

Worksheet 3

IQC 2025

January 31, 2025

1. A projector is defined for any orthonormal basis $\{|i\rangle, 1 \leq i \leq n\}$ as

$$P = \sum_{i=1}^k |i\rangle \langle i|$$

. Show that $P^2 = P$ for a projector. Also show that all the eigenvalues of a projector are either 0 or 1.

2. Which of the following is/are valid projectors?

- (a) $P = \frac{1}{2} |+\rangle \langle +| - \frac{1}{2} |-\rangle \langle -|$
- (b) $P = \frac{1}{2} (|0\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 0| + |1\rangle \langle 1|)$
- (c) $P = \frac{1}{\sqrt{2}} (|0\rangle \langle 0| + i |0\rangle \langle 1|)$

3. Prove that for any orthonormal basis $\{|\psi_i\rangle : 1 \leq i \leq n\}$ the projectors $\{|\psi_i\rangle \langle \psi_i|, 1 \leq i \leq n\}$ satisfy the completeness relation.

4. Compute the eigendecompositions of the following unitaries

- (a) Y
- (b) S
- (c) $X \otimes Z$

5. Compute the expected values of the X , Y and Z observables using the measurement formulation and via the density matrix formulation for the following states

- (a) $|+\rangle - |-\rangle$
- (b) $\alpha |0\rangle + \beta |1\rangle, \quad |\alpha|^2 + |\beta|^2 = 1$

6. What is the density matrix obtained if you take the partial trace over the second qubit of the following state

$$|\psi\rangle = \frac{1}{\sqrt{3}} (|00\rangle + |01\rangle + |10\rangle)$$

7. Give two examples of mixed states $\rho_1 = \sum_i p_i |\psi_i\rangle \langle \psi_i|$ and $\rho_2 = \sum_j q_j |\phi_j\rangle \langle \phi_j|$ such that $|\psi_i\rangle \neq |\phi_j\rangle$ for any i and j but $\rho_1 = \rho_2$.

8. Let ρ be a density operator of a two-qubit system AB . Show that $Tr_B((U \otimes Y)\rho(U^\dagger \otimes Y^\dagger)) = UTr_B(\rho)U^\dagger$.

9. Prove that for any Hermitian operator H , the operator defined as e^{iHt} is a Unitary, where t is some arbitrary scalar.

10. Prove that the following set is a closed under matrix multiplication

$$\{\pm I, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ\}$$

. In fact, it is a group called the Pauli Group.

11. Prove that if A is such that $A^2 = I$, then

$$e^{iAt} = \cos(t)I + i \sin(t)A$$

12. Write the matrix forms for the gates $R_X(\theta), R_Y(\theta), R_Z(\theta)$.

13. Show that $XYX = -Y$. Also, show that $XR_y(\theta)X = R_y(-\theta)$.

14. Prove that for any unitary U , the operator $cU = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes U$ is a Unitary.

15. Let A and B be unitaries then show that the operator

$$|0\rangle\langle 0| \otimes (I \otimes I) + |1\rangle\langle 1| \otimes (A \otimes B) = (|0\rangle\langle 0| \otimes (I \otimes I) + |1\rangle\langle 1| \otimes (A \otimes I))(|0\rangle\langle 0| \otimes (I \otimes I) + |1\rangle\langle 1| \otimes (I \otimes B))$$

16. Use the Grover-Rudolph state preparation procedure to prepare the state

$$|\psi\rangle = \sqrt{0.3}|00\rangle + \sqrt{0.4}|01\rangle + \sqrt{0.1}|10\rangle + \sqrt{0.2}|11\rangle$$

17. For a given unitary U , V is defined as \sqrt{U} . Verify the action of the following circuit as the ccU gate.

