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Abstract
Traffic surveillance enhances road safety and urban planning, but
raises concerns that captured footage can be used to violate the
privacy of drivers, passengers, or pedestrians. While current work
focuses on protecting privacy from machine identifiers, the ability
of human observers to memorize and recognize vehicles remains
unstudied. This paper explores which vehicle features contribute to
human memory retention through a pipeline designed to estimate
vehicle memorability based on attention modeling and object-level
features. We adopt AMNet, an attention-based memorability predic-
tion model, to analyze how simple visual attributes—size, position,
and color—affect vehicle memorability. We quantify these aspects
and identify that memorability can be altered by simple changes
in attributes such as vehicle’s angle of view and distance from the
camera. These findings offer insights for designing privacy-aware
surveillance systems that address human perception threats.

1 Introduction
Traffic cameras are widely used to support traffic monitoring, road
safety, and long-term urban planning [9, 21]. Despite their proven
effectiveness, the ability to track individuals or vehicles in multiple
camera views raises privacy concerns that limit a wider deploy-
ment [27, 28]. Advances in Multi-Target Multi-Camera Tracking
(MTMCT) have intensified privacy concerns, as these techniques
have become increasingly accurate at tracking targets by leveraging
features such as vehicle shape across multiple camera views from
different locations [10, 17, 19, 24]. In response, privacy-preserving
video analytics have been extensively studied [4, 22, 29, 32, 35],
focusing on obscuring privacy-sensitive regions, such as faces and
license plates, or on adding noise to ensure differential privacy.

While privacy protection against MTMCT remains a critical con-
cern, human observers present an additional yet underexplored
privacy threat that operates on a different scale but warrants sys-
tematic investigation. Multi-camera traffic surveillance system in-
volves various human stakeholders–system operators, maintenance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

personnel, and incidental observers–who may inadvertently com-
promise individual privacy (i.e. movement tracking or behavioral
profiling), even when explicit identifiers such as faces or license
plates are blurred [16]. Observers may still recognize or recall indi-
viduals based on visual characteristics such as unique colors and
bumper stickers [1]. For instance, a vintage red convertible with
bumper stickers in a small town remains easily recognizable, and
may become unintentionally memorable, creating persistent pri-
vacy risks. This phenomenon aligns with prior work in cognitive
science, which shows that human memory is strongly influenced
by salience and visual attention [31].

We investigate whether certain vehicles exhibit greater mem-
orability than others in traffic surveillance footage and seek to
identify the object-level visual factors, such as size, position, and
color, that contribute to differential memorability. To the best of
our knowledge, visual memorability as a privacy-relevant attribute
remains underexplored in the surveillance literature. We present
a pipeline to estimate object-level memorability from surveillance
footage and attention modeling1. We found that such simple visual
features significantly influence whether a vehicle is likely to be
remembered by human observers. Furthermore, even changing the
camera’s angle and distance from the streets can significantly alter
the memorability, with vehicles having a frontal view, appearing
on the lower part of the view and closer to the camera having
significantly higher memorability than other vehicles.

2 Our Threat Model
We consider honest-but-curious human observers as our threat
model. These observers, such as system operators, have legitimate
access to traffic surveillance videos. We assume that observers rely
on visual perception and memory rather than automated systems
(e.g.,MTMCT) to recognize vehicles across time and space.

This threat model is grounded in established cognitive research.
Studies have shown that visually salient stimuli—those that stand
out due to contrast, distinctiveness, or semantic content—are more
likely to capture attention and be remembered [31]. Attention plays
a key role in whether incidental stimuli are encoded into long-term
memory, with people able to recall thousands of images after a sin-
gle glance [2]. Memorability is a measurable and consistent image
property. Certain object-level cues (e.g., size, color, and positioning)
significantly influence retention across viewers [13].
1To facilitate reproducibility, code repository for this paper is accessible
at: https://github.com/EvelynGao233/Privacy-Aware-Visual-Memorability-in-Traffic-
Surveillance
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These perceptual mechanisms create privacy risks in traffic
surveillance. Vehicles with uncommon colors, large footprints, or
unique modifications may become memorable and vulnerable to
informal re-identification. Over time, observers may associate such
vehicles with specific routines, locations, or individuals. While exist-
ing privacy-preserving approaches aim to prevent machine-based
recognition through blurring, encryption, or differential privacy,
they often overlook vulnerabilities from human perception. Our
threat model addresses this gap by focusing on re-identification
that occurs even without malicious intent or technical aid.

3 Background
Visual memorability refers to how likely a visual stimulus is to be
retained after a brief encounter. Foundational studies have shown
that memorability is not entirely subjective but remains consis-
tent across viewers and can be reliably predicted by computational
models [3, 8, 13]. This has led to a growing interest in treating mem-
orability as a quantifiable and intrinsic property of visual content.
AMNet [8] demonstrated that incorporating an attention mecha-
nism into a deep neural network significantly improves memora-
bility prediction performance. Trained on a dataset of over 60,000
natural images with behavioral recall-based memorability labels,
AMNet enables quantification of which objects are most likely to
be remembered by human observers. We extend this foundation to
explore whether mosaic stylization (e.g., neural style transfer [20])
can reduce vehicle memorability in surveillance contexts. This ap-
proach is central to our study of perception-driven privacy risks in
traffic surveillance.

4 Data Processing Pipeline
We implement an attention-based memorability estimation pipe-
line to quantify object-level visual memorability in urban traffic
surveillance footage (Figure 1).
Step 1: Multi-Camera Vehicle Tracking and Identification.
Our pipeline begins by identifying vehicles across multiple cameras
using a state-of-the-art framework [17]. This framework integrates
vehicle detection, intra-camera tracking, and cross-camera associa-
tion to produce standardized annotations. Each vehicle detection
includes an object ID, source camera ID, frame ID, and bounding box
coordinates. These annotations provide the temporal and spatial
foundation for subsequent memorability analysis.
Step 2: Per-Frame Object Memorability Estimation. We apply
AMNet [8] to generate spatial attention maps for each frame, in-
dicating which regions most strongly contribute to the predicted
memorability score. To derive object-level memorability, we align
each vehicle’s bounding box with the corresponding attention map,
scale coordinates to match the attention map’s resolution, extract
the overlapping subregion, and compute the mean attention inten-
sity within each vehicle region. This value serves as a proxy for the
object’s memorability. Repeating this procedure across all vehicle
instances and frames yields memorability scores indexed by object
ID and time.
Step 3: Object-Level Visual Feature Extraction. To examine
which visual properties are associated with higher memorability,
we extract three interpretable object-level features for each vehicle
instance: size, position, and dominant color.

Track Vehicles Across Cameras (MTMCT)

Estimate Per-Frame Object 
Memorability 

AMNet

A spatial 
attention map

Per-frame attention 
scores by vehicle ID 
and time

Size,
Position,
Dominant color

Multi-
Camera 
Videos Vehicle ID 

Bounding box coordinates
Extract Simple Object-

Level Features

Analyze What Makes 
Vehicles Memorable

Figure 1: Object-level memorability assessment pipeline

Size is calculated as the bounding box area (𝐴𝑟𝑒𝑎 = 𝑤 × ℎ),
which captures the relative prominence of the object in the frame.
Position is encoded using normalized center coordinates (𝑐𝑥 , 𝑐𝑦).
The vertical coordinate 𝑐𝑦 is particularly relevant in fixed-camera
surveillance, as objects near the bottom of the frame are typically
closer to the camera and more visually salient. Dominant color is
determined using an off-the-shelf color classifier [26] that assigns
categorical color labels to vehicle patches.
Step 4: Constructing the Final Dataset. We integrate the MTMC
tracking outputs, per-frame object memorability scores, and visual
features to create a unified object-level dataset. Each record contains
tracking information, spatial features (area and position), color, and
memorability score for each vehicle-frame pair. This enables sta-
tistical analysis to identify which visual attributes contribute most
significantly to perceived memorability in surveillance footage.

5 Analysis
We apply our analysis on a multi-video multi-tracking dataset from
the NVIDIA AI City Challenge [23], a benchmark for research
in intelligent video analysis. The dataset comprises traffic camera
videos from a U.S. city with license plates blurred to protect identity.
These real-world surveillance videos are well-suited for studying
how visual properties influence memorability in practical settings.

5.1 Geometric Feature Analysis
We examine correlations between geometric features and memo-
rability scores. Figure 2 shows Spearman correlations for center
coordinates (𝑐𝑥 , 𝑐𝑦),𝑎𝑟𝑒𝑎, and object count (discussed in Section 5.3).
The results indicate that object area has the strongest correlation
with memorability (𝑎𝑟𝑒𝑎, 𝜌 = 0.55), followed by vertical position
(𝑐𝑦, 𝜌 = 0.39), consistent with research showing that size and fore-
ground prominence enhance attention and recall [33]. In contrast,
horizontal position (𝑐𝑥 , 𝜌 = −0.02) shows weak correlation. This
analysis confirms that larger and lower-positioned vehicles are
more memorable, likely due to their visual salience and proximity
to the camera.

5.2 Color Distinctiveness Analysis
We examine how memorability varies across vehicle colors by com-
puting average AMNet attention scores and occurrence counts for
each color label. The scatterplot (Figure 3) reveals an inverse pattern:
less common vehicle colors (yellow, brown, silver) exhibit higher
attention scores, while common colors (black, white) show lower
scores. This pattern suggests that visual distinctiveness contributes
to salience, with uncommon colors attracting more attention. A
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Figure 2: Correlation between visual features and memora-
bility scores across videos. The ’all’ column (black border)
represents overall correlations across the combined dataset

one-way ANOVA (Analysis of Variance) confirms significant dif-
ferences across color categories (𝐹 = 70.55, 𝑝 ≪ 0.001), supporting
color’s inclusion as a predictor in subsequent analyses.
Limitation. These patterns should be interpreted with caution,
as color labels from a pre-trained classifier [26] may not capture
perceptual features such as brightness, glossiness, or saturation
(e.g., orange objects appearing darker).

0K 10K 20K 30K 40K 50K 60K 70K 80K 90K
Total Frame-Level Detections (Thousands)

10

20

30

40

50

60

70

M
ea

n 
At

te
nt

io
n 

Sc
or

e

Black

Blue

Brown

GreenOrange

Red

SilverWhite

Yellow

Figure 3: Mean AMNet attention score (memorability proxy),
plotted against detection frequency for each vehicle color

5.3 Multivariate Memorability Modeling
To quantify relationships between visual features and predicted
memorability, we develop five hierarchical linear regression mod-
els progressively adding feature groups: object size (𝑎𝑟𝑒𝑎), spa-
tial position (𝑐𝑥 , 𝑐𝑦), visual appearance (𝑐𝑜𝑙𝑜𝑟 ), and object density
(𝑜𝑏 𝑗𝑒𝑐𝑡𝐶𝑜𝑢𝑛𝑡 ), with interaction terms to capture compound effects.
Table 1 shows that each step yields incremental improvements in
adjusted 𝑅2. The substantial improvement from Model 2 to Model
3 (Δ𝑅2 = 0.052) demonstrates synergistic size-position interactions
beyond independent effects. Models 4 and 5 achieve the best perfor-
mance (adjusted 𝑅2 = 0.279), which is reasonable given the memo-
rability’s inherent variability—factors like motion, prior exposure,
or scene semantics remain uncaptured. The identical performance
between these models indicates that object count (the number of
detected objects per frame) provides no additional predictive power
beyond geometric and color features, consistent with weak correla-
tions observed in Figure 2 (𝜌 = −0.01 overall).

5.4 Viewpoint Effects on Memorability
While object-level features predict visual memorability, camera
placement and scene layout may also influence attention. We com-
pare six videos (c041–c046) from distinct surveillance viewpoints
at a multi-lane intersection (Figure 4).

Table 1: Comparison of linear regression models for predict-
ing memorability scores. Higher adjusted 𝑅2 indicates better
fit. All models significant at 𝑝 < 0.001.

Model Formula Adj 𝑅2

Model 1 𝑎𝑟𝑒𝑎 0.184
Model 2 𝑎𝑟𝑒𝑎 + 𝑐𝑥 + 𝑐𝑦 0.202
Model 3 𝑎𝑟𝑒𝑎 * 𝑐𝑥 * 𝑐𝑦 0.254
Model 4 𝑎𝑟𝑒𝑎 * 𝑐𝑥 * 𝑐𝑦 + C(𝑐𝑜𝑙𝑜𝑟) 0.279
Model 5 𝑎𝑟𝑒𝑎 * 𝑐𝑥 * 𝑐𝑦 + C(𝑐𝑜𝑙𝑜𝑟) + 𝑜𝑏 𝑗𝑒𝑐𝑡𝐶𝑜𝑢𝑛𝑡 0.279

Figure 4: Representative frames from six surveillance videos

Videos from frontal or lower camera angles (c041, c043) yield
higher average memorability scores, while top-down perspectives
(c044) produce lower memorability (Figure 5). AMNet attention
maps confirm that vehicles in c044 receive little predicted focus
despite remaining visually present, with attention broadly dispersed
across background regions, unlike c046 where attention focuses on
vehicles (Figure 6). Analysis shows vehicles in c044 consistently
appear higher in the frame (𝑐𝑦), coinciding with reduced attention
scores (Figure 7). Since human attention favors center or lower
image regions, this positioning may reduce vehicle salience and
memorability.
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Figure 5: Mean memorability scores across the six videos.
c043 has the highest average, while c044 is substantially lower

Cross-view analysis reveals substantial memorability variation
for the same vehicles across different viewpoints. 75.4% of multi-
camera objects show standard deviations greater than 10 points,
and 49.1% vary by more than 30 points across views. This sub-
stantial variation demonstrates that memorability depends on the
interaction between object attributes and viewing context. Camera
angle influences the apparent object size and spatial positioning
we identified as key factors, while background context and fram-
ing create additional scene-level effects that could be leveraged for
privacy enhancement.
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Figure 6: Comparison of AMNet attention patterns between
videos c044 (top) and c046 (bottom). The heatmaps visual-
ize predicted visual salience with red indicating high atten-
tion and blue indicating low attention. Video c044 shows
dispersed attention across background elements, while c046
exhibits focused attention on vehicles
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Figure 7: Normalized vertical center (cy) of objects across
videos. Vehicles in c044 appear higher in the frame on aver-
age, which may affect visual salience

6 Related Work

Visual Memorability. Visual memorability refers to the likeli-
hood of visual content being retained in human memory after brief
exposure. Studies show that memorability is consistent across view-
ers and can be computationally predicted [3, 8, 13]. Recent works
demonstrate that object-level features—like size, position, and vi-
sual distinctiveness—influence memorability [14, 15]. For instance,
centrally positioned or larger objects tend to be more memorable
than peripheral or smaller ones [11]. Memento [25], VideoMem [5]
and Modular Memorability [7] similarly identify both low-level and
high-level features of videos that allow us to predict their memora-
bility. Our work specifically analyzes the memorability for traffic
surveillance objects, using the predictions of AMNet.

Privacy in Traffic Surveillance. Current privacy-preserving ap-
proaches focus on defending against algorithmic threats such as
license plate recognition and vehicle re-identification [4, 18]. Com-
monmitigation strategies include face and plate de-identification [6,

Figure 8: Effect of mosaic stylization on attention patterns.
The top row shows the original frame and its attention map;
the bottom row shows the same frame with mosaic styliza-
tion and its attentionmap. The stylized frame produces more
diffuse attention, reducing focus on vehicles

12], differential privacy [4], and video anonymization [22, 32]. How-
ever, unlike our work. these techniques primarily address machine-
based recognition while overlooking human perception threats.
Multi-Camera Tracking. Modern traffic surveillance relies on
multi-target multi-camera (MTMC) tracking to monitor vehicles
across distributed camera networks [17, 30]. Recent advances like
FairMOT [34] unify detection and identity embedding for improved
performance, with frameworks validated in benchmarks such as
the AI City Challenge [24]. These recent developments in computer
vision, while useful to improve traffic safety and optimization, also
lead to increase in threats to privacy of citizens by deanonymizing
their locations. Our work attempts to mitigate such problems.

7 Conclusion
In this work, we addressed human perception threats in traffic
surveillance privacy through an attention-based memorability pipe-
line. We demonstrated that simple visual features, such as size,
position, and color, significantly influence vehicle memorability,
with substantial variation across camera viewpoints. Our regression
analysis revealed that geometric interactions (𝑎𝑟𝑒𝑎 * 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) are
crucial for memorability prediction, while object density showsmin-
imal impact. Preliminary experiments with mosaic stylization sug-
gest visual transformations can redistribute attention patterns, pro-
viding a foundation for privacy-preserving surveillance approaches.

For future work, we propose investigating how image transfor-
mations can alter memorability to enhance privacy, while preserv-
ing public safety utility. Our preliminary experiments with mosaic
stylization demonstrate that visual transformations can indeed re-
distribute attention patterns and reduce vehicle memorability (Fig-
ure 8), but we intend to perform more extensive experiments. We
further plan to investigate whether full-frame visual style transfer
and partial zooming techniques can reduce object-level memora-
bility by redistributing attention across scenes. User studies and
eye-tracking experiments would provide valuable validation of
these attention-based proxies in real-world perceptual contexts.
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