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HW?2 (25 points)

Problem 1. (Points :1+2+2=5) Consider these two circuits. In the left one, a classically controlled gate is applied
(just like in the quantum teleportation protocol). If the measurement outcome of the 1st qubit is 0, Uy is applied
on the 2nd qubit and if the outcome is 1, Uy is applied. The measurement of the 1st qubit here is in the standard
basis (but the general fact is true for any basis).
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Let |¢) denote the state of the 1st qubit and |¢) denote the state of the 2nd qubit.
(a) Write down the density operator corresponding to the state of the 2nd qubit in the left circuit after applying
the classically controlled gate.

(b) Write down the state of the right system before the measurement step.

(c) Write down the density operator corresponding to the state of the right system after the measurement step.
Hint: This should match the answer of (a).

The above equivalence shows intermediate measurements can be effectively pushed to the end, even if there are
quantum gates that are applied conditioned on the classical outcomes of the measurements.

Problem 2. (Points :1+1+2+3+2+2+2=13) A SWAP operator is a two register operator that swaps their states

in the standard basis. That is,
SWAP
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I will use SW AP, to denote n-qubit swap operator.
(a) Write down the outer-product form of the single-qubit SW AP, operator.

(b) Write down the spectral decomposition of the SW AP, operator. You do not have to show calculations; you
are permitted to use some external tools to compute the eigen-decomposition of an operator.

A controlled-SWAP operator is a very useful operator that applies the SWAP operator on two target registers
only when a control qubit is set. We can express such an operator as

cSWAP =0y (0| @ I + 1) (1] ® SWAP

Do you see how the operator, written in this form, captures its logic described above?

(c) Suppose I use cSW AP, as my observable to measure the 3-qubit GHZ state. What is the expected value of
my measurement, denoted (CSW AP;)?

(d) Suppose we apply c¢SW AP, on three registers initialized to |+) |¢) [¢) in which the first qubit is the control
register and the second two are targets. Now, measure only the first qubit in the Hadamard basis. Compute
the probabilities of the different outcomes and the state of the remaining systems corresponding to the different
outcomes. Express the probabilities in terms of r = | (¥|@) |.



(e) Create one quantum circuit to compute two sets of states, in two different registers: |1) = |5p1) and
|¢) = |[++). Use the technique in (e) on these registers as target. Plot the probability of |0) as you increase runs
from 0 ... 10000.

(f) Let p and o denote the (mixed) states corresponding to the first qubits of |¢) and |¢), respectively. Compute
Tr{po}.

(g) Finally, perform the same experiment but only on the first qubits of |¢) and |¢).
Hint: Your answer should be converging to (1 + Tr{pc})

For (e) and (g) submit the qasm code for the circuits and the plots.

Problem 3. (Points :3) Consider an arbitrary two-qubit state:
1) = @00 [00) + o1 [01) + 10 [10) + a1 [11)

Define the concurrence of such a state as Cy = 2|ago11 — aprap|. Show that ¢ is an bipartite state if and only
if C5 = 0. We can define a state to be bipartite if it can be written as a tensor product of two single-qubit states.
A state that is not bipartite is a said to be entangled.

Problem 4. (Points :2+2=4) Consider the Bell state |3) =
operator.

%HOI) —|10)]. Let U be any single-qubit unitary

(a) Prove that applying U on the first qubit (say, held by Alice) is completely equivalent to applying U~! on
the second qubit (say, held by Bob).
Hint: Thus, even if Alice is stranded on a classical island without a quantum computer, she could have U operated
on her qubit by requesting Bob to apply U~' on his qubit!

(b) Which of the other Bell states share this same property?



