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Abstract—
Offloading computation to local controllers (closer to switches)

has been a popular approach to designing scalable SDN con-
trollers. We observe that, in addition to the offload of local switch-
specific state, a subset of global state can also be offloaded to,
and accessed at local controllers with suitable synchronization.
We present the design and implementation of Cuttlefish, an SDN
controller framework that adaptively offloads a portion of the
application state (and computation) to local controllers. Cuttlefish
uses developer-specified input to identify control messages that
can be correctly processed at local controllers, and makes offload-
ing decisions based on the cost of synchronizing the offloaded
state across controllers. SDN applications use the Cuttlefish API
to access the offloaded state, and Cuttlefish transparently
manages the state synchronization, and redirection of control
messages to the appropriate (central or local) controller. We have
implemented Cuttlefish using the Floodlight SDN controller. Our
evaluation shows that Cuttlefish applications achieve ∼2X higher
control plane throughput and ∼50% lower control plane latency
as compared to the traditional SDN design.

Index Terms—software-defined networking, scalability, con-
troller framework

I. INTRODUCTION

Software Defined Networking (SDN) is a design paradigm

of separating the control and data planes of networking el-

ements. A software defined network consists of a software-

managed, logically centralized controller, and light-weight

switches that are programmed with forwarding rules by the

controller. Any data plane traffic for which rules do not exist,

or signaling messages that require control plane processing, are

directed to the controller by the switches. SDN “applications”

running at the controller process these messages and install

corresponding forwarding rules on the data plane switches.

Prior work (§V) has identified several scalability problems

with centralized SDN controllers and has proposed solutions to

fix the same. One set of solutions [1]–[3] develop horizontally-
scalable distributed SDN controllers that spawn multiple con-

troller replicas to scale controller capacity. The replicas use

standard synchronization techniques to distribute application

state and associated computation between themselves. Other

solutions [4]–[6] propose hierarchical SDN controllers which

offload computation that does not require network-wide view

to local controllers running on (or close to) the switches. For

example, traffic engineering applications that detect flows with

large number of packets (elephant flows) before calculating

optimal routes can offload the task of detecting large flows

to local controllers. The local controllers maintain local state

of switch flow statistics, while the central root controller

only runs route computations that require global view. This

decoupled computation setup results in a lower computation

load at the root controller, and reduces the network traffic

between the switches and the root controller.

Prior work [7] implicitly classifies an SDN application’s

state into global network-wide state (that pertains to, or is

accessed by, multiple switches/entities in the network) and

local switch-specific state. Local state can be easily maintained

at local controllers, and control plane messages that depend

on such state can be offloaded to local controllers. Global

state must be maintained at the root controller (or with tight

synchronization across distributed controllers), and control

plane messages that access global state must necessarily be

processed at the root (or its synchronized replicas). The key

observation of our work is that, beyond the dichotomy of

local and global state, there is a third type of state that we

refer to as partitioned state. Partitioned state is a subset of

global state that can be cached at local controllers, and can

be accessed like local state during the processing of some

control plane messages. These control plane messages, which

we call offloadable messages, access this partitioned state (and

local state) from a single network location and do not require

concurrent access to any other non-local state. The key idea

of our work is that, by synchronizing partitioned state from

the root controller to specific local controllers, the messages

that access this partitioned state (offloadable messages) can

be offloaded to local controllers. This offload can lower the

computation overhead at the central root controller, resulting

in higher control plane capacity, and lower latency for the

SDN application. We refer to this new mode of operation of

an SDN application as the offload mode of operation, as shown

in figure 1(b). In offload mode, partitioned state and local

state resides at local controllers, and offloadable messages

that access such state are handled locally. The updates to

the partitioned state are synchronized between the root and

local controllers. In contrast, when operating in the default

centralized mode (Figure 1(a)), all application state resides

at the central root controller, and all control plane messages

(offloadable and otherwise) are processed at the root (or one

of its replicas in a distributed framework).

We now describe one use case that motivates our work.

Several researchers [8] [9] [10] [11] [12] [13] have proposed
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(a) Centralized mode. (b) Offload mode.

Fig. 1: SDN operation modes.

that the 4G LTE packet core [14] can be decomposed into an

SDN controller application that processes signaling messages,

and simpler data plane switches that forward user data based

on the state setup by the signaling messages. In this decom-

posed design of the LTE packet core, one important piece

of application state called the user’s forwarding context—

the information needed to forward a user’s data through the

dataplane gateways—is an example of partitioned state. The

user’s context is created by a control message that registers

the user when she turns on her data connection for the

first time. Processing this registration message requires global

network view and access to an authentication database, and

must necessarily happen at the root controller. However, the

signaling message sent when a user wants to reconnect after

a small idle period requires access only to the user’s context

and no other global state. This is an example of an offloadable

message that can be handled at a local controller closer to

the ingress switch of the user, provided the user’s context

is synchronized with the local controller after registration.

With a significant increase in signaling traffic in modern

cellular networks [15], coupled with the observation that about

half of this traffic consists of messages that transition the

user between idle and active states [16], a framework that

offloads these idle/active transition messages can significantly

improve overall application scalability. We discuss other such

usecases in our paper (§II) and show that several classes of

SDN applications exhibit such partitioned state and offloadable

messages.

Does the offload mode of operation always improve per-
formance? Performing computation based on partitioned state

at local controllers is beneficial only if the state at the local

controller needs to be synchronized with the “master copy”

at the root controller infrequently. If the traffic characteristics

entail frequent updates to the partitioned state, there is frequent

synchronization between the root and local controllers. This

synchronization cost may outweigh the benefit of compute

offload, and a traditional design that does not offload such

state might work better. Figure 2 shows the throughput of
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Fig. 2: Performance with different controller modes

the LTE packet core application, under various control plane

traffic mixes, in both the centralized and offload modes of

operation (details in §IV). In this experiment, the proportion

of registration messages (that update the partitioned state at the

root controller, resulting in synchronization between the root

and local controllers) monotonically increases from traffic mix

A to mix H, and the proportion of offloadable messages de-

creases. We can observe that offload mode performs better than

centralized mode for traffic mixes A to D, because a significant

fraction of the control plane messages are offloaded in offload

mode, thereby improving the capacity of the SDN controller.

However, for the rest of the traffic mixes, the centralized mode

performs better, due to the high synchronization cost (in terms

of CPU and network overhead) between the root and local

controllers in offload mode. With traffic characteristics being

dynamic in nature, an SDN controller framework must support

offloading of partitioned state and associated computation

adaptively between the centralized mode and offload mode

based on the cost of synchronization, in order to optimize

system performance.

This paper describes the design and implementation of

Cuttlefish (§III), a hierarchical SDN controller framework that

adaptively offloads computation from the root controller to

local controllers at (or closer to) switches in order to optimize

SDN application performance. Cuttlefish uses programmer

input to identify the subset of control plane messages that are

offloadable and can be correctly handled at local controllers.

Beyond identifying offloadable messages at design time, the

offload mechanism itself is completely transparent to the SDN

applications. The application developer is required to write

only a single SDN application with logic for handling and

processing various control plane messages, and the same

application runs at both the root and local controllers. The

only change required to SDN applications running on Cuttle-

fish is that they must manage their partitioned state using the

Cuttlefish API that provides functions to get/put/delete key-

value pairs. When the system is operating in offload mode, our

framework takes care of synchronizing the partitioned state

between the root and local controllers, so that the correctness

of the SDN application is maintained. Our framework monitors

the cost of this synchronization, and periodically computes the

appropriate mode (centralized vs. offload) for the application

to operate in. This decision about the operational mode is

enforced by pushing rules to the SDN switches to redirect
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control plane messages to the suitable (root or local) controller.

We implement Cuttlefish using the Floodlight SDN con-

troller and Open vSwitch SDN switches. We also implement

three sample SDN applications— a key-value store, the LTE

packet core and a stateful load balancer—to demonstrate the

feasibility of our framework. We evaluate our framework using

these applications under multiple traffic scenarios (§IV), and

show that our framework adapts the amount of offload to traffic

conditions correctly. Across applications, the performance of

Cuttlefish matches that of the best operating mode (centralized

or offload) for a given traffic mix. Cuttlefish improves LTE

control plane throughput by ∼2X and control plane latency

by ∼50% as compared to always operating in the centralized

mode. For the key-value store application, Cuttlefish improves

throughput by ∼3X and latency by ∼60% as compared to

always operating in the offload mode. Further, we observe that

the additional monitoring and metric collection of our adaptive

algorithm imposes a negligible overhead, and our algorithm

can identify and switch to the correct offload mode within

20-70 seconds of a shift in control traffic pattern.

The main contributions of our work can be summarized as

follows: (i) We introduce a new taxonomy of state for SDN

applications, beyond the existing notions of global network-

wide state and local switch-specific state. The key idea of

Cuttlefish is to offload computation that depends on partitioned

state—a subset of global state that can be correctly cached

and updated at local controllers—to improve the performance

scalability of the centralized root controller; (ii) Our frame-

work provides APIs to access partitioned state in an SDN

application, and manages the synchronization of this state

across the root and local controllers. Further, our framework

monitors the cost of state synchronization across the root and

local controllers, and automatically switches between the cen-

tralized and offload operation mode to maximize application

performance, in a manner that is transparent to the application.

Our open source framework [17] enables SDN application

developers to easily leverage these features to improve the

performance of their applications.

II. MOTIVATING APPLICATIONS

While prior work on hierarchical SDN controllers only

offloaded computation that depends on switch-local state,

Cuttlefish proposes offloading computation that depends even

on partitioned state—a subset of global application state that

can be cached and accessed with suitable synchronization

at local controllers. The usefulness of Cuttlefish therefore

depends on whether enough applications exist with partitioned

state, in order to benefit from the computation offload of our

framework. We provide a few examples of such applications

in this section.

A. SDN-based LTE EPC

One of the network components being considered for

control-data plane decomposition in telecom networks is the

mobile cellular packet core, also called the LTE EPC (Long

Term Evolution Evolved Packet Core). The EPC is part of

Fig. 3: Architecture of SDN-based LTE EPC.

the 4G LTE network that connects the wireless side of the

network (the user and the base stations) to the rest of the

Internet, as shown in Figure 3. The main network elements in

the EPC are the Mobility Management Entity (MME) in the

control plane, and the Serving and Packet Gateways (SGW

and PGW) that forward user traffic in the data plane. Recent

proposals to redesign the EPC using SDN principles (e.g., [8])

propose decomposing the control and data plane logic in the

EPC gateways, and running the control logic of the packet

gateways and the MME in an SDN controller. This design

simplifies the EPC gateways and makes them more scalable,

while making the LTE control plane in the software controller

more flexible and amenable to new feature additions.

When a user equipment (UE) connects to a LTE network

for the first time, the UE sends out a control plane attach
request to the EPC to register itself. The MME processes the

attach request, and sets up corresponding forwarding state for

the user in the SGW and PGW. When the UE becomes active

after an idle period, it generates a service request to restore the

previous forwarding state that was released in the idle period at

the dataplane gateways. The EPC also processes other control

plane messages in addition to the attach request and the service

request, e.g., a detach request to disconnect the UE from the

network, and a handover request when the UE moves across

the network.

With the traditional SDN architecture of the EPC, all signal-

ing messages, including the attach/detach requests and service

requests, are forwarded to the root controller. Now, most of the

processing of an attach request must necessarily be done in the

root controller because it requires access to a global database

to authenticate the user, and creation of forwarding state

requires access to the complete network topology. However,

processing the service request requires only the forwarding

state that was already created during the attach procedure,

and can be entirely offloaded to a local controller, provided

the forwarding state at the root is made available locally. A

hierarchical SDN controller framework with local controllers

at EPC gateway switches can thus efficiently offload com-

putations like the service request processing from the root

controller. However, if the traffic is predominantly composed

of attach requests, the synchronization cost of propagating the

forwarding state at the end of every attach request to local
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controllers can outweigh the benefit of lowered computation

load due to service request offload, and may ultimately lower

the performance of the EPC application. Therefore, an adaptive

framework like Cuttlefish offloads control plane messages

such as the service request only after considering this tradeoff

in realtime.

B. SDN based Stateful Load Balancer

Consider a simple stateful load balancer that balances

incoming connections among its current pool of servers based

on the current load on the servers (measured by, say, the

utilization of the servers, or the current number of ongoing

connections at the servers). If this application were to be

implemented within the SDN framework, the load balancer

application running at the controller would maintain server

load statistics, assign servers upon start of a new connection,

and install forwarding rules to direct traffic to that server for

all subsequent packets of the connection. In addition to new

connection requests, the load balancer application will also

handle messages to add/remove servers from the pool, updates

related to the load level at the servers, and so on1.

Now, if this SDN application were to be designed in a

hierarchical SDN controller framework like Cuttlefish, one

possible way to offload computation could be as follows:

the root controller assigns subsets of servers to local con-

trollers, and local controllers make load balancing decisions

by assigning incoming connections to servers in their local

pool. The root controller maintains the global view of server

load statistics and moves servers across local pools based on

the incoming load distribution across local controllers. The

partitioned state in this design is the set of server statistics

and the assignment of servers to local controller pools based

on these statistics. Note that several other middleboxes like

NATs and firewalls can be decomposed into hierarchical SDN

applications in this manner—a subset of application state

can be partitioned across local controllers, with each local

controllers handling the part of the global state pertaining to

its network location or traffic.

C. Key-value store

We demonstrate a simple key-value store as another usecase

for our framework. While a key-value store by itself is not a

useful application to build on an SDN controller, it is part of

the state management framework of several SDN applications.

For example, the LTE EPC application discussed above uses

a key-value store to store per-user forwarding contexts, per-

user security related state, and so on. Therefore, we build

a simple key-value store on the Cuttlefish framework, and

implement three key-value tables that store global, partitioned,

and local states respectively. In centralized mode, all the key-

value stores reside at the root controller, whereas in offload

mode, global key-value store reside at the root controller,

local key-value store resides at the local controller and the

partitioned state store can be accessed from both the local

1Our description of the load balancer application is somewhat simplistic,
but captures the essence of real implementations.

Fig. 4: The Cuttlefish architecture.

and root controllers, with suitable synchronization performed

by the framework. Our implementation supports get/put/delete

operations on non-partitioned global, partitioned, and local

keys, in both centralized and offload modes.

III. CUTTLEFISH DESIGN AND IMPLEMENTATION

Figure 4 shows the architecture of Cuttlefish. Cuttle-

fish takes input from the application developer regarding

the type of messages in the control plane and whether they

are good candidates for offload (§III-A). SDN application

developers write applications using Cuttlefish API (§III-B)

functions to access partitioned state. The framework takes

care of transparently synchronizing this state across root and

local controllers based on the operating mode (§III-C). The

heart of Cuttlefish is its adaptation module (§III-D) that

measures the cost of synchronizing partitioned state and makes

a decision on whether to operate the application in offload

mode or centralized mode. The offload decision is enforced

by the framework by pushing suitable rules into the data plane

SDN switches (§III-E). When the adaptation module decides

to switch between controller modes, Cuttlefish ensures that

the migration of partitioned state and redirection of control

plane traffic happen correctly without any race conditions

(§III-F). Finally, we describe our implementation of sample

SDN applications in the Cuttlefish framework (§III-G).

A. Developer input

Cuttlefish requires the application developer to provide the

following input: the types of messages in the control plane

traffic, and whether each of these messages is offloadable or

not. We assume that the control plane traffic to the application

has a discrete, known number of message types, which can

be identified by inspecting packets in the SDN switches2.

The application developer provides rules to identify incoming

message types as part of the input specification.

For each message type in the control plane traffic, the user

specifies whether the message is offloadable or not. How does

2If the type of the control plane message cannot be identified by parsing
standard L2-L4 headers alone, we assume that the switches are programmable
using a language like P4 [18], in order to be able to parse application layer
headers and identify the control plane message type.
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an application developer decide if a message can be offloaded
to a local controller? Given our definitions of global, local and

partitioned state (§I), a control plane message is considered

offloadable if processing the message requires access to only

switch-local state and partitioned global state. That is, all

global state accessed by the offloadable message must be

amenable to caching at the local controller, and should not be

accessed concurrently from any other network location during

the processing of this message. We expect that application

developers will have sufficient knowledge about application

state semantics to be able to provide such an input. This

expectation from the developers is common practice, and exists

in prior work. For example Split/Merge [19] and OpenNF [20],

provide APIs for moving state between distributed networking

applications, and require the developer input to have a similar

understanding of the semantics of application state. Table I

shows an example of developer input for the LTE EPC Cut-

tlefish application, listing the types of messages in the control

plane traffic of the EPC and whether they are offloadable.

Message type msgID offloadable
Authentication Step 1 1 false
Authentication Step 3 2 false
NAS Step 2 3 false
Send Access Point Name 4 false
Send UE Tunnel id (teid) 5 true
UE Context Release 6 true
UE Service Request 7 true
Context Setup Response 8 true
Detach Request 9 false

TABLE I: Sample developer input for LTE EPC.

B. The Cuttlefish API

Application developers within the Cuttlefish framework

do not need to write separate applications to run at the

root and local controllers. Instead, developers must use the

Cuttlefish state management API to access partitioned state,

and the framework takes care of transparently synchronizing

this state across the controllers depending on the mode of

operation. We assume all partitioned state can be stored as

key-value pairs. Our API provides the following get/put/delete

functions:

get(local_id, map_name, key)

put(msg_id, local_id, map_name, key, value)

delete(local_id, map_name, key)

The developer simply invokes our API functions when ac-

cessing the partitioned state in the application code, instead of

invoking regular hashmap functions.

While a traditional SDN application may use a number of

hashmaps to store the partitioned state, Cuttlefish stores all

state in a single hashmap. Therefore, the API takes map name
as one of the parameters in the get/put/delete functions, and the

key stored in Cuttlefish is a concatenation of this map name

and the original key. Cuttlefish exposes a single hashmap to

reduce the number of synchronization channels between the

root and local controllers, thereby reducing synchronization

overheads. To optimize the synchronization overheads further,

we synchronize the partitioned state at the root controller only

with the single local controller where the state is accessed.

The local id parameter in get/put/delete requests provides the

local controller identification, and also identifies the partition

of the synchronized hashmap to lookup at the root controller.

To obtain the local controller identifier, the developer could

use the default floodlight function to identify the ingress

switch of a control plane message, which indirectly identifies

the local controller. Finally, note that the parameter msg id
corresponding to the identifier of the message that generated

the state update is part of the put API, in order to let our

framework attribute synchronization costs to control plane

messages (more details in §III-D).

C. Cuttlefish API Implementation

Accessing synchronized hashmaps is slightly slower than

accessing local hashmaps due to additional mechanisms for

consistency. Therefore, we also cache partitioned state tem-

porarily in local hashmaps in centralized mode, because

synchronization is not required in centralized mode. That

is, application state in centralized mode is split between

synchronized hashmaps (which would have been populated

when the application was in offload mode) and the local

hashmap cache (which is used when only in centralized mode).

As shown in figure 5(a), all put operations in centralized mode

are only applied to the local hashmap. Get operations are

first performed on the local hashmap, and are applied in the

synchronized hashmap only in case of a miss in the local

cache. Delete operations are performed on both local and

synchronized hashmaps for consistency.

When operating in offload mode, all offloadable messages

are processed at local controllers, and all partitioned state

accesses (get/put/delete) by the offloaded messages are per-

formed on the synchronized hashmaps, as shown in Fig-

ure 5(b). All non-offloadable messages are handled at the root

controller (e.g., because processing such messages depends

on other global state), and these messages may also generate

concurrent put/delete requests to the partitioned state. In order

to optimize performance in offload mode, we batch updates to

synchronized hashmaps at the local controller and push multi-

ple updates at a time to the root controller. However, updates to

partitioned state at the root controller are immediately pushed

to the local controllers without batching, in order to ensure

that the get operations at the local controller never see stale

state3.

We implement synchronized hashmaps and batching by

extending the fault tolerance module of the open-source Flood-

light SDN controller [21]. The Cuttlefish framework has

TCP communication channels open between the root and local

controllers to transport updates to the synchronized hashmaps.

We batch up to 500 updates at a time at the local controller.

3We assume that processing non-offloadable messages does not result in
any get operations on the partitioned state at the root controller, because
messages that only read partitioned state would be offloadable and handled at
the local controller itself. Therefore, we do not worry about stale state during
get operations at the root.
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(a) Centralized mode. (b) Offload mode.

Fig. 5: Cuttlefish API functions.

Note that we currently do not handle pending updates in a

batch being lost due to the failure of the local controller. Our

changes spanned about 350 lines of code in the Floodlight

controller code base.

D. The Adaptation Approach

The adaptation module of Cuttlefish can run as a separate

application at the root controller or as a standalone application.

It monitors the cost of synchronizing the partitioned state

across the root and local controllers, and periodically decides

the appropriate mode of operation (centralized vs. offload)

of the SDN application. As discussed in §III-C, updates to

partitioned state at the local controller are sent in batches,

while updates at the root are propagated immediately. There-

fore, updates to partitioned state at the root controller form a

significant part of the synchronization cost, and form the basis

for the decision algorithm in Cuttlefish.

The Cuttlefish adaptation module maintains a count of the

cumulative number of put operations made to all partitioned

state across all non-offloadable messages at the root controller,

and computes the average rate of puts/sec every epoch. We

use an epoch duration of 10 seconds in our implementation.

At the end of each epoch, the put rate metric decides if Cuttle-

fish must switch modes. If Cuttlefish is operating in offload

mode, and the average put rate crosses a threshold ThrOff Cent,

Cuttlefish switches the operating mode from offload to cen-

tralized, because it considers the synchronization cost to be too

high to result in any performance benefits due to offload. When

operating in centralized mode, Cuttlefish continues to monitor

the averaged puts/sec metric, even though the put operations

are performed on local hashmaps and the partitioned state

is not synchronized with local controllers in the centralized

mode. If the average put rate is found to be below a threshold

ThrCent Off, Cuttlefish considers the synchronization overhead

of partitioned state to be low enough and switches to offload

mode of operation. The instrumentation to the Floodlight

controller to gather the statistics of put operations, and the

logic of the adaptation algorithm were implemented in about

200 lines of code.

TABLE II: Choice of thresholds for transition.

CPU utilization ThrOff Cent (#puts/sec) ThrCent Off (#puts/sec)

30% 600 400
55% 1600 1400
75% 2000 1800
80% 2400 2200
90% 2900 2700

The threshold values ThrOff Cent , and ThrCent Off are con-

figurable, and can be derived from the amount of CPU

that the application programmer wishes to allocate towards

synchronization related computation at the root controller.

We have written a benchmark that executes put operations

at a given rate on partitioned state in offload mode, and

monitors the average CPU load at the root controller due to

the synchronization overhead. This benchmark can be run by

the application developer for different values of the put rate

to identify the rate that corresponds to a maximum tolerable

CPU burden at the root controller. This put rate can be used

to determine the threshold ThrOff Cent to migrate from offload

mode to centralized mode. The threshold ThrCent Off can be

chosen to be slightly lower than ThrOff Cent, to ensure that the

switch from centralized to offload mode happens only when

we are fairly sure that the synchronization overhead is low.

Table II shows the datasheet we use in our setup to pick

the threshold values. This datasheet was calculated for put

operations on 16 to 32 byte key value pairs, and would need

to be recomputed for a different setup or key-value pair size.

E. Enforcing the Offload Mode

When the Cuttlefish adaptation algorithm makes a decision

to switch from the offload mode of operation to a centralized

mode, or vice versa, the SDN switches in the data plane must

be configured in real time to redirect messages to the suitable

controller. We now describe how this redirection happens in

our system.

Our framework has been implemented over the Open-

vSwitch (OVS) [22] SDN switches managed by the Flood-

light controller. The OVS switches are configured with rules

to identify the various message types specified in the user

input. When the system switches modes, the controller and

switches must redirect specific offloadable message types to

the appropriate controller (root/local) based on the mode of

operation. The controller in our implementation did not come

with this support to direct packets to a specified controller; all

switches forwarded traffic to all configured SDN controllers

by default. Therefore, we developed an extension to the

Floodlight controller by implementing the

NiciraSetControllerId feature in the Loxigen library

[21], which allows the Floodlight controller to identify and

communicate with specific switches. In order to adaptively

switch between modes, we also added logic to the con-

troller to automatically generate Openflow commands that
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Fig. 6: Switch from Offload mode to Centralized mode.

add/delete/modify rules to direct specific message types to

specific controllers at the OVS switches. Finally, we added a

new Openflow action type of_action_nicira to Flood-

light that allows adding routes at switches to direct packets to

a specific controller (instead of forwarding to all controllers,

as in the default implementation). These changes required

modifying ∼150 lines of code in the controller (Java), and

Loxigen library (C++) code base and required no changes to

the OVS switch implementation.

F. Transition between Controller Modes

When transitioning between modes, the Cuttlefish frame-

work takes care to avoid race conditions between the in-

stallation of switch rules to divert traffic, and the process

of synchronizing state across the root and local controllers.

When the framework switches from a centralized mode of

operation to an offload mode (Figure 7), the state from the

local hashmaps at the root is migrated to the synchronized

hashmaps first, and switch rules to divert the offloadable

messages to the local controllers are installed only after the

root and local controllers have completed the synchronization

of partitioned state. Similarly, when migrating from the offload

mode to the centralized mode (Figure 6), the switch rules

are installed only after all the batched updates from the local

controllers have been flushed to the root. We now describe

this mechanism in more detail.

Offload to Centralized mode: Recall that the partitioned

state is synchronized in batches at local controllers in offload

mode. Cuttlefish uses a flag push update at the local controller

to indicate that updates must be pushed immediately to the

root; this flag is set to false in offload mode. When we want to

switch from offload to centralized mode, we must immediately

synchronize the partitioned state, so the root controller sets

the push update flag at the local controller, causing the syn-

chronized hashmaps to flush all pending updates immediately.

After waiting for a grace period for the synchronization to

complete, the root controller is ready to switch to centralized

mode. The root controller first pushes the rules onto the OVS

at the local controller to forward all the messages (offloadable

and otherwise) to the root controller. However, there could still

be packets in the pipeline at the switch of the local controllers,

which could continue to update the partitioned state for a short

duration after the switch rules have been installed. In order to

correctly handle such packets, the root controller accesses par-

Fig. 7: Switch from Centralized mode to Offload mode.

titioned state from synchronized hashmaps for a brief waiting

period. Further, new packets arriving at the root are buffered

until the packets in the local switch’s pipeline have been

processed, in order to avoid reordering. Once this grace period

for flushing the switch pipeline has expired, the root stops

state synchronization from the local controller by turning the

push update flag to false. The root controller can now switch

to centralized mode without any state inconsistency issues,

and store newly created partitioned state in the local hashmap

cache for better application performance. The values of the

grace periods are a few milliseconds in our implementation,

and will have to be configured based on the network latency

between the root and local controllers for other deployments.

Centralized to Offload mode: When Cuttlefish is op-

erating in centralized mode, some of the partitioned state is

stored in the local hashmap cache at the root controller, and

some in the synchronized hashmaps. When the framework

decides to switch from centralized to offload mode, we must

migrate the partitioned state from the local hashmap cache to

the synchronized hashmap at the root controller. At the root

controller, the boolean variable migrating (if true) indicates

that the state is being migrated from local hashmap cache to

synchronized hashmap. When we set the migrating flag to

true, all delete operations at the root are performed on both

the local and synchronized hashmaps, all put operations are

performed only on the synchronized hashmaps, whereas all get

operations are handled normally (get from the local cache, and

on a miss get from the synchronized hashmap). Also, for all

put operations during state migration, we first perform delete

on local hashmap to avoid state inconsistency. After the local

hashmap has been transferred to the synchronized hashmaps

at the root, the local cache is cleared to avoid stale state, and

the migrating flag is set to false. We then wait for a grace

period for the synchronized hashmap updates to propagate to

the switches, after which we push rules on to the switches

to forward all offloadable messages to the local controller.

Finally, we also enable batching of updates to partitioned state

at the local controller in offload mode.

G. Implementation of Use cases

We implement the three sample applications discussed in

§II— a key-value store, an SDN-based LTE packet core, and

a stateful load balancer—over the Cuttlefish framework, to

demonstrate and evaluate the benefits of our framework.
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Key-value store. We implemented a centralized key value

store application that performs put operations to partitioned

state at the root controller, and get operations to the same

state at the local controller, using the Cuttlefish API. We

have also implemented a load generator to generate traffic with

varying ratios of put/get requests, in order to test the adaptive

offload component of our system. We use the IP ToS field in

packet headers to identify put and get requests at the switches.

The application and load generator were implemented in about

1400 lines of Java/C++ code.

SDN based LTE EPC. We implement the SDN-based LTE

EPC application by extending an existing version of the

code [23] built atop the Floodlight controller and OVS SDN

switches, and adapting it to use the Cuttlefish API. We

extended the load generator in the existing code to tag packets

with message types in the IP ToS field, in order to enable

easy identification of the various control plane messages. We

also modified the load generator to generate traffic of varying

mixes, e.g., vary the ratio of the attach requests to the service

requests. Our changes modified 1800 lines of Java/C++ code

in the original application code base.

Stateful load balancer. We built a stateful load balancer as an

SDN application on top of the Floodlight controller in about

600 lines of Java code. We also wrote a load generator that

varies the distribution of load to servers, in order to force

updates to the partitioned state of server load statistics.

IV. EVALUATION

We now describe our evaluation of the Cuttlefish framework.

Our evaluation aims to answer two important questions:

• What are the performance gains of adaptively offloading

computation across local controllers? (§IV-B)

• How efficiently does Cuttlefish accomplish the process

of adaptively switching modes? (§IV-C)

A. Experimental Setup

Testbed. We deployed the Cuttlefish applications over our

testbed consisting of a Floodlight v1.2 controller as the root,

and six OVS v2.3.2 switches as the dataplane switches.

A Floodlight local controller was also colocated with the

switches. All components (controller and switches) used

Ubuntu 14.04, and were hosted over separate LXC containers

to ensure isolation. The containers are distributed amongst

two 16-core Intel Xeon E312xx @2.6Ghz servers with 64GB

RAM. The root and local controllers, and all gateway switches,

were allocated 1 CPU core and 4GB RAM each.

Parameters and metrics. We generate different experi-

ment scenarios by varying the mix of offloadable and non-

offloadable messages in the control plane traffic processed

by the SDN controllers. All experiments ran for 300 sec-

onds unless mentioned otherwise. The performance metrics

measured in our experiments were the average control plane

throughput (number of control plane messages processed/sec)

and average response latency of control plane requests. We

compare these metrics across three modes of operation of

the application: (a) centralized mode, where all control plane
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Fig. 8: Key-value store: control plane throughput.
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Fig. 9: Key-value store: control plane latency.

messages are handled at the root controller, (b) offload mode,

where all offloadable messages are always offloaded to local

controllers, and (c) the Cuttlefish adaptive offload mode,

where offloadable messages are processed at the local con-

troller only if the Cuttlefish adaptation algorithm decides that

the synchronization overhead is low enough.

B. Efficacy of Adaptive Offload

We first quantify the performance gains due to the adaptive

offload mechanism of Cuttlefish. We vary the mix of get

and put requests in the incoming traffic (mix x : y denotes

x% non-offloadable puts, i.e., puts to the partitioned state at

the root controller, and y% offloadable gets, i.e., gets from

the partitioned state at the local controller), and measure the

performance of the Cuttlefish key-value store application. Fig-

ure 8 shows the average throughput of all the controller modes,

and Figure 9 shows the average request processing latency. As

expected, the performance of the offload mode degrades as

compared to the centralized mode, as the proportion of non-

offloadable traffic increases. However, across all traffic mixes,

we see that the performance of the Cuttlefish adaptive offload

mode matches that of the best non-adaptive mode for that

traffic mix. We observe that the Cuttlefish throughput is up

to 2X higher than that of the traditional centralized mode, and

its latency is up to 50% lower. Also, Cuttlefish throughput

is up to 6.4X higher than that of the offload mode, and its

latency is up to 80% lower. Further, the throughput and latency

of Cuttlefish are almost equal to that of the optimal mode

(whether centralized or offload) for a given traffic mix, because

the cost of running the adaptation module is almost negligible.

Figure 10 and Figure 11 show the control plane throughput

and latency respectively of the LTE EPC application, as we

vary the traffic mix (x : y denotes x% non-offloadable attach

and detach requests and y% offloadable service requests). Our

observations remain the same for this application as well.
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Fig. 12: Throughput with varying traffic mix for the key-value store application.
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Fig. 10: LTE EPC: control plane throughput.
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Fig. 11: LTE EPC: control plane latency.

The throughput of Cuttlefish is up to 2X higher than that

of the traditional centralized mode, and its latency is up to

66% lower. Cuttlefish throughput is also up to 3X higher

than that of the offload mode, and its latency is up to 62%

lower. As before, the performance of Cuttlefish matches the

best performing mode for a given traffic mix. For the load

balancer, we observe that the amount of synchronization traffic

is very low, and hence the offload mode is always suitable.

But the application still requires to use the Cuttlefish API to

synchronize the partitioned state (server load) in order to scale,

as well as take flow route decisions faster. We omit presenting

those results here.

C. Convergence of Adaptive Offload

In our next set of experiments, we demonstrate effectiveness

of the adaptation mechanism and measure the amount of time

taken by Cuttlefish to compute the correct mode of operation

and switch to it when the traffic mix changes. We only present

results for the key-value store application; the results were

qualitatively similar for the other applications.

In this experiment, we generate get/put traffic to the key-

value store application for a duration of 2400 seconds, while

varying the traffic mix during the experiment as follows. The

ratio of put to get requests changes from 10:90 during the first

300s of the experiment, to 5:95 in the next 300s, to 100:0 in

the next 300s, to 18:82 in the next 300s, to 5:95 in the next

300s, to 66:34 in the next 300s, and finally to 50:50 in the final

600s. We use the threshold values ThrOff Cent=2400 puts/sec,

and ThrCent Off=2200 puts/sec on the average rate of puts to

partitioned state for the offload-to-centralized and centralized-

to-offload transitions respectively. These values correspond

to a synchronization overhead of 80% CPU utilization at

the root controller, as seen from Table II. Figure 12 shows

the throughput of the key-value store application, sampled

every 30 seconds for the duration of the experiment. The

corresponding put rate metric that was used to make the offload

decision is shown in Figure 13 (samples shown every 40

seconds for visual clarity).
From the graphs, we see that when the traffic consists of

predominantly get requests in the first 600s (upto point B in

the graphs), Cuttlefish operates in offload mode. After point

B, the put rate crosses the threshold, the adaptation algorithm

switches to centralized mode, and stays in this mode upto

point D. After point D, the non-offloadable traffic reduces,

the Cuttlefish adaptation algorithm switches to offload mode,

and stays there upto point E. After point E, the traffic mix

incurs a high synchronization cost, and Cuttlefish switches

to centralized mode, and remains in this mode for the rest of

the experiment. Throughout the experiment, we observe that

the Cuttlefish adaptation algorithm always correctly identifies

the best performing controller mode and correctly switches to

it. We observe transient drop in performance after points B,D,

and E, due to the mechanisms of migrating between modes in

Cuttlefish. We find that the Cuttlefish framework takes around

20–30 seconds to switch to a new mode of operation after a

change in traffic mix. This switching duration is obviously a

function of the frequency at which we invoke our decision

algorithm (every 10 seconds), and on size of the application-

centric state requiring synchronization (700 key value pairs in

this experiment).
Given that Cuttlefish takes a few tens of seconds to identify

and switch between modes, it is expected that Cuttlefish will

not perform well if the traffic mix changes very frequently.

Of course, Cuttlefish can perform better if it reduces its

monitoring interval from 10s to something smaller.

V. RELATED WORK

Several approaches have been proposed to ameliorate the

scalability concern in a logically centralized SDN controller
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Fig. 13: Synchronization metric for the key-value store application.

design. Horizontally-scalable distributed controllers [1]–[3]

scale the centralized SDN controller by instantiating multi-

ple homogeneous instances of the centralized controller, and

distributing the control load with techniques like network

topology partitioning or state partitioning. On the other hand,

prior hierarchical scaling techniques [4]–[6] and our Cuttle-

fish framework scale controllers by offloading computation

from the central root controller. The two design options—

distributed controllers and hierarchical controllers—are com-

plementary ideas, with their own strengths and drawbacks.

While the former design can offload any control plane compu-

tation to any replica (after suitable state synchronization), the

latter can offload only a subset of control plane computation

that can be correctly performed at local controllers. However,

distributed controller frameworks incur a performance over-

head due to the synchronization of network-wide state across

replicas, while hierarchical controller designs have no such

associated costs because local switch-specific state does not

require synchronization.

Horizontally-scalable distributed controllers. Onix [1] pro-

vides a control plane API for programmers to implement

distributed network applications, without worrying about state

distribution, element discovery, and failure recovery mecha-

nisms. Hyperflow [2] provides SDN control application scal-

ability by use of multiple physical controllers, but with a

logically centralized view. Hyperflow passively synchronizes

network-wide view of controllers using the publish/subscribe

event based system, without any changes to the SDN ap-

plication. The work that comes closest to Cuttlefish is the

distributed controller design of Beehive [3]. Application state

in Beehive is stored as key-value pairs in a shared distributed

data store, much like how Cuttlefish stores partitioned state

in synchronized hashmaps. These key-value pairs of an appli-

cation can be placed at any of the distributed controllers, and

the Beehive controllers must run an expensive synchronization

protocol to agree on the location of every piece of distributed

state. While this approach has good fault tolerance, it also

incurs a high synchronization overhead. In contrast, Cuttle-

fish distributes only a subset of application state (partitioned

state) to local controllers. Therefore, Cuttlefish can offload

only a subset of control plane messages that depend on such

state to local controllers, while Beehive requires locating

application data and offloading of computation. Further, Cut-

tlefish does not explicitly handle the failure of local controllers

and the resulting loss of state, while Beehive ensures fault

tolerance via replication of state at the distributed controllers.

However, as compared to Beehive and other distributed

controller frameworks, our approach trades off generality and

robustness in favor of performance. We compare the reported

performance of a key-value store application in Beehive with

our own key-value store application. While Beehive can

take up to 20ms to identify a remote node and perform

a put operation, Cuttlefish takes under 5ms for a similar

request. The difference in performance comes from the fact

that Beehive applications must query a globally synchronized

index to determine the location of state required for a certain

computation, while Cuttlefish routes messages to controllers

by identifying message types from packet headers at the

dataplane switches itself.

In summary, we see Cuttlefish and distributed controller

frameworks like Beehive as complementary techniques that

represent two very different design points in the space of

scalable SDN controller frameworks. We can also envision

both techniques being applied together—SDN applications

can offload whatever state and computation they can easily

offload to local controllers, and use a fault-tolerant distributed

controller framework to scale the non-offloadable computation

at the root controller.

Hierarchical controller frameworks. Prior work (e.g., [4]–

[6]) has considered offloading computations that rely on local

state to local controllers. Kandoo [5] offloads tasks like

gathering flow statistics and detecting elephant flows, while

FOCUS [6] offloads node discovery via ARP flooding. Most of

these optimizations are related to computation tasks that do not

affect global controller state. In contrast, Cuttlefish not only

offloads local computation, but also computation that depends

on partitioned global state that need to be only occasionally

synchronized with its copy at the root controller.

Our prior work Devolve-redeem [24] proposed a design

of a hierarchical SDN framework that offloads partial global

state and its related computation to local controllers, and is a

precursor to our present work. However, this earlier work did

not contain a mechanism for adaptively switching between the

centralized and offload modes, and required a more complex

input from the user. Our present work significantly improves

upon this earlier work.

Offload of rules. Difane [25] caches pre-computed forwarding

rules across a subset of local switches, to avoid expensive
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communication with the controller when new flows arrive.

Eden [26] provides a framework for implementing the network

functions that do not require high network support at the

end hosts. Eden tags packets with the message type in an

application library, and processes them at end hosts via a

set of match-action tables and a runtime. Cuttlefish also

works by identifying application message types. However,

Cuttlefish offloads the entire application logic (not just the

match-action rules) to local controllers on switches, and hence

is more powerful than these approaches.

State distribution frameworks. The techniques used in Cut-

tlefish to manage distributed state across root and local

controllers are similar to ideas used in frameworks to man-

age distributed state in networking applications [19], [20],

[27], [28]. Split/merge [19] provides a state management

API to applications for managing scale-up and scale-down

operations. State is transparently split between middlebox

replicas for scale-up, and merged to one replica for scale-

down. OpenNF [20] improves split/merge by providing options

for loss-free, and ordered state updates between middlebox

replicas. On the other hand, the goal of Pico replication [27]

is to provide a low overhead, high availability framework

for middleboxes. In order to dynamically grow or shrink

the number of SDN controllers, Elasticon [28] proposes a

switch migration protocol, and enables load shifting between

controllers. Some ideas of Cuttlefish, including the state man-

agement API and the protocol to guarantee ordered message

delivery when migrating between controller modes, have been

inspired by this body of literature.

VI. CONCLUSION

This paper presented the design and implementation of

Cuttlefish, a hierarchical SDN controller that offloads a subset

of SDN application state and computation to local controllers

on switches, in order to scale SDN control plane capacity. In

addition to switch-local state, we identified a subset of global

application state, called partitioned state, that can be correctly

cached and updated at local controllers on switches. Cuttlefish

incorporated an adaptive state offload capability to balance

the tradeoff between performance gains due to offload of

partitioned state, and the cost of synchronizing this state across

the root and local controllers. We developed three sample

applications—the SDN-based LTE packet core, a key-value

store, and a simple load balancer—and demonstrated efficacy

of the Cuttlefish framework. Our evaluation of the sample

SDN applications demonstrated that Cuttlefish improved

control plane throughput by ∼2X and control plane latency

by ∼50% as compared to the traditional SDN design, and

correctly chooses the amount of offload to optimize application

performance. Our framework, based on the popular Floodlight

SDN controller, is available for use by SDN application

developers [17].
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