
CoDel-ACT: Realizing CoDel AQM for
Programmable Switch ASIC

Vedant Bothra*, Aditya Peer*, Vijay Kumar Singh, Mukulika Maity, Rinku Shah
Department of Computer Science and Engineering

Indraprastha Institute of Information Technology Delhi (IIIT-Delhi)
{vedant20260, aditya20355, vijaysi, mukulika, rinku}@iiitd.ac.in

Abstract—Bufferbloat is a major issue in computer networks,
caused by network devices such as switches and routers with large
buffers, resulting in congested queues and high network delays.
Active Queue Management (AQM) algorithms like RED, CoDel,
and PIE have been developed to address Bufferbloat. Among
these, CoDel is the most effective as it does not require parameter
tuning. However, software-based AQM solutions cannot scale for
high-speed networks, while traditional hardware switches are
fixed-function. Programmable switch ASICs offer more flexibility
but impose programming constraints to achieve line rates. Due
to these limitations, previous research has been unsuccessful in
implementing an RFC-compliant CoDel AQM on programmable
switch ASICs. To solve this challenge, we have introduced
CoDel-ACT, a redesign of CoDel that can handle the global
state across switch pipeline stages, improves the accuracy of
the math function, and fully implements CoDel within the data
plane of an Intel Tofino switch. Our evaluations demonstrate
that CoDel-ACT solves Bufferbloat, has negligible overheads,
and reduces the average packet queue delay by 52% compared
to the existing solution.

Index Terms—Bufferbloat, AQM, CoDel, P4 switch ASIC

I. INTRODUCTION

Network routers have been equipped with buffers that can
absorb short-term data bursts and enable faster data trans-
mission. However, these buffers introduce queuing delays and
delay variations in the network. When the buffers become too
full, packets are lost; when they are too empty, the network
throughput can be degraded.
The Bufferbloat Problem. The significant distance between
the sender and receiver in internet traffic (10ms to 100ms
RTT [1]) can create slow sender reactions to congestion.
When network links are overutilized, acknowledgments can
be delayed beyond the round-trip time, creating a “persistently
full” queue. Such a queue can contribute to additional network
delays and may not be able to absorb bursts if it never drains
completely, causing “Bufferbloat” [2].
Active Queue Management (AQM) algorithms such as
RED [3], CoDel [1], and PIE [4] aim to differentiate between
short bursts and congestion to avoid persistently full queues
by dropping packets before the buffer overloads. The effec-
tiveness of RED and PIE depends on the algorithm parameter
values, which are difficult to tune accurately for each network
scenario, while CoDel is designed to be parameterless.

* Student authors with equal contribution.

CoDel (Controlled Delay). CoDel [1] aims to keep the queuing
delay (time spent by a packet within the switch buffers) below
the maximum acceptable persistent queue delay, defined by
TARGET. If the delay exceeds this value for a prolonged
time (defined by INTERVAL), CoDel starts dropping packets
(see §III). It schedules further packet drops in shorter suc-
cession using dropNext = now + INTERVAL√

count
until the observed

queue delay falls below the TARGET. Here, dropNext is
the time to drop the next packet, and count refers to the
number of dropped packets during the current congestion
cycle. During prolonged congestion, CoDel uses the drop rate
from the previous cycles as a starting point for the current
cycle, helping to quickly resolve network congestion by an
aggressive increase in packet drop rate, i.e., countcurr =
countcurr−1 − countcurr−2.

Existing AQM implementations. Congestion can occur at
different points in a network, including the low-bandwidth
last-mile links, fat backbone links, or data centers.

1⃝ Last-mile gateways can use software-based AQM so-
lutions [1], [5]–[9] implemented for Linux kernel or soft-
ware switches such as bmv2 [10] and DPDK [7]. However,
software-based solutions cannot handle high-speed backbone
networks with traffic speeds of several hundred Gbps. 2⃝
High-speed backbone networks use specialized hardware with
built-in AQM [11]–[14] algorithms that are specialized based
on workload requirements. Several switch platforms such as
Arista (Trident and Tomahawk, Trident II and Helix) [12],
and Cisco [11] implement Weighted Random Early Detection
(WRED) algorithm in their firmware. Cable modem [13]
implements modified CoDel and PIE AQM to satisfy cable
traffic requirements. CAKE AQM [14] was designed for home
gateways as part of the OpenWrt router firmware. However,
specialized AQM is necessary based on workload character-
istics, driving the need for programmable network hardware
solutions. 3⃝ Modern data centers and ISPs use programmable
network hardware to develop and deploy custom programs that
run at high speeds. Sivaraman et al. [15] added an FPGA
to the P4-based programmable Tofino switch [16] to fully
implement CoDel and RED AQM algorithm variants. Using
an additional off-path FPGA introduces additional latencies,
resulting in an increase in flow RTT. CoDel-ACT implements
CoDel entirely in the Tofino switch data plane without de-
pending on additional hardware support. The work closest to

ISBN 978-3-903176-63-8 © 2024 IFIP

2024 IFIP Networking Conference (IFIP Networking)

978-3-903176-63-8/24/$31.00 ©2024 IEEE 340

0 2 4 6 8 10
Time (s)

0
3
6
9

12
15

Q
ue

ue
 D

el
ay

 (
m

s) P4-CoDel TARGET

Figure 1. Measured queue delay for existing Intel Tofino switch ASIC-based
CoDel solution for ten parallel TCP flows is 8.3ms

CoDel-ACT, Kundel et al. [17], implemented partial CoDel
AQM implementation for the Tofino switch, leading to sub-
optimal performance.
Can we implement custom AQM on smartNICs? SmartNIC-
based custom AQM can handle bufferbloat for the ingress
traffic at the host and can be implemented at the ingress
gateway host in data centers. Du et al. [18] used NetFPGA
NIC to implement custom AQM, R-AQM, that improved
the tenant’s TCP performance at the virtualized data center
servers. Ralph et al. [17]’s CoDel experienced high flow
RTT due to Netronome smartNIC’s [19] many-core processor
architecture. SmartNIC-based off-path processing results in
additional latencies — not the right candidate for resolving
network-wide bufferbloat.
Tofino switch is used for data center switching. Is AQM
required in data centers? Data center switches are equipped
with shallow buffers to control queueing delays and ensure
under millisecond flow RTT [20]. However, high-speed traffic
with diverse mix of short, long, and bursty flows leads to
problems such as the TCP incast [21], [22] and HOL blocking
due to elephant flows [23], raising the need for congestion
control and AQM implementation [24], [25] in data centers.
Does existing programmable switch-based CoDel design ef-
fectively solve Bufferbloat? We conducted experiments using
the open source CoDel code, P4-CoDel [26], implemented
on the Intel Tofino switch (setup details in §VI). We set the
TARGET to 5 ms in accordance with CoDel’s RFC. Fig. 1
shows the per packet queueing delay for ten parallel TCP
flows. We noticed that the packet delays for the P4-CoDel
design were mostly above the TARGET, and the average
queuing delay was 8.3ms. This indicates that P4-CoDel is
not fully capable of solving the Bufferbloat problem. This is
because the design does not maintain the packet drop count
from previous cycles and starts with count = 1, which results
in a longer reaction time.

In this paper, we design and implement CoDel-ACT, where
ACT stands for Adapted Count-and-time for Tofino switch
ASIC. CoDel-ACT adapts the packet dropping rate based
on the packet drop count history, as outlined in the RFC. It
operates at line rates and runs entirely in the data plane of the
Tofino switch ASIC.
Challenges. There were several challenges in realizing CoDel
for programmable switch ASIC. 1⃝ Programmable switch
ASIC pipelines force certain programming constraints to en-
sure line-rate packet processing (see §II-B). Due to this,
accessing the packet drop count of the previous cycles stored in

Tofino registers between CoDel cycles is non-trivial. 2⃝ CoDel
algorithm uses the function, INTERVAL√

count
to compute dropNext,

that determines how quickly CoDel reacts to congestion.
However, the existing approximation of this function [17] for
Intel Tofino was overestimated and varied by 42% to 58%,
resulting in a longer reaction time.

We redesigned the CoDel algorithm to split the count state
(and other related states) across multiple stateful registers to
make it amenable for programmable switch ASIC implemen-
tation (see §V-A) and recirculated the required state within
the switch egress pipeline. We designed an improved approx-
imation of the mathematical function to compute dropNext.
Our approximation has an average error rate of 4% and a
maximum error rate of 15%. We implemented CoDel-ACT
using 11 pipeline stages of the Intel Tofino switch and was
programmed using P4-16 and Intel SDE 9.9.0. The code for
CoDel-ACT is open source 1.
Contributions. The main contributions of this paper are as
follows. 1⃝ We present CoDel-ACT, a redesigned CoDel
AQM, a first programmable switch ASIC solution that closely
represents the CoDel algorithm as described in RFC [1] and
runs entirely in the data plane. 2⃝ We improve the accuracy
of the CoDel function that computes the packet dropping
rate for Intel Tofino switch ASIC. This enhancement enables
CoDel-ACT to react more aggressively to congestion. 3⃝ We
compare the effectiveness of CoDel-ACT with the existing
Tofino-based CoDel solution, P4-CoDel.

Our evaluations show that CoDel-ACT maintains the aver-
age queue delay well below TARGET, reduces average packet
queue delay by 52% and tail latency by 50% for 50 concurrent
TCP flows with bottleneck bandwidth of 1Gbps, compared to
P4-CoDel.

The rest of the paper is organized as follows. §II and §III
describe the background on programmable switch ASICs and
CoDel RFC; §IV discusses the challenges in realizing CoDel
for Intel Tofino switch; §V discusses CoDel-ACT’s design
and implementation, and §VI demonstrates CoDel-ACT’s
efficacy compared to the existing work.

II. PROGRAMMABLE SWITCH ASICS

The ASIC-powered switches offer support for the P4 lan-
guage, which allows the programmer to define switch for-
warding behavior. In this section, we briefly discuss the
programmable switch architecture and the programming con-
straints of the Intel Tofino switch ASIC [16].

A. Programmable switch ASIC architecture

Fig. 2 shows the pipeline design of an ASIC-based pro-
grammable switch. The pipeline comprises programmable
packet parsers and de-parsers, an egress with several stages of
programmable Match Action Units (MAUs), stateful memory,
a buffer, a non-programmable Traffic Manager (TM), and a
similarly structured ingress pipeline. Stateful memory such as
registers is physically divided across switch pipeline stages.

1https://github.com/pnl-iiitd/codelACT

2024 IFIP Networking Conference (IFIP Networking)

341

Figure 2. Programmable ASIC-based switch architecture

Figure 3. CoDel’s flow diagram, based on RFC

Tofino switch ASIC allows the P4 program to operate atom-
ically on the registers using a small number of instructions
within a single pipeline stage using stateful ALUs (SALU).

B. Constraints for the Intel Tofino switch

To achieve line rates of several Tbps, programmable switch
ASICs allow simple operations that can be executed within
deterministic time delay.
1⃝ Packet processing constraints. a⃝ The ALU instructions
are limited to signed addition and bitwise logical opera-
tions. Multiplication, division, floating-point computations,
and pointers are not allowed. b⃝ Control flow mechanisms,
such as loops, are prohibited. Additional mechanisms such as
hashing primitives are provided as externs.
2⃝ Stateful memory constraints. a⃝ Register action guar-
antees atomic operations on packet fields. It does not allow
computing with inputs such as packet metadata and math-unit
output. b⃝ Each switch pipeline stage can execute only one
ALU instruction per packet field. The switch pipeline limits
the number of sequential processing steps to the number of
match+action pipeline stages (12 for our switch). c⃝ Tofino
switch memory (i.e., tables and registers) is statically assigned
to each MAU. Therefore, a packet can access this memory
only once per pipeline pass. d⃝ Stateful elements, such as the
registers, can be accessed atomically but are limited to one
read-update-write operation. Tofino supports more expressive
update functionality using a simple microprogram, register
action extern.

III. CODEL ALGORITHM DESCRIBED IN RFC
In this section, we present the working of the CoDel AQM

as described in the RFC [1]. CoDel uses two input parameters,
INTERVAL and TARGET. The INTERVAL value is chosen such
that the endpoints have enough time to respond to packet
drops, i.e., slightly higher than RTT (100ms for Internet).
The maximum acceptable persistent queue delay, TARGET,

is set between 5%− 10% of the INTERVAL. CoDel algorithm
includes four “global” state variables: 1) dropping (boolean, if
true indicates that CoDel may drop packets), 2) count (packet
drop count of the current congestion cycle), 3) lastCount
(packet drop count of the previous cycle) and 4) dropNext
(time when the packet should be dropped next).

Fig. 3 shows the packet flow followed by each outgoing
packet of a switch that implements CoDel. The algorithm
observes the sojourn time (time spent by the packet in the
switch buffer) for each outgoing packet. If the sojourn time
exceeds the TARGET (i.e., sojourn violation), it implies that
the queue is getting filled, and the system stays in the
dropping state. Otherwise, the system is in non-dropping
state (dropping = false). If it is a first sojourn violation,
codel init() is invoked, to initialise the CoDel state variables.
Otherwise, codel update() is invoked.

1 define INTERVAL 100 ms
2 # Here, dropping = True
3 # lastCount: packet drop count for cycle, i-2
4 # count: packet drop count for cycle, i-1
5 # dropNext: time when to drop next packet
6 # now: curr time; use packet’s egress timestamp
7 delta = count - lastCount
8 lastCount = count
9 if (delta>1) and (now-dropNext<16*INTERVAL):

10 count = delta
11 else:
12 count = 1
13 dropNext = now + INTERVAL/sqrt(count)

Listing 1. CoDel RFC: codel init() function

1 # Here, dropping = True.
2 # Sender should have reacted to pkt drop by now
3 if (now >= dropNext):
4 # Drop the packet
5 count = count + 1 # Update "count"
6 dropNext += INTERVAL/sqrt(count)

Listing 2. CoDel RFC: codel update() function

codel init function: In this function, all the state variables
are initialized (see Listing 1). To recover from prolonged
congestion (delta > 1), CoDel aggressively drops packets.
If the queue was detected full recently (line 9), then the drop
rate that controlled the queue for that cycle is a good starting
point for the current cycle; count is set to delta. Otherwise,
count is set to 1. The historic count state is stored as lastCount
for the next congestion cycle (line 8).
codel update function: In this function, CoDel starts to drop
packets. Before dropping a packet, CoDel waits for the sender
to react to the previous packet drop (see Listing 2, line 3). If
the packet is dropped, count is incremented, and the time to
drop the next packet dropNext is updated (lines 4 to 6).

IV. CHALLENGES IN IMPLEMENTING CODEL FOR TOFINO
SWITCH ASIC

A. Can we implement CoDel-RFC for Tofino switch ASIC?
Fig. 4 shows the hypothetical design for RFC-based CoDel

offloaded to Tofino switch ASIC. It shows the program flow for

2024 IFIP Networking Conference (IFIP Networking)

342

Figure 4. Hypothetical CoDel-RFC design for Tofino switch ASIC

Figure 5. Partial flow for hypothetical codel init function

three CoDel functions, viz., chk first violation(), codel init(),
and codel update(), and the registers accessed by each func-
tion. The registers store the “global” state variables (see §III),
dropping, count, dropNext, and lastCount.

As per the current design, it is not possible to implement
codel init() and codel update() within the same P4 program
for the Tofino switch ASIC due to the following reasons:
1⃝ A register cannot be accessed across pipeline stages
(§II-B 2c⃝). Though codel init() and codel update() are in-
dependent functions, they cannot run in parallel since they
share common state. codel init() first accesses count and then
dropNext (see Listing 1 lines 7–9), whereas codel update()
accesses dropNext first, and then count (see Listing 2 lines
3–5). These functions are processed using separate SALUs,
which resembles the scenario shown in Fig. 9 and Fig. 10.
Register count is accessed in stagei for codel init() but a
different stage for codel update(); the same holds for register,
dropNext. Even if the access order were the same, the same
registers would be accessed by different pipeline stages, which
is not permitted.
2⃝ A packet can access any register only once within
the pipeline (§II-B 2d⃝). We observe challenges within
the codel init() implementation as well. Fig. 5 shows the
codel init() function flow. First, registers count and lastCount
are read, after which a condition is tested that requires the
math function (Listing 1, line 9). This requires the program
to exit SALU that accesses count and lastCount. After the
condition test, count must be accordingly updated (Listing 1,
line 10 & 12). However, since a packet can access the register
only once, codel init() implementation is not feasible.
3⃝ High error rate for dropNext computation. To update
the time to drop the next packet (dropNext), INTERVAL√

count
is

computed using Tofino’s in-built math unit. We observe that
the computed value is higher by 42% to 58% (see Fig. 6)
compared to the actual values, making CoDel less aggressive.

B. Existing Tofino-based CoDel implementation
Fig. 7 shows the P4-CoDel’s [17] design to offload CoDel

to Intel Tofino switch. They use two SALUs: (1) to implement

100 101 102 103 104 105 106

count

0

25

50

pe
rc

en
ta

ge
 e

rr
or

fo
r

IN
TE

RV
AL

co
un

t

P4-CoDel CoDel-ACT

Figure 6. Percentage error rate for measured INTERVAL√
count

relative to actual value
computed using math.sqrt()

Figure 7. Flow diagram of existing Tofino-based CoDel implementation (P4-
CoDel); function codel init() implementation is skipped

chk first violation(), and (2) to implement codel update().
The implementation is feasible since both SALUs use inde-
pendent registers. Skipping codel init() implementation and
the higher INTERVAL√

count
value (Tofino’s math unit) leads to a less

aggressive CoDel implementation, and a persistently full queue
during prolonged congestion periods (as shown in Fig. 1).

V. DESIGN AND IMPLEMENTATION

In this section, we discuss how CoDel-ACT’s design helps
resolve the Tofino switch offload challenges discussed in §IV.

A. CoDel-ACT Design and Implementation

CoDel observes the packet queuing delay to detect so-
journ violations. Since this information is available at the
switch egress, CoDel-ACT runs within the switch egress
pipeline. To make CoDel compatible with Tofino switch
ASICs, CoDel-ACT makes use of register copies (we call
them shadow registers) within the CoDel function and across
functions. Our design ensures synchronization across the reg-
ister copies using packet recirculation, which involves recir-
culating the packet from the switch egress back to the Traffic
manager.

Fig. 8 shows the flow diagram of the proposed CoDel-ACT
design that implements complete CoDel functionality as men-
tioned in the RFC [1] for Tofino switch ASIC. CoDel-ACT
maintains four state variables, dropping, count, dropNext, and
lastCount as discussed in §III. To handle multiple register
accesses within and between pipeline stages, we use three reg-
ister copies for count (viz., countI, countI’, and countU) and
dropNext (viz., dropNextI, dropNextI’, and dropNextU) and
two copies for dropping (viz., dropping and prevDropping).
The switch pipeline design comprises two parallel pipelines
that process: (1) synchronization traffic, CoDel-ACT packet
and (2) incoming data traffic, i.e., data packet.

2024 IFIP Networking Conference (IFIP Networking)

343

Figure 8. Flow diagram for CoDel-ACT offloaded to Tofino switch

Figure 9. Stage constraint

Figure 10. Access constraint

Each data packet is first processed by
chk first violation(), which checks if it is the first
sojourn violation, accordingly sets the dropping state, and
synchronizes codel update()’s register state with codel init()
if the congestion cycle just ended. We monitor the dropping
state during the current (dropping) and the previous packet
(prevDropping) processing to identify the end of the
congestion cycle.

Next, we discuss how we solve the primary challenges in
making CoDel amenable for Tofino switch offload (see §IV-A).
1⃝ Shared access to registers, count and dropNext, between
codel init() and codel update() functions. A packet can
either invoke codel init() or codel update() based on whether
it was the first sojourn violation or not. In case of first sojourn
violation, codel init() is invoked exactly once; codel update()
function operates only after INTERVAL√

count
(i.e., upto 100ms). The

codel init() function is reinvoked during the next congestion
cycle, and there is ample time gap between consecutive
function invocations.

The key idea of our approach is to use separate registers,
viz., countI and countU for codel init() and codel update(),
respectively. The registers are synchronized at the start of
each congestion cycle when codel init() is invoked and at the
end when dropping turns false, using packet recirculation.
Packet mirroring is used in Tofino switch to implement packet
recirculation. The recirculated (or mirror) packet carries the
register values of the CoDel function and is sent back to the
switch egress pipeline via the Traffic manager. The mirror
packet from codel init() is processed by codel update() and
vice versa. This is shown as a dashed flow in Fig. 8.
2⃝ Allowing a packet to access the same register more
than once during a single pass through the switch pipeline.
Within codel init(), the registers countI and dropNextI are first
read, and their update operation is interleaved with another in-
struction (discussed in §IV-A). Therefore, within codel init(),
shadow registers, countI ′ and dropNextI ′, are updated, and
the original registers are updated via codel update()’s mirror
packet at the end of the current congestion cycle.

Similarly, consider the following processing sequence:
count.read() → lastCount.read() → updatedelta →
lastCount.write(). We observe that lastCount read

1 200 400 600 800 1000
count

101

102

M
ea

su
re

d
 IN

TE
RV

AL
co

un
t

 (
m

s)

8.65 ms

2.95 ms
2.16 ms 1.87 ms 1.41 ms

P4-CoDel CoDel-ACT math.sqrt

Figure 11. Absolute error for dropNext calculation: P4-CoDel delays
packet dropping by up to 30ms; count = 2; CoDel-ACT delays packet
dropping by up to 11ms; count = 3

and update operations would require accessing the same
register twice, which is not permitted. Therefore, the
lastCount.write() is achieved using the mirror packet gen-
erated by codel init() (shown as dashed flow in Fig. 8).
3⃝ Reducing error rate for dropNext computation. Our

measurements (see Fig. 11) show that the existing Tofino’s
math unit overestimates the INTERVAL√

count
by up to 30ms, indicating

that no packets would be dropped for next 30ms in the worst
case, leading to a persistently full queue. We observed that
a relation exists between the error rate and count. If we
double the value of count, the error rate drops significantly.
Therefore, to compute INTERVAL√

count
, we provided the input as

2*count to the math unit. To achieve this, we modified the
CoDel implementation (Listing 2’s line 5) to increment count
by two, resulting in an average error rate of 4% (see Fig. 6).
Implementation details. We implemented the RFC-compliant
CoDel algorithm within the egress pipeline of Aurora 610,
Intel Tofino switch, which spanned around 400 lines of P4
(P4-16 version) code. We used 11 pipeline stages to realize
packet processing at line rates.

VI. EVALUATION

In this section, we will describe our experimental setup,
present the evaluation metrics, and formulate the research
questions. Finally, we will discuss the evaluation results.
Setup. We set up a testbed with one AMD Ryzen 9 5950X
workstation and an Aurora 610 Intel Tofino switch, as shown
in Fig. 15. To generate traffic, we used iperf3 to create parallel
TCP flows from the workstation acting as the TCP client and

2024 IFIP Networking Conference (IFIP Networking)

344

1 3 10
Number of Flows (100 Mbps)

0
3
6
9

12
15

Q
ue

ue
 D

el
ay

 (
m

s)
P4-CoDel CoDel-ACT TARGET

Figure 12. Queue Delay distribution with bottle-
neck bandwidth of 100Mbps and varying number
of TCP flows, 5ms ≤ RTT ≤ 10ms

10 30 50
Number of flows (1 Gbps)

0
3
6
9

12
15

Q
ue

ue
 D

el
ay

 (
m

s)

P4-CoDel CoDel-ACT TARGET

Figure 13. Queue Delay distribution with bottle-
neck bandwidth of 1Gbps and varying number of
TCP flows, 3ms ≤ RTT ≤ 25ms

10ms 100ms 300ms
Flow RTT

0
2
4
6
8

10

Q
ue

ue
 D

el
ay

 (
m

s)

P4-CoDel CoDel-ACT TARGET

Figure 14. Queue Delay distribution with varying
flow RTT, 3 TCP flows, and bottleneck bandwidth
of 100Mbps

Figure 15. Experimental setup

0 2 4 6 8 10
Time (s)

0
3
6
9

12
15

Q
ue

ue

D
el

ay
 (

m
s)

P4-CoDel CoDel-ACT

Figure 16. Queue Delay comparison with bottleneck bandwidth of 100Mbps
for 10 TCP flows.

the TCP server (isolated using Linux namespaces). The total
sending rate was capped at 90% of bottleneck bandwidth, and
we used the Linux “tc” command to emulate each flow’s RTT.

Intel Tofino configuration. In our evaluations, we compared
two P4 programs for the Tofino switch: (1) P4-CoDel: an
existing open source [26] CoDel implementation that runs in
the egress pipeline, and (2) CoDel-ACT: a proposed CoDel
implementation that we developed, which runs in the egress
pipeline and leverages packet recirculation to synchronize reg-
ister states across pipeline stages. To configure recirculation,
we set up a mirroring session via the control plane.

For both programs, we integrated an L1 port bridging
P4 program with the switch ingress pipeline. This program
forwarded all packets from the TCP client to the TCP server.
Additionally, we configured the egress port queue to shape
traffic at either 100Mbps or 1Gbps (based on the experiment)
and emulate congestion at the switch.

Parameters and metrics: We set CoDel parameters,
INTERV AL = 100ms and TARGET = 5ms, as per the
RFC. We generate different workload scenarios by varying the
number of parallel TCP flows, bottleneck bandwidth shared by
the flows, and flow round trip time. All results reported are
averaged over three runs of an experiment conducted for 10
seconds. The performance metrics measured are packet queue-
ing delay and goodput. We have measured the algorithm’s ef-

0 2 4 6 8 10
Time (s)

0
75

150
225

N
um

be
r

of

D
ro

pp
ed

Pa

ck
et

s

P4-CoDel CoDel-ACT

Figure 17. Number of packets dropped with bottleneck bandwidth of
100Mbps for 10 flows.

fectiveness (aggressiveness) in terms of the number of dropped
packets, where a higher number is better. Additionally, we
have measured the algorithm’s design overheads in terms of
packet recirculation bandwidth.
Research questions. We plan to answer the following ques-
tions through our evaluation. 1⃝ How does CoDel-ACT
perform compared to existing solution, P4-CoDel? 2⃝ What
makes CoDel-ACT aggressive compared to the existing solu-
tion? 3⃝ What is the impact of packet recirculation on switch
bandwidth utilization?
Varying number of flows, flow RTT ranges between 3ms
to 25ms Fig. 12 shows the queue delay incurred by packets
with CoDel-ACT and P4-CoDel for 1, 3, and 10 parallel
TCP flows. We observe that CoDel-ACT always keeps the
average queue delay well below the TARGET, whereas the
average queue delay with P4-CoDel exceeded the TARGET
by up to 43%.

Fig. 16 shows the observed packet queue delays for 10 flows
with respect to time. The queue delay for P4-CoDel goes
up to 12 ms and remains high for over one second. However,
CoDel-ACT exceeds the TARGET only for a brief period,
and CoDel is triggered to initiate packet drops. This proves the
effectiveness of CoDel-ACT by incorporating the codel init
function.

We observe a similar trend when the bottleneck bandwidth
is set to 1 Gbps for 10, 30, and 50 TCP flows (see Fig. 13).
However, we see that P4-CoDel’s performance degrades with
an increase in bottleneck bandwidth. For both 30 and 50 TCP
flows, the average queue delay exceeded the TARGET by up
to 45%.
Varying flow RTT, bottleneck bandwidth=100Mbps, num-
ber of TCP flows=3. As per the RFC, CoDel provides
excellent performance for flows with RTTs ranging from 10

2024 IFIP Networking Conference (IFIP Networking)

345

Table I
GOODPUT (IN MILLION BITS PER SEC) FOR 10 FLOWS)

Bottleneck bandwidth P4-CoDel CoDel-ACT
100Mbps 82 82.4
1Gbps 832.6 842.3

ms to 300 ms [1]. In this experiment, we vary the flow RTT
to 10ms, 100ms, and 300ms to observe if CoDel-ACT is
sensitive to flow RTT. Fig. 14 shows that even with different
flow RTTs, the CoDel-ACT’s average queue delay was well
below TARGET . Further, it outperforms P4-CoDel.
Testing CoDel-ACT’s aggressiveness. Fig. 17 shows the
number of dropped packets with 10 TCP flows. We can
observe that CoDel-ACT drops significantly more packets
than P4-CoDel. This indicates that codel init()’s aggressive-
ness, present in CoDel-ACT but missing in P4-CoDel, is
responsible for this difference. To investigate the impact of
dropped packets, we compare the goodput of CoDel-ACT
and P4-CoDel. Table I shows that the goodput achieved with
CoDel-ACT and P4-CoDel is almost the same, with only
a slight increase in goodput for CoDel-ACT, while both are
very close to the sending rate of 90Mbps and 900Mbps.
Impact of packet recirculation and delayed state updates.
Packet recirculation generates additional packets, which can
result in a waste of network bandwidth and delayed state
updates. Our design imposes a low packet recirculation rate
(300 to 620 packets per sec) since we trigger the recirculation
process only when the system enters or comes out of the
congested queue cycles. Our evaluations show that the delayed
state updates caused by the recirculation process do not
significantly affect the effectiveness of our solution.

VII. CONCLUSION

We designed and implemented the RFC-compliant CoDel
AQM algorithm for the Intel Tofino switch. CoDel-ACT
reduces average queue delay by up to 52% compared to the ex-
isting Tofino solution, with the worst-case network bandwidth
wastage of up to 4%. Some existing works combine functions
such as traffic classification [27], scheduling [28], traffic
prioritization [29], fairness [30], and QoS management [31]
with CoDel for P4 Tofino switches. The CoDel algorithm in
these works could be replaced by CoDel-ACT to improve
their efficacy.

REFERENCES

[1] K. Nichols et al., “Controlled delay active queue management,” IETF,
RFC 8289, 2018.

[2] J. Gettys and K. Nichols, “Bufferbloat: dark buffers in the internet,”
Communications of the ACM, vol. 55, no. 1, p. 57–65, 2012.

[3] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[4] R. Pan et al., “Proportional integral controller enhanced (pie): A
lightweight control scheme to address the bufferbloat problem,” IETF,
RFC 8033, 2017.

[5] F. Schwarzkopf et al., “Performance analysis of codel and pie for
saturated tcp sources,” in 28th International Teletraffic Congress (ITC
28), vol. 01, 2016.

[6] S. Laki et al., “Towards an aqm evaluation testbed with p4 and dpdk,”
in Proceedings of the ACM SIGCOMM 2019 Conference Posters and
Demos, 2019.

[7] P. Vörös et al., “T4p4s: A target-independent compiler for protocol-
independent packet processors,” in 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing, 2018.

[8] M. Menth et al., “Implementation and evaluation of activity-based
congestion management using p4 (p4-abc),” Future Internet, vol. 11,
no. 7, p. 159, 2019.

[9] C. Papagianni and K. De Schepper, “Pi2 for p4: An active queue
management scheme for programmable data planes,” in Proceedings of
the 15th International Conference on Emerging Networking Experiments
and Technologies, 2019.

[10] “Behavioral model (bmv2),” Available online at https://github.com/
p4lang/behavioral-model.

[11] “Cisco catalyst 9000,” Available online at https : / /www.cisco.com/
c/en/us/products/collateral/switches/catalyst- 9000/white- paper- c11-
742388.html.

[12] “Explicit congestion notification (ecn),” Available online at https://
www.arista.com/en/um-eos/eos-quality-of-service#xx1166435.

[13] https://www-res.cablelabs.com/wp-content/uploads/2019/02/28094021/
DOCSIS-AQM May2014.pdf.

[14] T. Høiland-Jørgensen et al., “Piece of cake: a comprehensive queue
management solution for home gateways,” in IEEE LANMAN, 2018,
pp. 37–42.

[15] A. Sivaraman et al., “No silver bullet: Extending sdn to the data plane,”
in Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks,
2013.

[16] Intel tofino - intelligent fabric processors. Available online at https:
/ / www.intel.com / content / www / us / en / products / details / network - io /
intelligent-fabric-processors/tofino.html.

[17] R. Kundel et al., “P4-codel: Experiences on programmable data plane
hardware,” in IEEE International Conference on Communications, 2021.

[18] X. Du, Xu et al., “R-aqm: Reverse ack active queue management in
multitenant data centers,” IEEE/ACM Transactions on Networking, 2022.

[19] Agilio cx smartnics. Available online at https://www.netronome.com/
products/agilio-cx/.

[20] M. Alizadeh et al., “Data center tcp (dctcp),” in Proceedings of the
ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10. Association
for Computing Machinery, 2010, p. 63–74.

[21] X. Du et al., “R-aqm: Reverse ack active queue management in mul-
titenant data centers,” IEEE/ACM Transactions on Networking, vol. 31,
no. 2, pp. 526–541, 2023.

[22] H. Wu et al., “Ictcp: Incast congestion control for tcp in data center
networks,” ser. Co-NEXT ’10, 2010.

[23] F. Baker and G. Fairhurst, “Ietf recommendations regarding ac-
tive queue management,” https://datatracker.ietf.org/doc/draft-ietf-aqm-
recommendation/09/, 2015.

[24] Peterson, Brakmo, and Davie, “Tcp congestion control: A systems
approach,” https://tcpcc.systemsapproach.org/aqm.html, 2022.

[25] M. Menth and S. Veith, “Active queue management based on conges-
tion policing (cp-aqm),” in International Conference on Measurement,
Modelling and Evaluation of Computing Systems. Springer, 2018.

[26] P4-codel. Available online at https://github.com/ralfkundel/p4-codel.
[27] Q. Wu and o. Liu, “P4sqa: A p4 switch-based qos assurance mechanism

for sdn,” IEEE Transactions on Network and Service Management,
vol. 20, no. 4, pp. 4875–4886, 2023.

[28] A. G. Alcoz et al., “Everything matters in programmable packet schedul-
ing,” 2023.

[29] T. V. Doan et al., “Interplay between priority queues and controlled
delay in programmable data planes,” in 2023 18th Wireless On-Demand
Network Systems and Services Conference (WONS), 2023.

[30] W. G. de Morais et al., “Application of active queue management for
real-time adaptive video streaming,” Telecommunication Systems, pp. 1–
10, 2022.

[31] O. Lhamo et al., “Red-sp-codel: Random early detection with static
priority scheduling and controlled delay aqm in programmable data
planes,” Computer Communications, vol. 214, pp. 149–166, 2024.

2024 IFIP Networking Conference (IFIP Networking)

346

