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ABSTRACT
To keep up with the network speeds, many recent works propose
to offload network functions to SmartNICs. The process involves
identifying packet-processing algorithms in a network function
program then offloading them to appropriate accelerators available
on SmartNICs. This process is often done manually for each archi-
tecture and is error-prone and laborious. In this work, we propose
an automated solution to identify algorithms in network function
programs. We model our approach as a classification problem of
Machine Learning (ML) and propose using sophisticated program
embeddings for representing the network function programs. We
also identify the limited availability of datasets and propose a way
of extrapolating them by systematically generating equivalent pro-
grams using (existing) compiler transformations in popular com-
piler infrastructures. Our approach relies on modeling programs as
embeddings, uses ML models trained on such extrapolated datasets,
and shows superior results over the recent works.

CCS CONCEPTS
•Hardware→Emerging languages and compilers; •Networks
→ Programmable networks; In-network processing; • Comput-
ing methodologies → Machine learning.
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1 INTRODUCTION AND MOTIVATION
With the consistent growth in the data-rates in high-speed net-
works (e.g., data centers), there is an increasing gap between CPU
packet-processing speeds and network speeds. As a consequence,
more CPU resources are allocated for packet-processing, which can
otherwise be allocated to tenant VMs and generate revenue. To
handle this, many recent works [9, 13, 20, 31, 36, 41] proposed of-
floading Network Functions (NF) to SmartNICs that process packets
at network speeds.

SmartNICs are recently emerging Domain Specific Architecture
(DSAs) with many programmable SoC cores, memory systems, high-
speed packet I/O, and a wide range of specialized accelerators. Other
examples of such recent DSAs include NVIDIA Bluefield DPUs [28],
Netronome SmartNICs [27], Cavium LiquidIO [6], etc. To improve
their programmability, many SmartNIC vendors provide toolchains
(like SDKs). This eases the burden of the application developers:
who can either write new or port the existing NF programs written
for general-purpose processors to SmartNICs.

However, while porting applications to SmartNICs, to under-
stand and improve performance, the developers need to perform
manual analysis and multiple rounds of hand-tuning.

There have been recent research efforts [22, 34] that attempt-to-
port/aid-in-porting the network functions and distributed applica-
tions written for general-purpose processors (e.g., x86) to Smart-
NICs so as to improve performance. Clara [34] showed up to 13.8x
performance improvements by applying different porting strategies
on a trial-and-error basis. iPipe [22] offloaded compute-intensive
IPsec gateway network function that requires AES-256-CTR en-
cryption and SHA-1 authentication. They observed near-linear per-
formance of 8.6 Gbps and 22.9 Gbps for 1 KB packet size on the 10
and 25 GbE Cavium LiquidIOII [24] SmartNIC cards, respectively.

A significant portion of these performance gains can be achieved
by offloading packet-processing algorithms to SmartNIC accelera-
tors that often use hardwired logic for efficient implementations.

Tab. 1 shows examples of a few SmartNICs along with the sup-
ported on-chip accelerators that are widely used by network func-
tions and are highly compute-intensive. Hash accelerators include
operations such as CRC32 and CSUM16; crypto accelerators include
hardware implementations of public-key, private-key, and crypto-
graphic hash algorithms; and match-algorithms include regular
expression match, wild-card match, and longest prefix match.
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Table 1: Accelerator support for SmartNICs and use cases.
Hash AES, HMAC, RSA, ECC, IPsec, TLS enc, LPM Ternary regex DPI QoS AI/ML Decompression

SHA, etc. DH, DSA, etc. MACsec, etc.

SmartNIC Vs. Accelerators

Netronome Agilio CX [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Nvidia Bluefield 3 DPU [28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cavium LiquidIO [6] ✓ ✓ ✓
Marvell OCTEON 10 [24] ✓ ✓ ✓
Pensando DSC-100 [33] ✓ ✓ ✓ ✓ ✓

Network functions Vs. Accelerators

L3 router ✓ ✓
Stateful firewall ✓ ✓ ✓ ✓
VPN gateway ✓ ✓ ✓ ✓
Intrusion Detection System (IDS) ✓ ✓ ✓
5G network functions (e.g., UPF) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Distributed data stores ✓ ✓ ✓ ✓

However, for offloading a packet-processing algorithm to an
accelerator, the application developer should identify the correct re-
gion of NF program written for general-purposed cores and replace
it with the appropriate calls to the accelerator. In Tab. 1, we also
show the accelerators that can be leveraged by network functions
for performance gains. However, the process of understanding and
identifying the code is a highly laborious and tedious task, given
the fact that the same code can be expressed in a multitude of ways
and parameters, more so when it could have been optimized for
performance on that particular architecture.

Our goal is to provide an automated workflow that simplifies
cross-platform porting process for developers. Towards this goal,
one question we investigate in this work is: “Can we automatically
identify regions in network functions that can be potentially replaced
with calls to appropriate accelerators?”

As a first step towards automating this process, the regions
of code that perform a specific function should be identified and
labeled. Such labeling could serve as suggestion to the application
developer who can then replace it.

We propose to look at this problem as a ML classification ap-
proach.

There are mainly two challenges in realizing the above:

(1) How can we represent packet processing algorithms and
programs as input to the machine learning model?

(2) How can we create a realistic packet processing program
dataset that begins from practical applications and has wide
applicability on various varieties of DSAs?

For (1), one approach is to treat programs as a token of natural
languages and apply natural language processing techniques to
obtain the representations [1]. Another approach [16, 23, 34] is to
collect features (e.g., compute instructions, memory instructions)
using domain expertise for representing programs. However, these
approaches use either syntactic or semantic information of the
program, but not both. Also, we tend to miss out on program-
specific information while treating programs as natural languages.

To address these issues, different approaches for the automatic
representation of programs, called program embeddings have been
proposed [4, 37, 39]. Such representations are learned using ma-
chine learning approaches to represent programs as continuous,
distributed vectors in an n-dimensional space. As opposed to the

feature vectors that involve engineering features by domain ex-
perts, these distributed vector representations automatically learn
to represent the relevant features of the underlying input. Such a
learned distributed vector (or embedding) is a real-valued vector
whose individual dimensions are not associated with a meaning;
rather values of all the dimensions put together describe the input.
In our work, we propose to use such program embeddings (more
details in Sec. 2) to represent NF algorithms followed by training
classification models using the program embeddings.

Challenge (2) is related to the availability of datasets for training
models. The various machine learning methods are often data-
hungry, i.e., they use thousands of data points, if not more, for
training. There are no datasets for our problem that are readily
available. And obtaining such an amount of program snippets of
a particular algorithm in a network function itself is hard, and its
availability is also not guaranteed.

In this work, we first manually extract code for multiple NF algo-
rithms from the standard libraries (e.g., OpenSSL [30], CryptoPP [8],
etc.) and propose a way of extrapolating these functions to create
the dataset.

In summary, our key contributions are the following:

• We use IR2Vec, a sophisticated program-level embedding al-
gorithm/infrastructure, to represent programs from network
domain for algorithm identification.

• Modeling the algorithm identification problem using a sim-
ple and scalable machine learning approach.

• Realistic dataset collection and systematic generation of se-
mantically equivalent programs from the collected dataset
using compiler transformations.

2 BACKGROUND
2.1 LLVM IR
LLVM IR is the Intermediate Representation (IR) of the LLVM com-
piler toolchain. LLVM IR expresses program statements as a simple
set of atomic instructions similar to the assembly language but
at a higher level of abstraction. Such a representation is Turing
complete and is independent of the source language and the tar-
get architecture [21]. The instructions are typed and follow Static
Single Assignment (SSA) [12] representations. This makes LLVM
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IR more amenable for program analysis and optimizations. An ex-
ample IR is shown in Fig. 1. Language independence nature of IR
and ease of extracting control flow structures and other program
analysis information like use-def, live variables [18], etc., makes it
a suitable choice of processing programs for our problem.

2.2 IR2Vec
We use IR2Vec embeddings [39] to represent the NF programs for
our problem. IR2Vec embeddings are continuous, distributed vec-
tor representations in n-dimensions, learned to represent a given
LLVM IR. Such program embeddings are application-independent
similar to the commonly used natural language embeddings like
word2vec [25] and gloVe [32]. IR2Vec learns the syntactic correla-
tions between different instructions in IR from a program corpus
and uses a representation learning technique to generate a vocabu-
lary. This vocabulary contains embeddings for each opcode, type,
and operands that are present in the IR. These learned embeddings
mainly capture the syntactic information of a given program and
can now be used to represent programs in any language that LLVM
supports. Starting from these learned representations, IR2Vec en-
codes semantic information using various program analysis infor-
mation like use-def, liveness, and reaching definitions to form the
final representation at the function level.

IR2Vec provides a generic approach to generate embeddings at
various levels of the program. Specifically, the framework provides
a systematic approach for representing instructions as instruction
embeddings, which can be combined using different approaches
(like linear combination, machine learning models, etc.) to repre-
sent functions and programs. And these embeddings are shown
to exhibit better scalability - that can work with diverse machine
learning models, does not encounter Out Of Vocabulary (OOV)
words. Such representations are application-independent and en-
code both syntax and semantic information of the programs. It has
been shown to perform better in other related tasks in comparison
with other approaches like inst2vec [4], prograML [10], and those
that follow token-based [11] representations. Hence, we choose to
use IR2Vec embeddings for representing functions in our problem.

3 PROPOSED METHODOLOGY
Overview. For a given high-level program that implements an

algorithm (that are part of a network function), we generate LLVM
IR. As shown in Fig. 1, from the LLVM IR, we first extract the call
graph and then obtain the function level IR2Vec representations.
Next, we create a machine learning model to learn the distinction
between the functions corresponding to different functionalities.
Using this trained model, we evaluate our methodology.

Program Representation. LLVM IR of a program can potentially
contain infinite variables/constants. We abstract out such symbolic
variables/constants with generic information. This step is anal-
ogous to the commonly followed preprocessing steps in natural
language processing. IR2Vec uses this preprocessed representation
to generate program embeddings, as described in Sec. 2.

To generate the embeddings at function level, we extract the
program’s call graph to determine the appropriate caller and callee
information. And the function level embeddings are obtained as the
sum of all instruction embeddings corresponding to the instructions

in the function, as proposed by IR2Vec. If there is a call instruction
in the function, we obtain the embeddings of the callee function
corresponding to the function call. The embeddings of the callee is
now used to represent the call instruction while forming function
level embeddings. This process of generating function level em-
beddings is done in a bottom-up, depth-first manner, starting from
the nodes of the call graph that do not have any function call and
iterating up to generate the representation of the callers, whose
embeddings are to be determined.

This process of forming representations of call instructions based
on the called functions serves as contextual information, making
our approach interprocedural. Also, such an approach is important,
as almost all the standard libraries are written in a modular manner,
where the core functions are reused. For instance, OpenSSL contains
a core AES_encrypt() method where the encryption logic using
AES is present. This method is invoked by the methods that perform
different modes of AES encryption like CBC - AES_cbc_encrypt(),
ECB - AES_ecb_encrypt(), etc. In such cases, without having the
insights on the core AES_encrypt() method, it would not be pos-
sible to identify the functionality.

Training. We model the problem of algorithm identification as
a classification problem - where we classify the functions in a NF
program as one of the known classes of algorithms that can be
accelerated. Each algorithm constitutes a class, and the functions
that implement the algorithm result in the data points of that class.

We use a simple three-layered fully connected deep neural net-
work as the classifier. Function level IR2Vec representations, gener-
ated as described above is used as the input to the model. These rep-
resentations are directly obtained using the trained vocabulary [39]
without a separate learning specific to our approach.

The embeddings are further normalized following the standard
min-max normalization. Batch normalization [19] with ReLU as
the activation function is used, and a dropout of 25% is used as a
regularizer between the layers. The last layer of the network is a
softmax layer, with the number of neural units equal to the number
of classes under consideration. Given the function embeddings,
we train the model using the Stochastic Gradient Descent (SGD)
algorithm, with categorical cross-entropy as the loss function to
predict the desired class in a supervised manner.

4 EXPERIMENTATION
We set the following evaluation objectives for our approach to
identifying Packet Processing Algorithms:

(a) Evaluate if our approach using IR2Vec can qualitatively rep-
resent the programs, and help in improving the accuracy of
algorithm identification.

(b) Evaluate whether our approach to classify Network Function
algorithms can be generalized for more classes.

4.1 Dataset Collection
Algorithm identification is an undecidable problem [35]. Hence,
there is a wide potential for using ML based solutions. Identification
of suitable accelerators, manually, for hundreds of functions in a
large program can become very tedious. Hence, ML based solutions
have a wide potential to arrive at an approximate identification.
However, as mentioned earlier, an important challenge for using
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void AES_Encrypt(...) {
   int k = 2;  
 ... 
   s3=  GETU32(in + 12) ^ rk[3];
   t0 = Te0[s0 >> 24] ^ rk[ 4];

 ...
} 

void AES_CBC_Encrypt(...) {
   key = prepare_key(k);
         ...
   cipher = AES_Encrypt(input,
key); 
     ... 
} 

define void @AES_encrypt(...) { 
    %k = alloca i32 
    store i32 2, i32* %k
         ...
    %i = add i32 %in, 12 
    %2 = call @GETU32(i32 %i)
  ... 
    %s3 = and i32 %2, i32 %rk
  ... 
    ret void 
} 

define void @AES_CBC_encrypt(...)
{ 
    %key = alloca i32 
    store i32 %t, i32* %k
         ...
    %2 = call @AES_Encrypt(...)
         ...   
    ret void 
} 

    VAR = alloca INT
    STORE INT CONST PTR
     ...
    VAR = ADD INT VAR, CONST
 ...
    RET VOID

    VAR = alloca INT
    STORE INT VAR PTR
     ...
    VAR = CALL @AES_ENCRYPT(...)
 ...
    RET VOID

Callee function:
AES_encrypt()

IR2Vec
Embeddings

IR
2V
ec
 M
od
ul
e

Accelerator algorithm
Identification

ML Classifier

Function representation using
IR2Vec embeddings

Selected regions of the call graph
after preprocessing instructions

Simplified LLVM IR

Source code

Caller function:
AES_CBC_encrypt()

Figure 1: Overview of the proposed approach

ML approaches for identifying the algorithms is the non-availability
of dataset. One way to address this challenge is to manually write
different programs corresponding to each algorithm of our inter-
est. However, this is much time-consuming and laborious. On the
other hand, there are very few standard sources of implementa-
tions of algorithms of a network function, inhibiting the usage
of ML based solutions. For instance, in the case of cryptography
algorithms, there are very few libraries like OpenSSL, CryptoPP,
etc. with each of them providing functions for encryption and de-
cryption using various modes of operation wherever applicable.
We use two datasets for evaluation - (i) CRC codes obtained from
Clara [34], (ii) another dataset created out of cryptography algo-
rithms by collecting several implementations as described below.

CRC Dataset. A recent work, Clara [34] proposes a tool that pro-
vides offload insights useful to the developer during cross-platform
porting. As part of this tool, they propose a methodology to iden-
tify if the given code performs a network function. For this, they
propose a dataset containing two classes: (i) implementation of
CRC algorithms, and (ii) implementation of non-network functions
scraped from the online judge platforms. In particular, it contains
22 CRC programs and 2,785 non-CRC programs in the training set
and 33 CRC and 1,971 non-CRC programs in the test set. As it can
be seen, this dataset is of two classes, and skewed with very few
CRC programs when compared to the other class.

Cryptography Dataset. In real-world use cases, a single packet
processing application (or NF) comprises of multiple compute-
intensive algorithms and can leverage multiple SmartNIC accelera-
tors for speedups (Tab. 1). For example, a VPN gateway is composed
of 4 algorithms that can map to the accelerators for error detec-
tion, symmetric/asymmetric crypto, and secure end-to-end tunnels.
Hence, there is an increased scope of extending the binary classifi-
cation dataset proposed by Clara to support multiple classes.

Hence, we further extend the dataset to contain multiple NF
algorithms and to evaluate the generalizability of our approach. We
systematically collected programs that implement cryptography
algorithms in popular cryptography libraries like OpenSSL (version
1.1 and 3) [30], CryptoPP [8], Botan [5], Nettle [26], Wolfcrypt [40]
and MbedTLS [3].

Table 2: Dataset Description
OpenSSL OpenSSL Crypto- wolf- Mbed-

(v1.1) (v3) PP Botan Nettle Crypt TLS Total

AES 8 7 8 6 2 6 5 42
DES 13 13 8 4 4 2 4 48
RSA 5 7 4 5 0 7 3 31

Total 26 27 20 15 6 15 12 121

Sequence n

define i32
@AES_encrypt(...) { 
    %1 = alloca i32 
    store i32 2,
i32* %1 
   .... 
    ret i32 %2 
} 

Sequence 1 Sequence i

Transformed, equivalent programs
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Figure 2: Our approach for extrapolating data points

In Tab. 2, we show the libraries chosen and the number of func-
tions collected for each algorithm. As an initial step, we chose to
collect methods for encryption and decryption corresponding to
AES, DES, RSA algorithms. We consider the functions of encryp-
tion/decryption algorithms that use different modes of operation—
like CBC, OFB, ECB, CFB, CTR, CCM, GCM—as belonging to the
same class.

In total, we obtained about 121 functions performing AES, DES,
and RSA encryption/decryption from these standard libraries and
implementations. It can be seen that despite our efforts, the number
of variations of these algorithms available is small; they are too few
in number to be suitable for training a machine learning model.

Dataset expansion. Generally in modern compilers, program
transformations are implemented as optimization passes. Some
common transformations include optimizations like constant prop-
agation, dead code elimination, and loop-unrolling. In addition to
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these individual transformations, compilers also provide standard
optimization sequences like -O1, -O2, -O3, -Os, and -Oz. These
standard optimization sequences contain a sequence of transfor-
mation passes in a predetermined order arrived by expert compiler
engineers. As an example, in LLVM12, the -O2 sequence contains a
sequence of 99 individual transformation passes, while the same
number is 102 in -O3 sequence.

We propose expanding the dataset of the extracted methods
by applying various compiler transformations. These transforma-
tions, while preserving the semantics, change the code structure
by changing the size, execution time, memory characteristics and
power efficiency. This process results in several implementations
of the same algorithm that are syntactically different (but semanti-
cally equivalent), thereby adding sufficient diversity to our dataset .
These transformations include: (a) standard optimization sequences
provided by the LLVM compiler toolchain, (b) new transformation
sequences that we generate by concatenating individual transfor-
mations.

An overview of our approach is shown in Fig. 2. We first generate
the base LLVM IR file for each library. For (a), we use the 5 standard
optimization sequences readily available from LLVM to generate
5 different (semantically equivalent) versions of the same input
program. In addition, for (b), we randomly choose different per-
mutations of varying lengths among the available transformation
passes. More specifically, we obtain 300 different pass sequences,
with a random number of passes in each sequence, obtaining 306
variations (in total) for each function. Overall, we are able to gen-
erate about 37𝐾 (306 × 121) data points by following this process.
It can be seen that this process can yield a large-enough set of
data points with sufficient variation. Because the LLVM compiler
is widely used for performing architecture-independent/dependent
optimizations, these variations have a potential to have representa-
tives that are closer to the optimized codes that run efficiently on
various DSAs as well.

It can be noted that not all transformations would have an impact
on the input program and yield new transformed programs. A
simple example would be loop transformations having a little or no
impact on the program that do not contain any loops. Hence the
above process could potentially lead to duplicate data points.

There are two ways to handle duplicates: (i) duplicates can be
allowed, considering that they are the result of a valid transforma-
tion/use case; or (ii) such duplicates can be identified and removed
from the dataset, as they might have no impact depending on the
application (ML algorithm).

For (ii), it is not possible to use a duplicate elimination based
on IR-level comparison; it will not be a (program-theoretically)
sound [7] method. So, IR2Vec embedding based comparison can be
used to identify the duplicates. Such a comparison is guaranteed to
be sound, and it is very simple to implement, involving just vector
operations.

In this work, we choose not to remove the duplicates.

4.2 Detection of CRC algorithm
For our first objective, we compare our approach based on IR2Vec
embeddings for algorithm identification with the methodology of

Clara [34]. For this experiment, we use the CRC dataset of Clara af-
ter using our dataset expansion approach to remove the skewedness.
We use the non-CRC class of this dataset to serve as data points for
functions that do not have a suitable accelerator.

We obtained IR2Vec embeddings for this dataset, as explained
above. These embeddings are given as input to various classification
models like Gradient Boosting Decision Trees (GBDT), Decision
Trees (DT), K- nearest neighbors (KNN), Multilayer perceptron
(MLP), TPOT [29] (AutoML), and Support Vector Machine (SVM)
classifiers. We use sklearn module with the standard set of parame-
ters for these models, like Clara. In addition to these, we studied
the results from the three-layered neural network (DNN) described
earlier. We used precision, recall, and F1 score as the metrics for
evaluation.

We generated the IR2Vec embeddings for this dataset using
LLVM V12.0. Precision, recall, and F1 score obtained by our ap-
proach is shown in Tab. 3. Clara’s approach for algorithm iden-
tification involves extracting opcodes of the programs, applying
pattern extraction algorithms, and representing them using one-hot
encodings, followed by performing binary classification. We feel
that this process of extracting different features from the code that
can be used to identify the underlying algorithm is non-trivial. For
instance, programs that perform different functions on different ar-
chitectures would necessitate identifying different features. Hence,
coming up with such a feature set needs domain expertise. Also,
on using the IR generated with LLVM v12.0 for comparison, Clara
(which uses LLVM v6.0) generates an empty feature set making it
infeasible to compare the results. Hence, we had to tune Clara’s
implementation and experimentally set support and confidence
thresholds to 0.05 and 0.001. We also set the maximum length of se-
quences to 4. We observe that on tuning the support and confidence
thresholds of the feature extraction algorithm, Clara generated new
set of features. We use this new setup for experimentation for the
purpose of comparison. We obtain 0.983, 0.488, and 0.899 as the
precision, recall, and F1 scores from the best performing DT model
described by Clara for this experiment. In comparison, using our
approach we obtain 1.0, 0.998, and 0.998 as the precision, recall, and
F1 scores from our dense model.

It can also be seen that the precision/recall values across all
models corresponding to our approach are consistently better than
the earlier approach of Clara’s algorithm identification.

4.3 Detection of cryptography algorithms
As earlier, we generate the embeddings for our collected cryptog-
raphy dataset; these are given as input to the classification phase
along with the CRC dataset used in Sec. 4.2. Even for this, we
perform experiments using various machine learning models and
obtain the weighted precision, recall, and F1 score.

In order to compare our results with Clara, we have modified
it to predict multiple classes. We provide the LLVM IR from our
generated dataset to Clara’s framework. Even for this dataset, we
observe that the default Clara setup generates an empty feature
set, and hence could not be used for experimentation as such. So,
we modify Clara’s MSPE implementation as explained earlier in
Sec. 4.2 for further experimentation and analysis.
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Table 3: Precision, Recall and F1 score for algorithm identification using Clara’s approach and our approach
Model CRC Cryptography

Clara IR2Vec Clara IR2Vec
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

GBDT 0.992 0.435 0.605 0.974 0.997 0.985 0.664 0.594 0.627 0.949 0.947 0.948
DT 0.983 0.488 0.652 0.994 0.995 0.994 0.661 0.622 0.641 0.969 0.968 0.968
MLP 0.983 0.437 0.605 0.997 0.999 0.998 0.666 0.590 0.626 0.959 0.958 0.958
SVM 0.992 0.484 0.651 0.999 0.995 0.997 0.646 0.604 0.624 0.898 0.894 0.896
kNN 0.980 0.486 0.650 0.999 0.999 0.999 0.596 0.630 0.613 0.976 0.974 0.975
AutoML 0.980 0.487 0.651 0.999 0.999 0.999 0.661 0.621 0.640 0.979 0.978 0.978
DNN - - - 1 0.998 0.999 - - - 0.977 0.976 0.976

From the best performing DT model of Clara, we obtain preci-
sion, recall, and F1 values as 0.661, 0.622, and 0.641 respectively.
Using our approach, we obtain 0.979, 0.978, and 0.978 as the preci-
sion, recall, and F1 scores from the AutoML model. Metrics from
other ML models using our dataset is shown in Tab. 3. We obtain
an F1 score of 0.99 and 0.97 using the DNN model described in
Sec. 3 on CRC and cryptography datasets respectively. It can be
seen that our approach consistently results in superior performance
irrespective of the underlying ML model. Also, our approach using
IR2Vec embeddings achieves superior results and generalizes better
on multiclass dataset in comparison with Clara. This could be at-
tributed to the ability of IR2Vec embeddings as it captures semantic
and syntactic information of the program. However, in compar-
ison, Clara uses a set of opcodes obtained by pattern extraction
algorithms for identifying algorithms.

5 RELATEDWORK
Clara [34] demonstrates performance gains by offloading software
middlebox (NFs) programs to SmartNICs. Clara generates offloading
insights by analyzing unported NF programs and suggests effec-
tive porting strategies based on the insights. As part of it, Clara
automatically identifies packet-processing algorithms (e.g., CRC,
LPM) that can be accelerated. However, Clara’s approach to repre-
sent programs requires domain expertise, especially for selecting
relevant program features based on the underlying dataset and
application. In contrast, this work proposes to use program embed-
ding, an alternative and sophisticated approach that automatically
learn to represent the relevant program features. Such an approach
encodes both syntactic and semantic information while represent-
ing programs and is application-independent and more scalable.
Gallium [42], Flightplan [38], and Lyra [17] enable mapping of code
blocks of an NF program across multiple devices (e.g., Server, Smart-
NICs, FPGAs, programmable switch ASICs). In contrast, this work
enables the mapping of code blocks across accelerators.

Priorworks have leveraged accelerators on SmartNICs and demon-
strated significant performance gains for network functions. QoS
accelerator is used by OpenBNG [20] and VFP [14]; packet-rewrite
accelerator by HyperNAT [13] and [9]; symmetric crypto (AES)
accelerator by [9]; flow-cache accelerator by SmartWatch [31];
AI/ML accelerators by [15]; crypto engines, compression engine,
and pattern-matching engines by ipipe [22]. These works provide
strong motivation for mapping packet-processing applications to
accelerators. Our work is a first step to enable automatic mapping
of code blocks to appropriate accelerators.

Recently, different ways of representing programs have been
proposed. They either follow token based representations [11], Ab-
stract Syntax Tree based representations [2], or IR based representa-
tions [4, 37, 39]. Naturally, IR-based embeddings are programming
language independent and are easier to encode semantic informa-
tion via compiler analysis. These embeddings are often learned
in a supervised manner, specific for a task [2, 11]. We use IR2Vec,
which is learned in an unsupervised manner, making it application-
independent.

6 CONCLUSIONS AND FUTUREWORK
We proposed a novel way to classify packet processing algorithms
as a means to map them to accelerators. Our methodology relies on
(i) realistic collection of programs that could potentially be mapped
to accelerators, (ii) systematic generation of large dataset using
(existing) compiler transformation, (iii) using program embeddings
based techniques, and (iv) ML techniques for better results.

We plan to expand the dataset with more data points and more
classes like SHA, HMAC, ECC, etc.

Another potential future work is to reorient our approach such
that, given a network function with 𝑛 algorithms, we would be able
to map them to the respective accelerator.
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