
Monsoon 2024 Graduate Algorithms: Mid-Sem Exam Max: 90 points
Due: Tuesday, 8 October Duration: 120 mins

Most questions demand a short justification, and for them it is mandatory to include a brief explanation
using 3-4 sentences (anything more is liable to be ignored). Do not forget to include base cases for
recurrences and recursive algorithms.

Read all the questions carefully before attempting. Their ordering does not reflect their difficulty.
If you do not wish to attempt a question, you may write “I don’t know”. You can do so for

Q1—Q9 and each subquestion of Q8. You will be awarded 20% of the marks of that question
(subject to an overall cap of 8 marks) for understanding no answer is better than a bad one.

Q1 [10 points,CO1] Prove that T (i, j) = O((i + j)2) is a solution to the following recurrence. Show the
steps. You may use any method but you must ensure all the cases of the relation as given below are satisfied.

• T (i, j) = max{T (i− 1, j), T (i, j − 1)}+ (i+ j) for i > 0, j > 0,

• T (i, 0) = T (i− 1, 0) + i for i > 0,

• T (0, j) = T (0, j − 1) + j for j > 0,

• T (0, 0) = d

Q2 [5 points,CO1] This question is about the median-of-median algorithm. Suppose we modified the
algorithm to split the input array into blocks of 11 elements. Write down the recurrence for the time-
complexity of MOMSelect and state its solution. Derivation is not required for full-credit.

You will get additional 5 BONUS points for showing the derivation of the solution. Your derivation must
be completely correct to get those 5 points – there will be no partial marking for the BONUS points.

Q3 [5 points,CO1] A function Foo(i, k) is defined for any i ≥ 0 and k ≥ 0 in the following manner.

Foo(i, k) =


k if i = 0
max(0, k − i) if k > n

max

 i+ k + Foo(i− 1, k + 1)
i+ Foo(i− 1, k)
k + Foo(i, k + 1)

 otherwise

Suppose we want to compute Foo(n, 1). (a) Describe an appropriate memoization structure and (b) an
evaluation order for filling the memo (you can also explain the order using for-loops). (c) Lastly, state the
running time of the resulting iterative algorithm to compute the requested function value.

Q4 [5 points,CO2] Is it possible to have a graph with a negative-weight cycle in which the shortest-path
distance between two vertices is well-defined? If no, explain why. If yes, draw a graph G with a negative-
weight cycle and two vertices s and t such that the shortest path between s and t has a distance of 5; use at
most 4 vertices for G and clearly mark the negative-weight cycle and the shortest path between s and t.

Q5 [5 points,CO2] Clearly indicate the following structures in the directed graph below, or write NONE
if the indicated structure does not exist.

1. Strongly-connected components

2. Strongly-connected component graph



Q6 [10 points,CO2] Let G be a directed graph with arbitrary edge weights (which may be positive, negative,
or zero) but without negative cycles, and let s be an arbitrary vertex of G.

A student was given G and he handed me a list of values dist[v] for every vertex which he claims are the
shortest-path distances from s to v.
(a) Design an algorithm (write both pseudoode and high-level explanation) that will allow me to quickly
verify this fact. The algorithm should return True if dist[v] = shortest-path distance from s ⇝ v for all v,
and False otherwise. If you want to reuse any algorithm from lecture (or known from earlier), you need to
write its pseudocode too along with a brief explanation.
(b) Briefly explain why your approach is correct (you need not give a rigorous proof using induction, con-
tradiction, etc.).
(c) Analyse the running time of your algorithm.

For full-credit your algorithm must run in linear time.

Q7 [10 points,CO1] This is a question about finding triangles which I have simplified to 1D for the exam.
Consider a set of points Q on the number line (you can think of Q as a sorted array of integers– Q[1] is
the leftmost point). Define any three points q1, q2, q3 as a triangle, say T , whose perimeter is defined as
P (T ) = |q1 − q2| + |q1 − q3| + |q2 − q3|. Design and analyse an efficient divide-and-conquer algorithm to
identify a triangle with the smallest perimeter. For example, if the points are −10,−3,−1, 5, 6, 11, 13, 20,
then your algorithm should return 12 corresponding to the triangle 5, 6, 11.

You must state the API of your algorithm, briefly explain the idea behind its correctness (you need not
give a rigorous proof using induction), and analyse its time-complexity with the help of a recurrence.

For full-credit, your algorithm must run in linear time.

Q8 [6+2+6+6=20 points, CO1] We are given a stack of n pancakes of different sizes. You can visually find
out which pancake is larger than which one (and even the smallest and the largest ones), however, you are
only allowed to insert a spatula below some pancake and “flip” the entire lot from the top to that pancake
(as shown below).

(a) Design an efficient recursive algorithm SortPancakes(...) to in-place sort the entire stack of pan-
cakes from the smallest diameter (at top) to the largest diameter (at bottom). Assume that there is a global
array D of diameters (D[1] represents the diameter of the topmost pancake). Design the algorithm such that
after SortPancakes(...) has finished, D would be sorted; your implementation of SortPancakes can take
input parameters and produce outputs – be sure to explain them in the API.

Your algorithm can call the following subroutines all of which take O(1) time.

• Flip(i) will flip the top-i pancakes. E.g., if currentD = [8, 1, 6, 9, 3], after Flip(3),D will be [6, 1, 8, 9, 3].

• Min(k) will return the index of the minimum diameter of the topmost k pancakes.

• Max(k) will return the index of the maximum diameter of the topmost k pancakes.

For full-credit in Q8, your algorithm should make at most 2n− 3 flips. Hint:Base case!
For 80% partial credit, your algorithm should make at most 2n flips. No credit otherwise.

(b) Trace your algorithm for D = [3, 1, 2]. Clearly indicate the recursive calls.
(c) Prove that your algorithm is correct using induction. State the induction hypothesis, and then prove

it (include the base case).
(c) Use a recurrence relation to analyse the precisely derive the worst-case number of “flips” used by your

algorithm n (I am asking for a precise expression in n, and not an asymptotic function like O(n)).



Q9 [20 points,CO1] Let T be a rooted tree n nodes with integer weights on its edges, which could be
positive, negative, or zero. The weight of a path in T is the sum of the weights of its edges; there should
be at least one edge in a path. Describe and analyze a dynamic programming algorithm to compute the
minimum weight of any path from a node (not necessarily the root) down to one of its descendants (not
necessarily a leafnode). It is not necessary to compute the actual minimum-weight path; just its weight is
sufficient. For example, given the left tree shown below, your algorithm should return the number -12 (the
minimum-weight downward path in this tree is shaded).

For full-credit your algorithm must run in linear time, and for partial-credit it must run in O(n3). Noth-
ing otherwise.

(a) Write your solution according to the template shared in class.
(b) Create the memo for the right tree shown below; use the definition of the function/subproblem for
computing the memo entries.


