
TurboEPC: Leveraging Dataplane Programmability to Accelerate
the Mobile Packet Core

Rinku Shah, Vikas Kumar, Mythili Vutukuru, Purushottam Kulkarni
Department of Computer Science & Engineering

Indian Institute of Technology Bombay
rinku@cse.iitb.ac.in,vikask@iitb.ac.in,{mythili,puru}@cse.iitb.ac.in

ABSTRACT
Recent architectures of the mobile packet core advocate the separa-
tion of the control and dataplane components, with all signaling
messages being processed by the control plane entities. This paper
presents the design, implementation, and evaluation of TurboEPC,
a redesign of the mobile packet core that revisits the division of
work between the control and data planes. In TurboEPC, the con-
trol plane offloads a small amount of user state to programmable
dataplane switches, using which the switches can correctly pro-
cess a subset of signaling messages within the dataplane itself. The
messages that are offloaded to the dataplane in TurboEPC consti-
tute a significant fraction of the total signaling traffic in the packet
core, and handling these messages on dataplane switches closer to
the end-user improves both control plane processing throughput
and latency. We implemented the TurboEPC design using P4-based
software and hardware switches. The TurboEPC hardware proto-
type shows throughput and latency improvements by up to 102×
and 98% respectively when the switch hardware stores the state
of 65K concurrent users, and 22× and 97% respectively when the
switch CPU is busy forwarding dataplane traffic at linerate, over
the traditional EPC.

CCS CONCEPTS
• Networks → In-network processing; Programmable net-
works;Mobile networks.

KEYWORDS
LTE-EPC, cellular networks, programmable networks, in-network
compute, smartNIC

ACM Reference Format:
Rinku Shah, Vikas Kumar, Mythili Vutukuru, Purushottam Kulkarni. 2020.
TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile
Packet Core. In Symposium on SDN Research (SOSR ’20), March 3, 2020, San
Jose, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3373360.3380839

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’20, March 3, 2020, San Jose, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7101-8/20/03. . . $15.00
https://doi.org/10.1145/3373360.3380839

1 INTRODUCTION
Software Defined Networking (SDN) is a network design paradigm
that advocates the separation of the control plane of a network ele-
ment, which makes the decision on how to handle network traffic,
from the dataplane that does the actual packet forwarding. With
SDN, the more complex control plane functionality can be logically
centralized and implemented in agile software controllers, while
the dataplane can be implemented in simpler, efficient forwarding
switches. This principle of separating the control and dataplane
has also been applied to the design of the mobile packet core, and
is referred to as Control and User Plane Separation (CUPS) [2] by
the telecom community. The mobile packet core, e.g., the 4G LTE
EPC (Long Term Evolution Evolved Packet Core), consists of net-
working elements that perform control plane functionality such as
authenticating users and setting up data sessions, and dataplane
functionality of forwarding user traffic from the wireless radio net-
work to external data networks (§2). With recent releases of 4G (and
the new 5G standards) espousing the CUPS principle, the dataplane
can move closer to the end users, enabling applications that require
low latency data forwarding (e.g., self-driving cars).

EPC procedure Number of transactions/sec
Attach 9K
Detach 9K
S1 release 300K
Service request 285K
Handover 45K
Network load when total subscribers in the core=1M

Table 1: Sample EPC load statistics [43, 55].

In this paper, we revisit the boundary between the control plane
and dataplane in the CUPS-based design of the mobile packet
core. Our work is motivated by two observations pertaining to
the signaling traffic in the core. First, signaling traffic is growing
rapidly [8, 42], fueled by smartphones, IoT devices and other end-
user equipment that connect frequently to the network in short
bursts. In fact, the signaling load in LTE is 50% higher than that of
2G/3G networks [42]. This high signaling load puts undue pressure
on the packet core, making it difficult for operators to meet the
signaling traffic SLAs [29]. Second, the signaling procedures can
be classified into two types based on their frequency (see Table 1)
and nature of processing. A small percentage of the signaling traf-
fic consists of procedures like the attach procedure (1–2% of total
traffic, as per [43, 55]) that is executed when a user connects to the
mobile network for the first time, or the handover procedure (~5%)
that is executed when the user moves across regions of the mobile
network. A significant fraction of the signaling traffic (~63–90%) is

https://doi.org/10.1145/3373360.3380839
https://doi.org/10.1145/3373360.3380839
https://doi.org/10.1145/3373360.3380839

SOSR ’20, March 3, 2020, San Jose, CA, USA Rinku Shah, et al.

Figure 1: The mobile packet core.

made up of procedures like the S1 release that is invoked to release
the forwarding state of the user when the user session goes idle for
a brief period, and the service request procedure that restores the
user’s forwarding state when the user becomes active again. Fur-
ther, these two classes of signaling procedures also require access
to different types of state during their processing. Attaching a user
to the network entails authenticating the user using a network-
wide subscriber database, and setting up the forwarding path of the
user under mobility requires access to the global network topology.
However, frequent signaling procedures like the S1 release and
service request access only the user context of a single subscriber,
and not network-wide global state.

The key idea of our work is that we can improve control plane
performance of the mobile packet core by offloading a subset of
the control plane procedures like the S1 release and service request
from the control plane onto the dataplane switches. Our idea is
inspired by recent advances in dataplane technologies, where data-
plane switches are evolving from fixed function hardware towards
programmable components that can forward traffic at line rate
while being highly customizable [41, 53]. Since the S1 release and
service request procedures only access and modify user-specific
context, the handling of these procedures can be embedded into the
packet processing pipeline of programmable dataplane switches,
provided the required user context is made available in the switches.
Offloading these frequent signaling procedures to the dataplane
switches improves both control plane throughput (by utilizing spare
switch capacity for handling signaling traffic) and latency (by han-
dling signaling traffic closer to the end user at the switches). We
will use the term offloadable procedures to describe signaling pro-
cedures in the mobile control plane that can be easily offloaded to
programmable dataplane switches.

This paper describes TurboEPC (§3), a redesign of the LTE EPC
mobile packet core, where offloadable control plane procedures
are handled at programmable switches in the dataplane for better
control plane performance. TurboEPC modifies the processing of
the non-offloadable messages (like the attach procedure) in the
control plane in such a way that a copy of the user-specific context
information that is generated/modified during such procedures
is pushed to dataplane switches closer to the end user. This user
context is stored in the switches along with the forwarding state
needed for dataplane processing, and is used to process offloadable
signaling messages within the dataplane switch itself.

There are several challenges in realizing this idea. First, the
control plane state stored in switches may be modified locally by
the offloaded signaling messages, causing it to diverge from the
“master copy” in the centralized control plane. This inconsistency
in state may impact the correctness of the processing of other
non-offloadable signaling messages in the control plane, but syn-
chronizing the two copies of the state continuously will erode the
performance gains of the offload itself. TurboEPC overcomes this
challenge by synchronizing the offloaded control plane state with
its master copy only when such state is required for the process-
ing of some non-offloadable message, and piggy-backs this state
onto the said non-offloadable message itself. Second, dataplane
switches have limited memory, and the contexts of millions of
active users ([55, 57]) cannot possibly be accommodated within a
single switch. To overcome this challenge, TurboEPC partitions user
context across multiple switches as per operator policy, thereby
increasing the probability that the user context can be stored within
the dataplane. Third, switch failures can lead to loss of the latest
version of the user context stored in switches, and result in inconsis-
tencies in the control plane state of the user. TurboEPC overcomes
this challenge by replicating user context across switches and im-
plements a failover mechanism to tackle switch failures.

We implemented TurboEPC (§4) over a simplified mobile packet
core consisting of the ONOS [31] SDN controller in the control plane
and P4-based bmv2 software switches [58] in the dataplane. The con-
trol and dataplane components communicate using P4Runtime [59].
Our P4-based dataplane switch pipeline was also ported to P4-
programmable Netronome Agilio CX smartNICs [53], helping us
realize an implementation of TurboEPC on programmable hardware.
Evaluation of our prototype (§5) shows that the software proto-
type of TurboEPC improves LTE EPC control plane throughput by
2.3× and reduces latency by 90% over the traditional CUPS-based
EPC design over realistic traffic mixes, by utilizing spare dataplane
switch capacity for signaling message processing. Our hardware
prototype shows throughput and latency improvements by up to
102× and 98% respectively when the switch hardware stores the
state of 65K concurrent users, and 22× and 97% respectively when
the switch CPU is busy forwarding dataplane traffic at linerate.

While prior work has proposed several optimizations to the mo-
bile packet core architecture (§6), to the best of our knowledge, we
are the first to show that the control plane of mobile data networks

TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile Packet Core SOSR ’20, March 3, 2020, San Jose, CA, USA

(a) Attach procedure

(b) S1 release procedure
(c) Service request procedure

Figure 2: LTE EPC procedures.

can be accelerated by offloading signaling procedures on to pro-
grammable dataplane switches. Further, while we have evaluated
our ideas over the 4G core, we believe that our contributions apply
to the future 5G packet core [17] as well, because the design of the
5G dataplane maps closely to that in the CUPS-based 4G EPC. To
summarize, the key contributions of this paper are:
• TurboEPC, a redesigned mobile packet core that offloads a
significant fraction of signaling procedures from the con-
trol plane to programmable dataplanes, thereby improving
performance.
• An implementation of TurboEPC over P4-based programmable
software/hardware switches, to demonstrate the feasibility
of our design.
• A quantification of the performance gains of TurboEPC over
the traditional CUPS-based EPC design.

2 BACKGROUND & MOTIVATION
Mobile packet core architecture. The core of a mobile network
connects the radio access network, consisting of user equipments
(UEs) and the base stations (eNBs), with other packet data networks,
including the Internet. Figure 1(a) shows the architecture of the
traditional 4G packet core, also called the LTE EPC (Long Term
Evolution Evolved Packet Core). The main components of the EPC
are the control plane Mobility Management Entity (MME) that han-
dles all signaling procedures, and the dataplane Serving and Packet
Gateways (SGW and PGW) that forward user traffic. The SGW and
PGW also participate in control plane procedures pertaining to
establishing and tearing down user forwarding paths. In order to
enable independent scaling of the control and dataplane logic in the
S/P-GWs, later releases of 4G LTE espoused the Control and User
Plane Separation (CUPS) principle. Figure 1(b) shows the LTE EPC
architecture with CUPS; the S/P-GWs are separated into control
and dataplane entities, which communicate using a standardized
protocol called PFCP (Packet Forwarding Control Protocol [2]). The
upcoming 5G standard fully embraces the CUPS principle, as shown
in Figure 1(c). In the 5G core, the Access and Mobility Management
Function (AMF), Session Management Function (SMF), and other
components handle signaling traffic in the control plane, while the
User Plane Function (UPF) forwards traffic in the dataplane. The
control and dataplane components once again communicate via
PFCP. We base our discussion of TurboEPC in the rest of the pa-
per on the CUPS-based EPC architecture shown in Figure 1(b). We
assume that the MME and the control plane components of the S/P-
GWs are implemented atop an SDN controller, and the dataplane
of the S/P-GWs is implemented in SDN switches. Our ideas easily

generalize to the 5G architecture, as well as other CUPS-based EPC
implementations, e.g., if the control plane components were to be
standalone applications.
LTE EPC procedures. Figure 2 briefly illustrates a subset of the
LTE EPC control plane procedures When a UE connects to a LTE
network for the first time, the initial message sent from the UE via
the eNB triggers the attach procedure in the core. During this pro-
cedure, the UE and the network mutually authenticate each other,
by using the user state stored in Home Subscriber Subsystem (HSS),
and establish security keys for use during future communication.
Finally, the MME sets up the state required to forward user traffic
through the core at the SGW and PGW that are on the path from
the user to the external packet data network. The detach procedure
reverses the processing of the attach procedure.

In the dataplane, user data packets are tunneled through the S/P-
GWs using the GPRS Tunneling Protocol (GTP). The GTP header
consists of Tunnel Endpoint Identifiers (TEIDs) that uniquely iden-
tify the path of a user’s traffic through the core, and the S/P-GWs in
the core network route dataplane traffic based on the TEID values.
Separate TEIDs are generated for each of the two links on the data-
path (eNB-SGW and SGW-PGW) and for each of the two directions
of traffic (uplink and downlink). When a user’s IP data packet ar-
rives from the wireless network at the eNB, it is encapsulated into
a GTP packet, which is then transmitted over UDP/IP, first between
the eNB and the SGW, and then between the SGW and PGW. The
egress PGW strips the GTP header before forwarding the user’s
data to external networks.

If the UE goes idle without sending data for a certain duration
(usually 10-30 seconds [21]), a S1 release procedure (figure 2(b)) is
invoked. During this procedure, the uplink/downlink forwarding
rules for the user are deleted from the eNB, downlink forwarding
rules are deleted from the SGW, and the connection state of the
user changes idle. Later, when the UE becomes active again, the
UE initiates a service request procedure (figure 2(c)) to restore the
forwarding state that was released during the idle period at the
dataplane gateways. The user state at the MME also changes back
to being actively connected. When a UE moves from one network
location to another, it triggers a handover procedure in the core. The
handover procedure involves, among other things, releasing the
user’s forwarding context in the old dataplane gateways, and setting
up the user’s forwarding context along the new path. Note that
the core network performs several other procedures beyond those
discussed here; however, this description suffices to understand our
work.

SOSR ’20, March 3, 2020, San Jose, CA, USA Rinku Shah, et al.

State Description Example network-wide or local
Security keys Used for user authentication, authorization, anonymity,

confidentiality.
KASME , CK, IK, AV, KNASenc , KNASint network-wide

Permanent identifiers Identifies the user globally IMSI, MSIN network-wide
Temporary identifiers Temporary identity for security GUTI, TMSI per-user
IP address Identifies the user UE IP address network-wide
Registration management state Indicates if the user is registered to the network ECM-DEREGISTERED, ECM-REGISTERED network-wide
Connection management state Indicates if the user is currently idle or connected ECM-IDLE, ECM-CONNECTED per-user
User location Tracks the current user location Tracking Area(TA), TAI per-user
Forwarding state Used for routing data traffic Tunnel end-point identifiers(TEID) per-user
Policy/QoS state Determines policies & QoS values GBR, MBR per-user

Table 2: Classification of LTE EPC state.

Message Security
keys

Permanent
identifiers

Temporary
identifiers

IP address Registration
management
state

Connection
management
state

User
location

Forwarding
state

Policy
/QoS
state

Frequency
(%)

Attach req r+w r r+w r+w r+w r+w r+w r+w r+w 0.5 – 1
Detach req — r r+w r+w r+w r+w r+w r+w — 0.5 – 1
Service req — — r+w r — r+w — r+w — 30 – 46
S1 release — — r+w r — r+w — r+w — 30 – 46
Handover req r+w r r+w r+w r+w r+w r+w r+w r+w 4 – 5

Table 3: Classification of LTE EPC messages.

Motivation for TurboEPC. Table 2 shows the various compo-
nents of the per-user state, or user context, that is accessed by LTE
procedures [16]. One key contribution of our work is to identify
parts of the user context that have network-wide scope (shaded rows
in the table). A piece of user context has network-wide scope if
it is derived from, or depends on, network-wide information. For
example, the security keys of the user or the IP address are derived
from information that is located in the centralized HSS database,
and hence have network-wide scope. On the other hand, the con-
nection state of a user (whether connected or idle) is only changed
based on local events at the eNB (whether radio link is active or
not), and hence has local scope.

Next, Table 3 shows the various user states that are accessed
during the processing of each LTE EPC procedure, along with the
relative frequencies of each procedure. The shaded columns rep-
resent the states with network-wide scope. We see from this table
that the S1 release and service request procedures modify only the
connection management state (from ECM-CONNECTED to ECM-
IDLE and vice versa), forwarding state (GTP tunnel identifiers),
and temporary user identifiers, none of which have network-wide
scope. Therefore, if we offload this subset of per-user state to data-
plane switches closer to the eNB edge, the S1 release and service
request procedures can be processed within the dataplane itself,
without being forwarded all the way to the centralized controller.
How do we identify which location on the edge to offload this state to?
Note that a given user is only connected to one eNB at a time, and
any changes in user location are notified to the core via suitable
signaling messages (e.g., handover). Therefore, it is safe to offload
some parts of the user context to the edge close to the current eNB,
without worrying about concurrent access to this state from other
network locations. The offload of the S1 release and the service
request procedures to the edge is particularly useful because of
the high proportion of these messages in the already high LTE
signaling traffic [8, 42, 43, 55]. Further, the latency targets for these
signalling messages in future networks [1, 20, 28] is as low as 1ms.
Therefore, if we process these high frequency signaling messages

(a) Traditional CUPS-based EPC (b) TurboEPC

Figure 3: TurboEPC Design.

at the edge closer to the user, we can more easily achieve these
stringent latency bounds, and protect the core from high signaling
load.

3 TURBOEPC DESIGN
We begin with an overview of TurboEPC’s basic design (§3.1) and
then describe design features related to scalability (§3.2) and fault
tolerance (§3.3).

3.1 Overview
The key idea of TurboEPC is to offload a subset of the user context,
and a subset of LTE EPC procedures to the edge, on to dataplane
switches closer to the eNB, so that the throughput and latency of
processing suchmessages can be improved.We define an offloadable
state as that which is accessed/modified by local events at the edge,
and is never accessed/modified concurrently frommultiple network
locations. A particular LTE EPC procedure is offloadable if all the
states that are needed to process the message are also offloadable.
We will refer to messages that are not offloadable as non-offloadable
messages. While this paper applies the concepts of offloading state

TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile Packet Core SOSR ’20, March 3, 2020, San Jose, CA, USA

User state (in bytes) Forwarding state (in bytes)
eNB 0 32
SGW 64 28
PGW 0 19

Table 4: Size of state stored at TurboEPC switches.
and control plane messages to the EPC architecture, our ideas can
be generalized to other systems where these definitions apply as
well.

Figure 3 compares the CUPS-based traditional EPC design with
TurboEPC. In the traditional CUPS-based EPC design (Figure 3(a)),
theMME, SGW-C, and PGW-C components are implementedwithin
a root SDN controller in the control plane, while the dataplane pro-
cessing is performed in dataplane switches (SGW-D & PGW-D).
The eNB forwards all control plane traffic to the root controller,
which processes these messages and installs forwarding state at the
S/P-GW switches. All control plane state, including the per-user
context, is maintained only in the control plane. In contrast, in the
TurboEPC design (shown in Figure 3(b)), the eNB forwards offload-
able messages (e.g., S1 release and service request) to the dataplane
S/P-GW switches.1 To enable the processing of offloadable signal-
ing messages in the dataplane, the root controller in TurboEPC
pushes a subset of the generated/modified per-user context into the
dataplane switches after the completion of every non-offloadable
signaling message processing. The user context that is pushed to
the dataplane consists of a mapping between the UE identifier and
the following subset of information pertaining to the user: the tun-
nel identifiers (TEIDs) and the UE connection state (connected/idle).
This user context is stored in dataplane switch data structures,
much like the forwarding state, and consumes an additional ≈64
bytes of memory over and above the ≈32 bytes of forwarding state
in our prototype (as shown in Table 4).

Offloadable signaling messages that arrive at the edge dataplane
switches (close to the eNB) are processed within the switch dat-
aplane itself, by accessing and modifying the offloaded per-user
context. For example, the S1 release request processing requires the
TurboEPC switch dataplane to delete the uplink/downlink TEIDs
at the eNB and the downlink TEID at the SGW, change the user
connection state to idle, and update GUTI if required. Because these
offloadable messages reach the switch at least a few tens of seconds
(idle timeout) after the context is pushed by the root controller, the
state offload does not cause any additional delays while waiting for
state to be synchronized. If the signaling message requires a reply
to be sent back to the user, the reply is generated and sent by the
switch dataplane as well.

Note that, after the user context has been modified by the offload-
able signaling messages within the switch data structures, the latest
copy of this state resides only in the dataplane. TurboEPC does
not synchronize this state back to the root after every modification
to the offloaded state, because doing so nullifies the performance
gains due to offload in the first place. Instead, TurboEPC lazily syn-
chronizes this state with its master copy at the root controller only
when required. That is, all future offloadable messages will access
the latest copy of the offloaded state within the dataplane itself,
and non-offloadable messages that do not depend on this offloaded
1We assume that the eNB is capable of analyzing the header of a signaling message to
determine if it is offloadable or not.

state will be directly forwarded to the root by the eNB. However,
there are some non-offloadable messages in EPC (e.g., some types of
handover messages) that require access to both the latest offloaded
user context in the dataplane as well as the non-offloaded state
stored in the root. These messages are first sent to the dataplane
switches by the eNB, and any processing of the message that can
be done without access to global state is performed at the switch
itself. Next, the message is forwarded from the dataplane switch to
the root controller, with a copy of the modified user context (that is
subsequently invalidated at the switch) appended to the packet, in
order to correctly complete the rest of the processing at the root.

We acknowledge that TurboEPC introduces a small amount of
overhead during the processing of non-offloadable handover mes-
sages, since we need to piggyback the user context from the switch
to the root controller, as described above. This overhead may be
acceptable in current networks, because the handover messages
comprise only 4–5% [43, 55] of all signaling traffic. However, the
handover traffic can increase for future networks, e.g., with small
cells in 5G. We plan to revisit our handover processing to reduce
overhead in such usecases as part of our future work.

This basic design of TurboEPC faces two significant challenges,
(i) A typical mobile core must handle millions of active connected
users [55, 57], while switch memory is usually limited. For example,
recent high-end programmable switches have a few tens of MB of
memory available to store tables [41], which means that a single
switch can only store user context information for a few 100K users
in our current design. In fact, the Netronome programmable NIC
hardware used in our prototype implementation [54] could only
store user context information for 65K users. Therefore, it is unlikely
that a single dataplane switch can accommodate the contexts of all
users connected to an eNB. (ii) The latest version of the modified
user context stored at the switches may be lost in the case of switch
failures, making the UE’s view and the network’s view of the user’s
context inconsistent. We now describe how TurboEPC overcomes
these challenges.

3.2 Partitioning for Scalability
In order to overcome single switch memory limitations, and maxi-
mize handling of offloadable messages at the dataplane, TurboEPC
relies on multiple programmable switches in the core network. Tur-
boEPC partitions the user context required to handle offloadable
messages amongst multiple dataplane switches along the path from
the eNB to S/P-GW (possibly including the S/P-GW itself). Further,
if the dataplane switches cannot accommodate all user contexts
even with partitioning, some subset of the user contexts can be
retained in the root controller itself. With this design, any given
dataplane switch stores the contexts of only a subset of the users,
and handles the offloadable signaling messages pertaining to only
those users. The switches over which the partitioning of user con-
text state is done can be connected to each other in one of two
ways, as we describe below.
Series design. In the series design shown in Figure 4(a), the contexts
of a set of users traversing a certain eNB to S/P-GW path in the
network are split amongst a series of programmable switches placed
along the path. When an offloadable control plane message arrives
at one of the switches in the series, it looks up the user context
tables to check if the state of the incoming packet’s user exists on

SOSR ’20, March 3, 2020, San Jose, CA, USA Rinku Shah, et al.

Figure 4: Scalability and fault tolerance in TurboEPC.

the switch. If it exists (a hit), the switch processes the signaling
message as discussed in §3.1. If the user context is not found (a
miss), the packet is forwarded to the next switch in the series until
the last switch is reached. If the user context is not found even at
the last switch, the message is forwarded to the root controller, and
is processed like in the traditional EPC.
Parallel design. Figure 4(b) depicts a parallel design, where the
user context is distributed amongst programmable switches located
on multiple parallel network paths between the eNB and the S/P-
GW in the network. The difference from the series design is that the
eNB now needs to maintain information on how the user contexts
are partitioned along multiple paths, and must forward offload-
able messages of a certain user along the correct path that has the
user’s state. This entails the extra step of parsing the signaling
message header to identify the user, and an additional table lookup
to identify the path to send the message on, at the eNB. Offloadable
signaling messages that do not find the necessary user context at
the switches on any of the parallel paths are forwarded to the root.
While the series design leads to simpler forwarding rules at the eNB,
the parallel design lends itself well to load balancing across network
paths. Note that, while our current implementation supports only
the simple series and parallel designs described above, a network
could employ a combination of series and parallel designs, where
user contexts are partitioned across multiple parallel paths from
the eNB to the S/P-GWs, and are further split amongst multiple
switches on each parallel path. Across all designs, the root con-
troller installs suitable rules at all switches, to enable forwarding
of signaling message towards the switch that can handle it. §5 com-
pares the performance of both designs, and evaluates the impact of
partitioning state on TurboEPC performance.
Partitioning user context. The question of how best to partition
user contexts across multiple programmable switches in a large
network depends uponmany factors, including the number of active
users, the size of the core network, the capacity of the programmable
switches, and the routing and traffic engineering policies employed
within the network, and is beyond the scope of this paper. Another

interesting question that we defer to future work is deciding which
users should be handled at which switches. With the advent of new
use cases such as vehicular automation, IoT, smart sensors, and
AR/VR in next generation networks, it is becoming important to
provide ultra-low latency and ultra-high reliability in processing
signaling traffic of some users. Subscribers who require low latency
for their frequent signaling requests, but are not highly mobile (e.g.,
smart sensors), are ideal candidates to offload to the dataplane. It is
also conceivable to think that an operator would wish to offload
the contexts of premium subscribers. TurboEPC can support any
such operator-desired placement policy.

3.3 Replication for Fault Tolerance
In TurboEPC, a subset of the user context is pushed into the data-
plane switches during the attach procedure. This context is then
modified in the dataplane tables during the processing of subse-
quent offloadable signaling messages. For example, the S1 release
message changes the connection state in the context from con-
nected to idle. In the case of a switch failure, such modifications
could be lost, leaving the UE in an inconsistent state. For example,
a UE might believe it is idle while a stale copy of the user con-
text at the root controller might indicate that the user is actively
connected.

To be resilient to such failure scenarios, TurboEPC stores the user
context at one primary dataplane switch, and another secondary
switch. During the processing of non-offloadable messages such as
the attach procedure, the root controller pushes the user context
to the primary as well as the secondary switch of that user. The
root also sets up forwarding paths such that offloadable signaling
messages of a user are directed to the primary switch of the user.
Upon processing an offloadable message, the primary switch first
synchronously replicates the updated user context at the secondary
switch, before generating a response to the signaling message back
to the user, as shown in Figure 4(c). Our current implementation
uses simple synchronous state replication from the primary to one
other secondary switch, and is not resilient to failures of both the

TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile Packet Core SOSR ’20, March 3, 2020, San Jose, CA, USA

Figure 5: TurboEPC implementation.

primary and secondary switches in quick succession. We plan to
evolve our design for replication acrossmultiple secondary switches
as part of future work, using techniques from recent research [24].

If a primary switch fails before replication completes, no re-
sponse is sent to the user, the user will retry the signaling message,
and will be redirected to a new switch after the network repairs the
failure. If the primary switch fails after successful replication, the
SDN controller will be notified of the failure in the normal course of
events, e.g., in order to repair network routes, and the TurboEPC ap-
plication installs forwarding rules to route subsequent offloadable
messages of the user to the secondary switch. The root controller
also synchronizes itself with the latest copy of user context from
the now primary (former secondary) switch, and repopulates this
context at another new secondary switch. Users served by the failed
switch may see a temporary disruption in offloadable message re-
sponses (along with a disruption in dataplane forwarding) during
the time of failure recovery and we evaluate the impact of such
disruptions in §5.

4 IMPLEMENTATION
We implemented simplified versions of the CUPS-based traditional
EPC and TurboEPC in order to evaluate our ideas. We have built
our prototype by extending the SDN based EPC implementation
available at [47] & [22]. Our implementation supports a basic set of
procedures: attach, detach, handover, S1 release, and service request
in the control plane, and GTP-based data forwarding. While our
implementation of these procedures is based on the 3GPP standards,
complete standards compliance was not our goal, and is not critical
to our evaluation. The source code of TurboEPC is available at [48].

Figure 5 shows the various components of our implementation. A
load generator emulates control and dataplane traffic from multiple
UEs to the core, a simplified eNB switch implements only the wired
interface to the core, and a sink consumes the traffic generated
by the load generator. The load generator is a multi-threaded raw-
sockets based program of 5.3K lines, that generates EPC signaling
messages and TCP data traffic. The load generator can emulate
traffic from a configurable number of concurrent UEs. Further, the
emulated traffic mix (i.e., the relative proportions of the various
signaling and dataplane messages) is also configurable.

The control plane components of the packet core (MME, SGW-
C, PGW-C) are implemented within an SDN controller. The dat-
aplane switches (eNB, SGW-D, PGW-D) are implemented as P4-
based packet processing pipelines in approximately 3K lines of P4
code While the dataplane performs only GTP-based forwarding in

the traditional CUPS-based EPC prototype, it also performs addi-
tional processing of offloadable signaling messages in TurboEPC.
We have compiled our TurboEPC P4 code to run on two targets:
the bmv2 simple_switch_grpc [58] software switch target, and the
Netronome CX 2x10GbE [54] smartNIC hardware target. We now
describe these hardware and software switches.
TurboEPC software switch. In the software switch based Tur-
boEPC prototype, the SDN application that forms the EPC control
plane is implemented in the ONOS controller [31] in 10K lines
of Java code. The offloadable message processing is implemented
within a local ONOS controller that is co-located with the P4-based
software dataplane switches. This local controller configures and
modifies the P4 software switch tables that contain the offloaded
state. We use P4Runtime [59] as the communication protocol be-
tween the ONOS controller and the P4 software switch. However,
the current P4Runtime v1.0.0 does not support multiple controllers
(e.g., local and root controllers) configuring the same dataplane
switch. Therefore, we built custom support for this feature by modi-
fying the proto/server package of the P4Runtime [59] to send/receive
packets to/from multiple controllers. While our initial implementa-
tion simply broadcast control plane messages to all the controllers,
this resulted in unnecessary message processing overhead at the
controllers. Therefore, we further modified the P4Runtime agent
at the bmv2 switch and the ONOS controller to enable a switch to
identify the specific controller where the control packet should be
forwarded to. This optimization required significant code changes
but also improved performance.
TurboEPChardware switch.Our hardware-based TurboEPC switch
did not integrate with the ONOS SDN controller used in the soft-
ware prototype, due to limitations of the control-dataplane com-
munication mechanisms in the programmable hardware we used.
Therefore, we used a separate Python based controller as the root
controller in our hardware TurboEPC prototype. Another differ-
ence with the software switch is in how offloadable messages are
processed. The software prototype stores offloaded user context
and forwarding state in switch tables, and the local controller is in-
voked to modify these tables when processing offloadable messages.
However, this local controller can consume the limited switch CPU
available in hardware switches. Therefore, the hardware prototype
stores offloaded state not in switch tables but in switch register
arrays, which are distinct from switch tables. While a switch table
can only be modified from the root/local control plane, a register
can be modified by P4 code running within the dataplane itself.
Therefore, we modified our design so that the switch tables only
store a pointer from the user identifier to this register state, and
not the actual state itself. The root controller takes care of main-
taining the free and used slots in the register arrays of the switches,
and creates the table entries that map from user identifiers (which
are either available in packet headers, or can be derived from the
packet headers) to register array indices when the user context
is first created during the attach procedure. After the entries are
created, offloadable messages that change the offloaded state do not
require to invoke the switch control plane (that consumes switch
CPU) to modify the tables, but can fetch the register index from the
table and directly modify the registers from within the dataplane
itself.

SOSR ’20, March 3, 2020, San Jose, CA, USA Rinku Shah, et al.

TurboEPC packet processing pipeline.We now briefly describe
the P4-based packet processing pipeline in the TurboEPC dataplane
switches (Figure 6). Incoming packets in an EPC switch are first run
through a message redirection table that matches on various header
fields to identify if the incomingmessage is a signalingmessage, and
if yes, where it should be forwarded to. This table is populated by
the root controller to enable correct redirection of non-offloadable
signaling messages to the root, and offloadable messages to the
switch that has the particular user’s context. Packets that do not
match the message redirection table continue along the pipeline,
and are matched through multiple GTP forwarding tables for GTP-
based dataplane forwarding.

Figure 6: Packet processing pipeline in TurboEPC.

Offloadable signalingmessages destined to the current switch are
first run through the user context table to find any existing offloaded
user context. The signaling message is processed by modifying
or deleting the user context and/or GTP forwarding state stored
on the switch. The switch data structures are either updated by
the local controller (software prototype) or within the dataplane
itself (hardware prototype). After message processing, the packet
may be forwarded to the secondary switch for state replication. On
successful replication (within the dataplane), the secondary switch
generates the response packet for the user, and forwards it to the
primary switch as an acknowledgement for successful state replica-
tion. The primary switch dataplane forwards the response packet
back to the user, indicating successful execution of the signaling
message. If the signaling message processing could not complete at
the switch (e.g., user context is not found, or the handover message
requires further processing at the root), the packet is forwarded
to the root controller for further processing. In the case of series
design (not last switch), if user context is not found, the message is
forwarded to the next switch on the path.

5 EVALUATION
We now evaluate the TurboEPC software and hardware switch
prototypes, and quantify the performance gains over the traditional
CUPS-based EPC.

Traffic
Mix

Attach,
Detach %

S1 release,
Service request %

Handover %

Att-1 1 99 0
Att-5 5 95 0
Att-10 10 90 0
Att-50 50 50 0
HO-5 10 85 5
Typical [43] 1–2 63–94 5

Table 5: LTE-EPC traffic mix used for experiments.

5.1 TurboEPC software prototype
We first evaluate the TurboEPC prototype implemented on P4-
based software switches. We primarily aim to evaluate the benefits
of our TurboEPC design as compared to the traditional EPC design.
Further, we also seek to demonstrate the correctness and efficacy
of the various mechanisms for scalability and fault tolerance in our
design.
Setup. The components in our evaluation setup include the load
generator, a sink node, ONOS v1.13 SDN controller, and multiple P4-
based programmable bmv2 software switches (simple_switch_grpc)
for the eNB, SGW, and PGW components of LTE EPC. We use mul-
tiple “forwarding chains” of load generators and switches in the
dataplane, to generate enough load to saturate the root SDN con-
troller. All components run on Ubuntu 16.04 hosted over separate
LXC containers to ensure isolation. The root controller container is
hosted on an Intel Xeon E5-2697@2.6GHz (24GB RAM) server, and
the rest are hosted on an Intel Xeon E5-2670@2.3GHz (64GB RAM)
server. The root/local controllers, and all P4 software switches are
allocated 1 CPU core and 4GB RAM each. Our load generator is
a closed loop load generator which emulates multiple concurrent
UEs generating signaling and dataplane traffic. The number of con-
current emulated UEs in our load generator is tuned to saturate the
control plane capacity (root or local or both) of the system in all
experiments, and is varied between 4 and 100.
Parameters and metrics.We generate different workload scenar-
ios by varying the mix of offloadable (S1 release and service request)
and non-offloadable (attach, detach, and handover) signaling mes-
sages in the control plane traffic generated by the load generator.
Table 5 shows the relative proportions of the various signaling
messages in the traffic mixes used, along with a typical traffic mix
found in real user traffic [43]. All results reported are averaged
over three runs of an experiment conducted for 300 seconds, unless
mentioned otherwise. The performance metrics measured are the
average control plane throughput (number of control plane mes-
sages processed/sec) and average response latency of control plane
requests, as measured at the load generator over the duration of
the experiment.
TurboEPC vs. Traditional EPC. We first quantify the perfor-
mance gains of the basic TurboEPC design as compared to the
traditional EPC design. In these set of experiments, we assume (and
ensure) that all UE context state fits in the memory of a single
switch. We also do not perform any replication of dataplane state
for fault tolerance. As we are interested in measuring maximum
control plane capacity, our load generator does not generate any

TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile Packet Core SOSR ’20, March 3, 2020, San Jose, CA, USA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Att-1 Att-5 Att-10 Att-50 HO-5 Typical

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

LTE-EPC Traffic Mix

1.3x

1.2x

0.9x

0.3x

1.1x

2.3x

Traditional-EPC
TurboEPC

Figure 7: TurboEPC vs. traditional EPC: Throughput.

 0

 5

 10

 15

 20

 25

Att-1 Att-5 Att-10 Att-50 HO-5 Typical

E
n
d
 t
o
 e

n
d
 l
a
te

n
c
y
 (

m
s
)

LTE-EPC Traffic Mix

-70%
-54%

-5%

-2%

5%

-90%

Traditional-EPC
TurboEPC

Figure 8: TurboEPC vs. traditional EPC: Latency.

dataplane traffic. Figures 7 and 8 show the control plane through-
put and latency respectively of the traditional EPC and TurboEPC,
for various traffic mixes of Table 5. As can be seen, performance
gains of TurboEPC over traditional EPC are higher for traffic mixes
with a greater fraction of offloadable messages. For example, for
the typical traffic mix, we observe that TurboEPC improves control
plane throughput by 2.3× over traditional EPC, while control plane
latency is reduced by 90%. Further, we note that the root controller
was fully saturated in the traditional EPC experiments, while CPU
utilization was under 20% with TurboEPC, because most signaling
traffic was processed using dataplane switch CPU. However, when
the traffic consists of a high proportion of non-offloadable messages
(e.g., mix Att-50, which is unrealistic), TurboEPC has slightly lower
throughput than traditional EPC, because it incurs an additional
overhead of pushing user context to the dataplane switches dur-
ing the processing of non-offloadable messages. In summary, we
expect TurboEPC to deliver significant performance gains over the
traditional EPC over realistic traffic mixes which contain a high
proportion of offloadable signaling messages.

The performance gains of TurboEPC are more pronounced when
the distance between the “edge” and “core” of the network increases,
and with increasing number of switches that can process offloadable
messages in the dataplane, both of which are likely in real-life
settings. Figures 9 and 10 show the performance of TurboEPC
as a function of the distance to the root controller (emulated by
adding delay to all communications to the root) and the number of
forwarding chains of dataplane switches. We see from the figures
that TurboEPC with 4 chains provides 4× – 5× throughput over
traditional EPC. We also observe that TurboEPC latency does not

 0

 500

 1000

 1500

 2000

 2500

 3000

<1ms 5ms 10ms

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

RTT to the core network

TurboEPC 1-chain throughput
TurboEPC 2-chain throughput
TurboEPC 3-chain throughput
TurboEPC 4-chain throughput

Traditional-EPC throughput

Figure 9: Throughput with varying distance to core, and
varying number of dataplane switches.

 0.1

 1

 10

 100

 1000

<1ms 5ms 10ms

E
n
d
 t
o
 e

n
d
 l
a
te

n
c
y
 (

m
s
)

RTT to the core network

TurboEPC 1-chain latency
TurboEPC 2-chain latency
TurboEPC 3-chain latency
TurboEPC 4-chain latency

Traditional-EPC latency

Figure 10: Latencywith varying distance to core, and varying
number of dataplane switches.

increase with the distance to the core network, and the latency is
reduced by two orders of magnitude compared to traditional EPC
when the round trip latency to the core is greater than 5ms.

Design Attach,
Detach

S1 release,
Service request

Handover

RTT to the core is less than 1ms

Centralized 10.72 10.28 17.38
TurboEPC 10.98 1.44 18.36
RTT to the core is 10ms

Centralized 200 38 549
TurboEPC 205 2.4 580

Table 6: Average end-to-end latency for LTE-EPC (inms).

While TurboEPC improves average control plane performance, it
can (and does) degrade performance for some specific non-offloadable
messages. For example, as discussed in §3.1, processing non-offloadable
messages like the attach request incurs the extra cost of pushing
offloaded user context to dataplane switches. Similarly, handover
message processing incurs a higher overhead with TurboEPC be-
cause we need to piggyback the offloaded state and synchronize it
with the root. Table 6 shows the average processing latency of vari-
ous individual signaling messages in TurboEPC and the traditional
EPC, in the setup with a single forwarding chain. The generated

SOSR ’20, March 3, 2020, San Jose, CA, USA Rinku Shah, et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400
T

ra
d
it
io

n
a
l-
E

P
C

T
u
rb

o
E

P
C

-S
e
ri
e
s
(1

)

T
u
rb

o
E

P
C

-S
e
ri
e
s
(2

)

T
u
rb

o
E

P
C

-S
e
ri
e
s
(3

)

T
u
rb

o
E

P
C

-S
e
ri
e
s
(m

is
s
)

T
u
rb

o
E

P
C

-P
a
ra

lle
l(
1
)

T
u
rb

o
E

P
C

-P
a
ra

lle
l(
2
)

T
u
rb

o
E

P
C

-P
a
ra

lle
l(
3
)

T
u
rb

o
E

P
C

-P
a
ra

lle
l(
m

is
s
)

 0

 2

 4

 6

 8

 10

 12

 14

 16

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

L
a
te

n
c
y
 (

m
s
)

Throughput
Latency

Figure 11: Series vs. parallel partitioning.

load followed the typical traffic distribution as shown in Table 5. Ta-
ble 6 shows the latency results for two scenarios: (i) when the EPC
core is close to the edge (RTT < 1ms), and (ii) when the EPC core is
far from the edge (RTT = 10ms). We see that the processing latency
reduces by up to 86–94% for offloadable messages like S1 release and
service request, but increases by 2–5% for non-offloadable messages
like attach requests and handovers. Because offloadable messages
form a significant fraction of signaling traffic, TurboEPC improves
the overall control plane performance of the mobile packet core,
even though a small fraction of signaling messages may see slightly
degraded performance.
Series vs. parallel partitioning. Next, we perform experiments
with the series vs. parallel state partitioning design variants of
the TurboEPC software switch prototypes, to evaluate the perfor-
mance impact of the additional complexity of these designs. This
experiment was performed with traffic mix Att-1 of Table 5 (1%
attach-detach requests), and results for other traffic mixes were
similar. We use multiple (up to 3) TurboEPC switches in series and
parallel configurations, and partition 100 active users uniformly
over these switches. Besides these 100 users, our load generator
also generates traffic on behalf of an additional 20 users whose
contexts were not stored in the dataplane switches, to emulate the
scenario where all contexts cannot be accommodated in the data-
plane. Figure 11 shows the average control plane throughput and
latency of the TurboEPC-Series(n) and TurboEPC-Parallel(n) de-
signs, for varying number of switches n in series and parallel, both
when the context of the users is found within one of the switches
(hit) and when it is not (miss). We see from the figure that the Tur-
boEPC throughput scales well when an additional switch becomes
available to process offloadable signaling messages. The scaling is
imperfect when there are 3 switches in series or parallel, because
the eNB switch became the bottleneck in these scenarios. This eNB
bottleneck is more pronounced in the case of the parallel design,
because the eNB does extra work to lookup the switch that has
the user’s context in the parallel design. We hope to tune the eNB
software switch to ameliorate this bottleneck in the future.

While the throughput increases with extra TurboEPC switches,
the control plane latency also increases due to extra hop traversals
and extra table lookups, as compared to the basic TurboEPC design.
This impact on latency is more pronounced in the series designs,

 0

 100

 200

 300

 400

 500

 600

 700

 0 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

 1
0
0
0

 1
1
0
0

 1
2
0
0

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(r

e
q
/s

e
c
)

Time in secs

Fail Recover

TurboEPC (basic)
TurboEPC (with fault tolerance)

Figure 12: TurboEPC throughput during failover.

 0

 2

 4

 6

 8

 10

 0 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

 9
0
0

 1
0
0
0

 1
1
0
0

 1
2
0
0

E
n
d
 t
o
 e

n
d
 l
a
te

n
c
y
 (

m
s
)

Time in secs

Fail Recover

TurboEPC (basic)

TurboEPC-FT

Figure 13: TurboEPC latency during failover.

where each switch adds an extra hop to latency. However, even
with 3 switches in series or parallel, TurboEPC latency is still lower
than that of the traditional EPC. We also see from the figure that
the miss latency of offloadable message processing is worse than
the message processing latency of the traditional EPC, because
the messages undergo multiple table lookups within the dataplane
before eventually ending up at the root controller.
TurboEPC fault tolerance. Next, we evaluate the fault tolerance
of the TurboEPC design, by simulating a failure of the primary
switch in the middle of an experiment and observing the recovery.
Figure 12 shows the average throughput and Figure 13 shows the
average latency of the fault-tolerant TurboEPC for an experiment
of duration 1200 seconds, where the primary switch was triggered
to fail after 600 seconds. Also shown in the graphs are the through-
put and latency values of the basic TurboEPC without any fault
tolerance for reference. We see that the throughput of the basic
TurboEPC is 40% higher and the latency is 33% lower than the fault
tolerant design due to lack of the overhead of replication. After
the failure of the primary switch, we found that the root controller
takes about 15 seconds to detect the primary switch failure, ∼2 ms
to push rules to eNB that would route incoming packets to the sec-
ondary switch, and ∼30 ms to restart offloadable signaling message
processing at the secondary switch. During this recovery period, we
observed ∼200 signaling message retransmissions, but all signaling
messages were eventually correctly handled by TurboEPC after the
failure.

5.2 TurboEPC hardware prototype
We now evaluate our hardware-based TurboEPC prototype, built
using the P4-programmable Netronome Agilio smartNIC [54].

TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile Packet Core SOSR ’20, March 3, 2020, San Jose, CA, USA

Setup. The TurboEPC hardware setup was hosted on three Intel
Xeon E5-2670@2.3GHz (128GB RAM) servers, each connected to
one Netronome Agilio CX 2x10GbE smartNIC. The three servers
hosted the single chain of the load generator+eNB, SGW, and
PGW+sink respectively. A python based controller is hosted on
the SGW switch, and served as the root control plane.
Parameters and Metrics. Our load generator generated a mix
of offloadable/non-offloadable signaling messages and dataplane
traffic (using iperf3) in the experiments. The smartNIC hardware
could accommodate the user contexts of 65K users within the switch
hardware tables, and the load generator generated traffic for up to
65K users in all experiments. The maximum forwarding capacity of
our smartNICs (without any TurboEPC changes) was measured at
8 Gbps, so our load generator also limited its maximum dataplane
traffic rate to 8 Gbps. All experiments were run for 300 seconds,
and we report the maximum throughput and latency of processing
offloadable signaling messages in the hardware prototype.
Capacity of TurboEPC hardware switch. First, we measure the
maximum control plane capacity of our hardware TurboEPC switch,
without any interfering dataplane traffic. Figure 14 shows the of-
floadable message processing throughput and latency of a single
TurboEPC hardware switch. We evaluate the maximum throughput
with the smartNIC loaded with user state size varying from 100
to 65K. We found that the throughput does not vary when we add
state of more users to the smartNIC. Also shown are the through-
put and latency numbers for the traditional CUPS-based EPC (RTT
to the root < 1ms) for reference. We see from the table that our
TurboEPC hardware switch can successfully serve upto 65K users,
while providing 102× higher throughput and 98% lower latency
than traditional EPC.
Performance with dataplane traffic. TurboEPC improves con-
trol plane throughput over the traditional EPC by leveraging the
extra capacity at dataplane switches for offloadable signaling mes-
sage processing. However, the performance gains of TurboEPC may
be lower if the switch is busy forwarding dataplane traffic. We now
measure the impact of this dataplane cross traffic on the control
plane throughput of TurboEPC. We pump increasing amounts of
dataplane traffic through our TurboEPC hardware switch (with
state for 65K users) and measure the maximum rate at which the
switch can process offloadable signaling messages while forwarding
data traffic simultaneously. Figure 15 show the signaling message
throughput and latency respectively, as a function of the dataplane
traffic forwarded by the TurboEPC hardware dataplane switch. We
see from the figure that as the data traffic rate increases, the of-
floadable signaling message throughput decreases, and response
latency varies between 100µs to 180µs . The throughput and latency
of the traditional EPC (RTT to the root < 1ms) is also shown for
reference in the figures. We observe that when the switch is idle,
the hardware based TurboEPC throughput is 102× higher, and the
latency 98% lower, as compared to the traditional EPC. However,
even when the switch is forwarding data at line rate (8Gbps), we
observe throughput to be 22× higher and latency 97% lower than
traditional EPC, confirming our intuition that spare switch CPU can
be used for handling offloaded signaling traffic. As part of future
work, we plan to explore an adaptive offload design that offloads
signaling message processing to the dataplane only when switches

10
0

10
1

10
2

10
3

10
4

10
5

10
6

100 1K 5K 10K 20K 30K 40K 50K 60K 65K
10

0

10
1

10
2

10
3

10
4

10
5

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

E
n
d
 t
o
 e

n
d
 l
a
te

n
c
y
 (

µ
s
)

Number of LTE-EPC users (user context stored on NIC)

TurboEPC (hardware) throughput
Traditional-EPC throughput

TurboEPC (hardware) latency
Traditional-EPC latency

Figure 14: TurboEPC throughput vs. Number of Users

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
o

-d
a

ta

1
G

b
p

s

2
G

b
p

s

3
G

b
p

s

4
G

b
p

s

5
G

b
p

s

6
G

b
p

s

7
G

b
p

s

8
G

b
p

s

10
0

10
1

10
2

10
3

10
4

10
5

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

E
n
d
 t
o
 e

n
d
 l
a
te

n
c
y
 (

µ
s
)

Data traffic rate at the switch

TurboEPC (hardware) throughput
Traditional-EPC throughput

TurboEPC (hardware) latency
Traditional-EPC latency

Figure 15: TurboEPC throughput with data traffic interfer-
ence.

have spare processing capacity, an idea we have explored in our
prior work [49].

6 RELATEDWORK
Optimizations to the Packet Core. Prior work has several pro-
posals that redesign the mobile packet core to achieve a diverse set
of goals. Softcell [23] proposes the solution to accelerate the 4G dat-
aplane forwarding via offload of the packet route installation task
to the edge switch. They further minimize the forwarding table size
by aggregating the flow rules within the switch. While this work
is primarily focused on optimizing the dataplane processing, Tur-
boEPC accelerates the control plane via offload of signaling message
processing to the edge switch. CleanG [37], PEPC [45], SCALE [5],
DMME [4], MMLite [39], MobileStream [10], DPCM [33], and other
similar proposals [34, 44, 46] optimize 4G/5G control plane process-
ing, much like TurboEPC. CleanG [37] and PEPC [45] refactor the
EPC control plane processing, to reduce the overhead of state trans-
fer across components. SCALE [5] proposes a distributed design of
the control plane, and horizontally scales the EPC control plane by
distributing signaling load across multiple replicas. MMLite [39]
proposes a stateless scalable MME design by storing the user spe-
cific state in shared memory. MobileStream [10] decomposes the
traditionally monolithic control plane components and proposes the
use of a streaming framework for scalability. DPCM [33] modifies

SOSR ’20, March 3, 2020, San Jose, CA, USA Rinku Shah, et al.

the EPC protocol by reducing the number of messages exchanged
and by starting dataplane forwarding before completion of control
plane processing. While these proposals advocate optimized archi-
tectures of the EPC control plane, none of them revisit the boundary
between the EPC control and dataplanes. On the other hand, Tur-
boEPC revisits the split of functionality between the control plane
software and dataplane switches, and proposes a refactoring of the
mobile core with the goal of offloading a subset of control plane
processing to programmable dataplane switches closer to the end
user. Therefore, this body of work is orthogonal and complemen-
tary to our work, and TurboEPC can leverage these control plane
optimizations for the processing of non-offloadable messages at the
root controller.
ProgrammableDataplanes.While the first wave of SDN research
decoupled the control plane from the dataplane and made the con-
trol plane highly programmable, the second wave of SDN research
has made even the dataplanes highly programmable, realizing the
true vision of software defined networking. Today, dataplanes can
be customized using P4 [6], a programming language to define
packet processing pipelines. These software-defined dataplanes
can then be compiled to run on diverse targets, e.g., software
switches [50, 58], hardware programmable switches guaranteed
to work at line rate [7, 11, 41, 51], FPGAs [60], and smart pro-
grammable NICs [54]. Further, these programmable dataplanes
can be configured from software SDN controllers using standard
protocols [35, 59]. Programmable dataplanes have enabled a va-
riety of new applications within the dataplane, e.g., in-band net-
work telemetry (INT) [27], traffic engineering [52], load balanc-
ing [12, 36], consensus [14, 15], traffic monitoring [40], key-value
stores [25, 32], congestion control [26], and GTP header process-
ing [3, 9]. Molero.E [38] demonstrate the possibility of accelerating
the control plane functions like failure detection/notification via
offload to programmable dataplanes. TurboEPC takes this line of
work one step further, and proposes the offload of frequent and
simple signaling procedures to programmable switches.
Control Plane Scalability. With the SDN paradigm, a logically
centralized control plane can potentially become a performance
bottleneck and prior work has identified two broad approaches
to solve this control plane scalability challenge. Some SDN con-
trollers [30, 56, 61] use the technique of horizontal scaling, where
the incoming control plane traffic is distributed amongst multiple
homogeneous SDN controllers, which cooperate to maintain a con-
sistent view of the common global network wide state amongst
themselves using standard consensus protocols. In contrast, other
SDN controllers [13, 18, 19, 49, 62] use hierarchical scaling to offload
control plane functionality to lower levels of “local” SDN controllers
that perform different functions. Our work is inspired by hierarchi-
cal SDN controllers but is quite different from them—we apply the
idea of offloading computation from SDN controllers to dataplane
switches in the CUPS-based mobile packet core.

7 CONCLUSION
This paper described TurboEPC, a mobile packet core design where
a subset of signaling messages are offloaded to programmable dat-
aplane switches in order to improve control plane performance.
TurboEPC dataplane switches store a small amount of control plane

state in switch tables, and use this state to process some of the
more frequent signaling messages at switches closer to the edge.
We implemented TurboEPC on P4-based software switches and
programmable hardware, and demonstrated that offloading signal-
ing messages to the dataplane significantly improves control plane
throughput and latency.

ACKNOWLEDGEMENTS
We thank our shepherd Sonia Fahmy and the anonymous reviewers
for their insightful feedback.

REFERENCES
[1] 3GPP. 2017. 5G 3GPP specifications. https://www.3gpp.org/ftp/Specs/archive/

23_series/23.502/
[2] 3GPP. 2017. Control and User Plane Separation. http://www.3gpp.org/cups
[3] Ashkan Aghdai et al. 2018. Transparent Edge Gateway for Mobile Networks. In

IEEE 26th International Conference on Network Protocols (ICNP).
[4] X. An, F. Pianese, I. Widjaja, and U. G. Acer. 2012. DMME: A distributed LTE

mobility management entity. Bell Labs Technical Journal 17, 2 (2012), 97–120.
[5] Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera, Kobus

Van der Merwe, and Sampath Rangarajan. 2015. Scaling the LTE Control-plane
for Future Mobile Access. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies.

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Computer Communication Review 44 (2014).

[7] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. In Proceedings
of the ACM SIGCOMM Conference.

[8] Gabriel Brown. 2012. On Signalling Storm. Retrieved November 10, 2018 from
https://blog.3g4g.co.uk/2012/06/on-signalling-storm-ltews.html

[9] Carmelo Cascone and Uyen Chau. 2018. Offloading VNFs to programmable
switches using P4. In ONS North America.

[10] Junguk Cho, Ryan Stutsman, and Jacobus Van der Merwe. 2018. MobileStream:
A Scalable, Programmable and Evolvable Mobile Core Control Plane Platform. In
Proceedings of the 14th International Conference on Emerging Networking EXperi-
ments and Technologies.

[11] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik,
Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac
Keslassy, Ariel Orda, and Tom Edsall. 2017. dRMT: Disaggregated Programmable
Switching. In Proceedings of the ACM SIGCOMM Conference.

[12] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McKeown. 2017. AppSwitch:
Application-layer Load Balancing Within a Software Switch. In Proceedings of
the APNet.

[13] Andrew R. Curtis et al. 2011. DevoFlow: Scaling Flow Management for High-
performance Networks. In Proceedings of the ACM SIGCOMM.

[14] Huynh Tu Dang et al. 2018. Consensus for Non-Volatile Main Memory. In IEEE
26th International Conference on Network Protocols (ICNP).

[15] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soule. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the the
ACM SIGCOMM SoSR.

[16] ETSI. 2017. The Evolved Packet Core. http://www.3gpp.org/technologies/
keywords-acronyms/100-the-evolved-packet-core

[17] ETSI. 2018. 5G standards specification (23.501). https://www.etsi.org/deliver/etsi_
ts/123500_123599/123501/15.02.00_60/ts_123501v150200p.pdf

[18] Luyuan Fang, Fabio Chiussi, Deepak Bansal, Vijay Gill, Tony Lin, Jeff Cox, and
Gary Ratterree. 2015. Hierarchical SDN for the hyper-scale, hyper-elastic data
center and cloud. In Proceedings of the SoSR.

[19] Soheil Hassas Yeganeh and Yashar Ganjali. 2012. Kandoo: A Framework for
Efficient and Scalable Offloading of Control Applications. In Proceedings of the
HotSDN.

[20] R. E. Hattachi. 2015. Next Generation Mobile Networks, NGMN.
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2015/NGMN_5G_White_Paper_V1_0.pdf

[21] Open Air Interface. 2016. EPC: S1 release. https://gitlab.eurecom.fr/oai/
openairinterface5g/issues/16

[22] Aman Jain, Sunny Lohani, and Mythili Vutukuru. 2016. Opensource SDN LTE
EPC. https://github.com/networkedsystemsIITB/SDN_LTE_EPC

[23] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. 2013. SoftCell:
Scalable and Flexible Cellular Core Network Architecture. In Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and Technologies.

https://www.3gpp.org/ftp/Specs/archive/23_series/23.502/
https://www.3gpp.org/ftp/Specs/archive/23_series/23.502/
http://www.3gpp.org/cups
https://blog.3g4g.co.uk/2012/06/on-signalling-storm-ltews.html
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.02.00_60/ts_123501v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.02.00_60/ts_123501v150200p.pdf
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/ NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/ NGMN_5G_White_Paper_V1_0.pdf
https://gitlab.eurecom.fr/oai/openairinterface5g/issues/16
https://gitlab.eurecom.fr/oai/openairinterface5g/issues/16
https://github.com/networkedsystemsIITB/SDN_LTE_EPC

TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile Packet Core SOSR ’20, March 3, 2020, San Jose, CA, USA

[24] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soule,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18).

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the SOSP.

[26] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes.
In Proceedings of the the SoSR.

[27] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. 2015. In-band network telemetry via programmable
dataplanes. In ACM SIGCOMM.

[28] Dr. Kim. 2017. 5G stats. https://techneconomyblog.com/tag/economics/
[29] P. Kiss, A. Reale, C. J. Ferrari, and Z. Istenes. 2018. Deployment of IoT applications

on 5G edge. In IEEE International Conference on Future IoT Technologies.
[30] Teemu Koponen et al. 2010. Onix: A Distributed Control Platform for Large-scale

Production Networks. In Proceedings of the OSDI.
[31] Open Networking Lab. 2017. ONOS SDN controller. https://github.com/

opennetworkinglab/onos
[32] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew

Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the SOSP.

[33] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A control-plane perspective
on reducing data access latency in LTE networks. In Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking.

[34] Heikki Lindholm et al. 2015. State Space Analysis to Refactor the Mobile Core.
In Proceedings of the AllThingsCellular.

[35] Nick McKeown et al. 2008. OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review 38, 2 (2008).

[36] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of the the ACM SIGCOMM Conference.

[37] Ali Mohammadkhan, KK Ramakrishnan, Ashok Sunder Rajan, and Christian
Maciocco. 2016. CleanG: A Clean-Slate EPC Architecture and ControlPlane
Protocol for Next Generation Cellular Networks. In Proceedings of the 2016 ACM
Workshop on Cloud-Assisted Networking.

[38] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2018. Hardware-
Accelerated Network Control Planes. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks (HotNets).

[39] VasudevanNagendra, Arani Bhattacharya, Anshul Gandhi, and Samir R. Das. 2019.
MMLite: A Scalable and Resource Efficient Control Plane for Next Generation
Cellular Packet Core. In Proceedings of the 2019 ACM Symposium on SDN Research.

[40] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
Proceedings of the the ACM SIGCOMM Conference.

[41] Barefoot networks. 2018. NoviWare 400.5 for Barefoot Tofino chipset. https:
//noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf

[42] Nokia Siemens Networks. 2012. Signaling is growing 50% faster than data traf-
fic. https://docplayer.net/6278117-Signaling-is-growing-50-faster-than-data-
traffic.html

[43] David Nowoswiat. 2013. Managing LTE Core Network Signaling Traffic. https:
//www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic

[44] M. Pozza, A. Rao, A. Bujari, H. Flinck, C. E. Palazzi, and S. Tarkoma. 2017. A
refactoring approach for optimizing mobile networks. In 2017 IEEE International
Conference on Communications (ICC).

[45] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia Ratnasamy,
and Scott Shenker. 2017. A High Performance Packet Core for Next Generation
Cellular Networks. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication.

[46] M. T. Raza, D. Kim, K. Kim, S. Lu, and M. Gerla. 2017. Rethinking LTE network
functions virtualization. In IEEE 25th International Conference on Network Protocols
(ICNP).

[47] Rinku Shah. 2018. Cuttlefish open source project. https://github.com/
networkedsystemsIITB/cuttlefish

[48] Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulkarni. 2015.
TurboEPC github code. https://github.com/rinku-shah/turboepc

[49] Rinku Shah, Mythili Vutukuru, and Purushottam Kulkarni. 2018. Cuttlefish:
Hierarchical SDN Controllers with Adaptive Offload. In IEEE 26th International
Conference on Network Protocols (ICNP).

[50] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster,
Nick McKeown, and Jennifer Rexford. 2016. PISCES: A Programmable, Protocol-
Independent Software Switch. In Proceedings of the ACM SIGCOMM Conference
(SIGCOMM).

[51] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In

Proceedings of the ACM SIGCOMM Conference.
[52] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-

nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proceedings of the the SoSR.

[53] Netronome Systems. 2017. vEPC Acceleration Using Agilio SmartNICs. https:
//www.netronome.com/media/documents/SB_vEPC.pdf

[54] Netronome systems. 2018. Agilio CX SmartNIC. https://www.netronome.com/
m/documents/PB_NFP-4000.pdf

[55] Sami Tabbane. 2016. Core network and transmission dimensioning. https://www.
itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/
Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf

[56] Amin Tootoonchian and Yashar Ganjali. 2010. HyperFlow: A Distributed Control
Plane for OpenFlow. In Proceedings of the the INM/WREN.

[57] TRAI. 2017. Highlights of Telecom Subscription Data. https://main.trai.gov.in/
sites/default/files/PR_60_TSD_Jun_170817.pdf

[58] P4 working group. 2017. Behavioral-model. https://github.com/p4lang/
behavioral-model/tree/master/targets/simple_switch_grpc

[59] P4 working group. 2018. P4Runtime. https://github.com/p4lang/PI
[60] Xilinx. 2018. Xilinx FPGA. https://www.xilinx.com/products/silicon-devices/

fpga.html
[61] Soheil Hassas Yeganeh and Yashar Ganjali. 2016. Beehive: Simple Distributed

Programming in Software-Defined Networks. In Proceedings of the SoSR.
[62] Minlan Yu et al. 2010. Scalable Flow-based Networking with DIFANE. In Proceed-

ings of the ACM SIGCOMM.

https://techneconomyblog.com/tag/economics/
https://github.com/opennetworkinglab/onos
https://github.com/opennetworkinglab/onos
https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://docplayer.net/6278117-Signaling-is-growing-50-faster-than-data-traffic.html
https://docplayer.net/6278117-Signaling-is-growing-50-faster-than-data-traffic.html
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
https://github.com/networkedsystemsIITB/cuttlefish
https://github.com/networkedsystemsIITB/cuttlefish
https://github.com/rinku-shah/turboepc
https://www.netronome.com/media/documents/SB_vEPC.pdf
https://www.netronome.com/media/documents/SB_vEPC.pdf
https://www.netronome.com/m/documents/PB_NFP-4000.pdf
https://www.netronome.com/m/documents/PB_NFP-4000.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://main.trai.gov.in/sites/default/files/PR_60_TSD_Jun_170817.pdf
https://main.trai.gov.in/sites/default/files/PR_60_TSD_Jun_170817.pdf
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch_grpc
https://github.com/p4lang/behavioral-model/tree/master/targets/simple_switch_grpc
https://github.com/p4lang/PI
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html

	Abstract
	1 Introduction
	2 Background & Motivation
	3 TurboEPC Design
	3.1 Overview
	3.2 Partitioning for Scalability
	3.3 Replication for Fault Tolerance

	4 Implementation
	5 Evaluation
	5.1 TurboEPC software prototype
	5.2 TurboEPC hardware prototype

	6 Related Work
	7 Conclusion
	References

