamp=2024-12-09

CoNEXT ’24, December 9–12, 2024, Los Angeles, CA, USA Siddharth Nayak et al.

0

1

2

16 Data Members

16 32 64 128 256 512 1024 2048 4096 8192
Total Message Size (Bytes)

2.5

5.0

7.5

10.0

1 Data Member

Ca
ch

e
m

iss
 ra

te
 (%

)

Two-Copy One-Copy Zero-Copy

Figure 2: Cache miss rate for communication primitives

16 32 64 128 256 512 1024 2048 4096 8192
Total Message Size (Bytes)

16
4

2
1

No
. o

f D
at

a
M

em
be

rs -0.15 -0.08 -1.34 0.68 0.78 0.11 0.94 0.46 1.05 0.48

-0.14 -0.55 -0.15 0.27 -0.56 0.14 0.69 -0.12 3.63 7.85

-0.04 -0.42 0.16 -0.24 0.29 0.98 0.44 1.77 3.97 5.95

0.22 -0.53 0.55 0.06 0.17 0.41 -0.13 0.58 4.05 7.40

1.342

0.496

2.334

4.171

6.009

7.846

Figure 3: Data copy latency improvement (in 𝜇𝑠): One-copy vs. Two-
copy (baseline).

16 32 64 128 256 512 1024 2048 4096 8192
Total Message Size (Bytes)

16
4

2
1

No
. o

f D
at

a
M

em
be

rs 1.34 0.98 1.37 2.49 1.01 0.20 2.22 1.82 2.15 3.90

2.25 1.68 1.67 2.11 2.46 1.71 2.60 2.44 5.60 10.43

2.44 1.37 1.57 2.27 2.49 2.37 2.53 3.24 5.51 7.86

2.93 0.75 2.13 2.19 1.99 1.28 2.35 2.51 4.67 10.22

0.20

2.24

4.29

6.33

8.38

10.43

Figure 4: Data copy latency improvement (in 𝜇𝑠): Zero-copy vs. Two-
copy (baseline).

sequentially, in the ascending order of member identifier "ID". The
bitmap indicates the presence of data values.
𝜇Ser library. Our library exposes APIs and implements functions
such as (1) schema file compilation, (2) (de) allocation of themessage,
(3) setting/getting data to/from the message, (4) serialization of the
message to wire format and vice-versa.
Workflow. The developer provides schema files with the program.
At runtime, the symbol table is created, message is allocated, and
its elements are initialized. The developer invokes the 𝜇Ser library
function, serialize, which returns an I/O vector. The I/O vector is
passed to the scatter-gather API such as sendmsg to transmit data.
Like FlatBuffers, 𝜇Ser uses lazy deserialization, which is zero-cost.
Challenges. We see several challenges in designing 𝜇Ser. We plan
to solve these in our future work. (1) Microservices leverage TLS at
the application layer to support secure communication. However,
since scatter-gather primitives assemble the message within the

Table 1: Serialization latency across libraries for message with 1 key
of 24 bytes and 10 data fields of 100 bytes each (YCSB workload).
Overheads (in 𝜇𝑠) Protobuf FlatBuffers 𝜇Ser (with

One-copy)
Wire format conversion 6.9 ± 0.8 8.8 ± 0.4 0.9 ± 0.3
Others (includes data copy) 35.5 ± 5 43.1 ± 7 12.9 ± 4
Total 42.4±5.8 51.9 ± 7.4 13.8 ± 4.3

kernel, TLS cannot be used; (2) 𝜇Ser suffers from runtime check
overheads because our current prototype does not generate code to
write/read data at compile time; and (3) The developer must ensure
safe memory access because the current 𝜇Ser prototype deals with
pointers but does not manage memory.

3 Evaluation
We deployed an echo client-server application, written in C++, on
two Intel Xeon 6403N machines connected using 100Gbps Intel 810
NICs. We use our observations to answer the following questions.
How do One-copy and Zero-copy primitives perform com-
pared to Two-copy? We vary the cumulative message sizes from
16 bytes to 8KB with varying data members from 1 to 16.
Cache miss rate (Fig. 2). We observe that the zero-copy primitive
has a lower cache miss rate across the number of data members,
followed by one-copy and then two-copy. The cache miss rate is
inversely proportional to the number of data members across prim-
itives. The cache miss rate scales directly with increased message
size for a smaller number of data members.
Data-copy latency improvement (Fig. 3 and Fig. 4). We observe that
the zero-copy primitive outperforms two-copy by 6% (0.75 𝜇𝑠) to
43% (10.4 𝜇𝑠). The one-copy primitive outperforms two-copy by up
to 32% (7.855 𝜇𝑠) for data field sizes >= 128 bytes.
How do existing serialization libraries perform compared
to 𝜇Ser with one-copy? Table 1 shows the split serialization la-
tency, (1) data object to wire format conversion, and (2) data copy,
syscall, and other overheads for a YCSB workload , across standard
serialization libraries and 𝜇Ser. We observe that 𝜇Ser improves the
overall serialization latency by 67% and 73% for Protobuf and Flat-
Buffers, respectively. This improvement is significant because a
client request suffers serialization costs at each microservice (e.g.,
Alibaba’s trace analysis shows 50 to 54000 calls per request [1]).

4 Conclusion and Future Work
Our initial prototype results motivate the role of kernel I/O primi-
tives to improve serialization latency for cloud microservices. As
part of future work, we plan to (1) integrate secure microservice
communication (using kTLS), (2) 𝜇Ser with adaptation across ker-
nel I/O primitives based on object data type (ptr type or not), and
data characteristics (message size and number of members), and (3)
memory safety without developer intervention.

References
[1] Shutian Luo et al. 2022. An In-Depth Study ofMicroservice Call Graph and Runtime

Performance. IEEE TPDS 33, 12 (2022). https://doi.org/10.1109/TPDS.2022.3174631
[2] Arash Pourhabibi et al. 2021. Cerebros: Evading the RPC Tax in Datacenters. In

MICRO ’21. 407–420. https://doi.org/10.1145/3466752.3480055
[3] Deepti Raghavan et al. 2023. Cornflakes: Zero-Copy Serialization for Microsecond-

Scale Networking. In Proceedings of SOSP ’23. 200–215. https://doi.org/10.1145/
3600006.3613137

18

https://doi.org/10.1109/TPDS.2022.3174631
https://doi.org/10.1145/3466752.3480055
https://doi.org/10.1145/3600006.3613137
https://doi.org/10.1145/3600006.3613137

	Abstract
	1 Introduction
	2 Design
	3 Evaluation
	4 Conclusion and Future Work
	References

