

Worksheet 1

IQC 2025

9 January 2025

1. Convert the given invalid quantum states into valid ones.

- (a) $(3 + 5i)|0\rangle + (1 - 7i)|1\rangle$
- (b) In vector notation, $x_1 = [-1, 1]^T$ and $x_2 = [1, -1]^T$.
- (c) $|+\rangle + |1\rangle - 3/5|-\rangle$

2. Find the inner product of the following states:

- (a) $|u\rangle = \sqrt{\frac{7}{11}}|0\rangle + \frac{2}{\sqrt{11}}|1\rangle$ and $|v\rangle = |+\rangle$
- (b) $|u\rangle = |+\rangle$ and $|v\rangle = \frac{8}{9}|0\rangle + \frac{2\sqrt{2}+3i}{9}|1\rangle$.
- (c) $|u\rangle = \omega|0\rangle + \omega^2|1\rangle$ and $|v\rangle = |-\rangle$ where $\omega = \sqrt[8]{1}$ is the eighth root of unity.

3. State whether the following state pairs form a basis for the Hilbert space \mathcal{H}_2 ?

- (a) $|\psi_1\rangle = \sqrt{\frac{3}{2}}|0\rangle + \frac{1}{2}|1\rangle$, $|\psi_2\rangle = -\frac{1}{2}|0\rangle + \sqrt{\frac{3}{2}}|1\rangle$.
- (b) In vector notation, $x_1 = [1, 0]^T$ and $x_2 = \frac{1}{\sqrt{2}}[-1, 1]^T$.
- (c) $|\psi_1\rangle = \frac{\sqrt{3}+i}{2}|0\rangle - \frac{1+i\sqrt{3}}{2}|1\rangle$, $|\psi_2\rangle = \frac{\sqrt{3}+i}{2}|0\rangle + \frac{1+i\sqrt{3}}{2}|1\rangle$.

4. Find the norm of the following:

- (a) $|u\rangle = (1 - \sqrt{3/4})|0\rangle + \sqrt{i/4}|1\rangle$
- (b) $|u\rangle = \omega|0\rangle + \omega^2|1\rangle$
- (c) $|u\rangle = \frac{\sqrt{3}}{2}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$

5. Express the given states in $\{|+\rangle, |-\rangle\}$ basis and the $|\psi_1\rangle, |\psi_2\rangle$ basis from question 1.

- (a) $|\psi\rangle = \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$
- (b) $|\psi\rangle = \frac{1}{\sqrt{3}}|0\rangle + \frac{\sqrt{2}}{\sqrt{3}}|1\rangle$
- (c) $|\psi\rangle = -i\frac{\sqrt{15}}{4}|0\rangle + \frac{1}{4}|1\rangle$

6. What will be the outcomes if the following states are measured in the standard basis and the Hadamard basis respectively?

- (a) $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$
- (b) $\frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle$
- (c) $\frac{1+i}{2}|+\rangle + \frac{1-i}{2}|-\rangle$
- (d) $\sqrt{2}|+\rangle - |0\rangle$

7. Compute the probability of Bob measuring the state $|1\rangle$ in analysis of the BB92 protocol. Also, complete the analysis for the case where Alice has the random bit a set to be 1.