
Course Code CSE630
Department CSE
Course Name Graduate Systems (GS)
Credits 4
Course Offered to UG/PG
Whether the course is to be counted
towards M.Tech specialization. If yes,
please select the specialization towards
which it is to be counted
If the course is to be counted towards
other B.Tech programs(For Ex if a
course with CSE no. satisfies the
requirement of 32 credits of B.Tech ECE
program that students have to do in last
4 semesters, then the drop down answer
should be ECE)

Course Description

This course is an advanced form of computer systems. The objective is
to refresh the foundations of computer architecture, operating
systems, and computer networks, and then learn the advanced
concepts to build real-life high-performance, scalable, reliable, and
fault-tolerant distributed systems.

Pre-requisites Anti-requisites
Pre-requisite (Mandatory) Pre-requisite (Desirable) Pre-requisite(other)

Fluency in working with scripts, C/C++
CSE231, CSE232

*Please insert more rows if required
Post Conditions*(For suggestions on verbs please refer the second sheet)

CO1 CO2 CO3 CO4

Students will be able to explain the basic
concepts of operating systems and
computer networks

Students will be able to understand the principles of design an end-to-
end distributed system application

Students will be able to determine the
reasons for the performance bottlenecks
and suggest solutions.

Students will be able to design real-life applications,
benchmark their performance.

Weekly Lecture Plan
Week Number Lecture Topic COs Met Assignment/Labs/Tutorial

1

Principles of computer system design: Modularity, Abstraction,
Layering, Virtualization, Hierarchy, Indirection, Parallelism, Caching,
Fixed sizing, Indexing, Separation of state from computation,
Replication.
Process: system calls (fork, exec, exit, wait),shell, kernel mode of
execution, hardware trap

C01
Tut 1: Virtualbox and docker installation

Assignment 1: related to Linux shell in C

2 Threads: Race condition, critical section, locks, hardware atomic
instructions, Multicore scheduling: design choices

CO1
Tut 2: Multithreading using pthreads

3

Virtualization: Virtual machines (trap-and-emulate, paravirtualization,
full virtualisation), Containers (namespaces, cgroups);
Memory virtualization: Address translation, MMU, TLB, Extended page
tables (EPT), Shadow page tables, design decisions

CO1, CO3
Tut 3: Performance analysis using "perf" tool

4, 5, 6

Introduction to computer networks: The end-to-end argument,
Internet routing: IP addressing, routing protocols, SDN concept;
Transport protocol: TCP, UDP, SCTP, Bandwidth delay product,
congestion control, end-to-end delays
Application layer protocols: HTTP, data serialization formats (e.g., json,
protobuf, flatbuffers), RPC (gRPC)

CO1, CO2

Tut 4: Socket programming
Tut 5: Network debugging tools
Tut 6: Packet capture with
Wireshark/tshark/tcpdump

Assignment 2: Related to socket programming and
performance analysis

7, 8

Multi-threaded server design: synchronization, atomicity, deadlocks,
producer-consumer), event-driven multi-threaded server (e.g., nginx);
Multi-tier application design: Storage options (RDBMS, NoSQL), API
design (REST, RPC, publish-subscribe);
End-to-end application design: Use cases such as e-commerce, video
streaming systems, social networking, instant messaging, etc.

CO1, CO2

Tut 7: Kubernetes (with service mesh) installation
(minikube)
Tut 8: Interprocess communication using FIFO

Project: Starts in Week 7

9

Deployment of computer systems: cloud deployment, cloud
orchestration, network architecture (firewall, DMZ);
Performance measurement and tuning: performance metrics, load
testing, performance profiling

CO2, CO3, CO4
Project milestone 1:
(a) Demo on initial system setup and configuration
(b) Report on suggested additional features

10, 11

Optimizations: caching in computer systems;
Scalability: multicore speedup, load balancer design, building efficient
systems using the given resources;
Reliability and fault-tolerance: replication and consistency, atomicity

CO2, CO3, CO4

12, 13
Distributed transactions: sharding, consistent hashing, 2-phase
commit;
Putting all pieces together: Case studies of distributed systems design

CO2, CO3, CO4
Project milestone 2:
(a) Final project demo
(b) Final report

*Please insert more rows if required
Weekly Lab Plan

Week Number Laboratory Exercise COs Met Platform (Hardware/Software)
Course does not have a lab component.

*Please insert more rows if required
Assessment Plan

Type of Evaluation % Contribution in Grade

Project 35
Programming assignments 20
Mid-sem 15
End-sem 30
*Please insert more row for other type of
Evaluation Resource Material

Type Title

Books

1. Operating Systems: Three Easy Pieces, by Remzi H. Arpaci-Dusseau
and Andrea C. Arpaci-Dusseau
2. Computer Networking: a Top Down Approach (8th edition), by Jim
Kurose and Keith Ross
3. Principles of Distributed Computing, by Roger Wattenhofer
4. Computer Systems: A Programmer's Perspective, by Randal E. Bryant
and David R. O'Hallaron
5. Cloud Native Networking Deep-Dive, by Chander Govindarajan,
Priyanka Naik

Web references

1. Virtual Machine Monitors: Current Technology and Future Trends
2. Virtual Machine Monitors, by OSTEP
3. Containers and Cgroups
4. Linux namespaces
5. kvm: the Linux Virtual Machine Monitor
6. Distributed systems reading list https://github.
com/theanalyst/awesome-distributed-systems
7. Relevant research papers for real-world use cases

Homework/Tutorials/Assignments

Tutorials:
0: Linux familiarity: using the shell, creating a VM, compiling C program
--> recall SP refresher & OOPD
1: Virtualbox and docker installation
2: Multithreading using pthreads
3. Performance analysis using "perf" tool to monitor hardware
performance monitoring units (PMUs)
4: Socket programming
5: Network debugging tools
6. Packet capture with Wireshark/tshark/tcpdump
7: Kubernetes and service mesh installation (minikube)
8: Interprocess communication using FIFO
Smaple assignments:
1: Write a simple Linux shell in C
2: Performance analysis of Multi-threaded & Event-driven TCP server

Project

Sample examples:
Real-life use case code is given. Students will deploy it over docker
platform, implement few additional features, analyze performance,
enable scale and reliability.
Example real-life applications:
Video streaming service, Social media networking, Online storage of
files and documents, Online banking, E-commerce service, Swarm
service.

References:
1. An Open-Source Benchmark Suite for
Microservices and
Their Hardware-Software Implications for
Cloud & Edge Systems, ASPLOS 2019
2. Starter code-base available here

https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://course.ece.cmu.edu/~ece845/docs/virtual-future-computer05.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf

