Worksheet 1 IQC 2024

12 January 2024

Note: The questions are on page 1, and the hints for some questions are on page 2.

- 1. Find the inner product of the following states:
 - (a) $|u\rangle = \sqrt{\frac{3}{5}}|0\rangle + \sqrt{\frac{2}{5}}|1\rangle$ and $|v\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ (b) $|u\rangle = |+\rangle$ and $|u\rangle = \frac{8}{5}|0\rangle + \frac{i}{5}|1\rangle$

(b)
$$|u\rangle = |+\rangle$$
 and $|v\rangle = \frac{3}{9}|0\rangle + \frac{i}{9}|1\rangle$.

(c) $|u\rangle = \omega |0\rangle + \omega^2 |1\rangle$ and $|v\rangle = |-\rangle$ where $1, \omega, \omega^2$ are the cube roots of unity.

- 2. Find the norm of the following:
 - (a) $|u\rangle = (1 \sqrt{3/4}) |0\rangle + \sqrt{i/4} |1\rangle$ (b) $|u\rangle = \omega |0\rangle + \omega^2 |1\rangle$ (c) $|u\rangle = \frac{\sqrt{3}}{2} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$
- 3. Which of the following is/are valid quantum states?
 - (a) $|\psi\rangle = \frac{i}{\sqrt{2}} |+\rangle + \sqrt{2} |-\rangle$
 - (b) $|\psi\rangle = \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$ (c) $|\psi\rangle = \frac{9}{2}|+\rangle + \frac{2}{2}|-\rangle$

(c)
$$|\psi\rangle = \frac{3}{10} |+\rangle + \frac{2}{10} |-\rangle$$

- 4. For each invalid quantum state in the above question, modify the amplitude of one of the basis elements to obtain a valid quantum state.
- 5. Express the given states in $\{|+\rangle, |-\rangle\}$ basis.

(a)
$$|\psi\rangle = \frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle$$

(b) $|\psi\rangle = \frac{1}{\sqrt{3}} |0\rangle + \frac{\sqrt{2}}{\sqrt{3}} |1\rangle$
(c) $|\psi\rangle = -i\frac{\sqrt{15}}{4} |0\rangle + \frac{1}{4} |1\rangle$

- 6. Give 3 examples of single-qubit basis. How many more such bases can be found?
- 7. Recall that Hermitian matrices are matrices that are self-adjoint, i.e., $A = A^{\dagger}$. Is a product of two Hermitian matrices also Hermitian? What if the matrices are commutative?
- 8. We call the $\{|0\rangle, |1\rangle\}$ the standard basis, computational basis or Z-basis and $\{|+\rangle, |-\rangle\}$ as the Hadamard basis or X-basis. Can you reason why they might be called Z and X basis, respectively? Given this, if the Pauli-Y matrix is defined as $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, what would be the Y-basis?
- 9. For each state in Question 5, express the state in Y-basis.
- 10. Which of the following is/are valid projectors?

(a)
$$P = \frac{1}{2} |+\rangle \langle +| - \frac{1}{2} |-\rangle \langle -|$$

(b)
$$P = \frac{1}{2} \left(|0\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 0| + |1\rangle \langle 1| \right)$$

(c)
$$P = \frac{1}{\sqrt{2}} \left(|0\rangle \langle 0| + i |0\rangle \langle 1| \right)$$

Hints:

 $P^{2} = P \quad .01$ Hermitian $\Longrightarrow A^{\dagger} = A;$ Commutative $\Longrightarrow A \cdot B = B \cdot A \quad .9$ Norm? .2 $P^{2} = P \cdot A \quad .0$.0 $P^{2} = P \cdot A \quad .0$