
A cache-aware strategy for H.264 decoding on
multi-processor architectures

Abstract. H.264 is one of the most commonly used formats for the
recording, compression and distribution of video. Encoders and decoders
for the H.264 standard are widely in demand, and efficient strategies for
enhancing their performance have been areas of active research. With
the proliferation of many core architectures in the embedded commu-
nity, there has been a trend towards parallelizing implementations of
encoders and decoders. In this paper, we present a run time heuristic
which exploits macro-block level parallelism and efficient scheduling in-
side a H.264 decoder to reduce the number of cache misses and improve
the processor utilization. Experiments on standard benchmarks show a
significant speed-up over contemporary strategies proposed in literature.

1 Introduction

H.264/MPEG-4 Part 10 or AVC (Advanced Video Coding) is one of the most
common video formats in recent times. H.264 provides much better compression
ratios than most other video formats such as H.263 and MPEG-2. Encoders and
decoders for the H.264 standard are widely in demand, and efficient strategies
for enhancing their performance have been areas of active research.

Security applications typically involve widespread deployment of H.264. In
the security context, videos are mostly intra-coded, i.e. all existent motion de-
pendencies are within the same frame. Intra-coded videos have therefore been a
subject of active research in both the academic and industrial setting.

With the proliferation of many core architectures in the embedded commu-
nity, there has been a trend towards parallelizing implementations of encoders
and decoders. In general, these proposals have focused on efficient exploitation
of inherent parallelism (at the frame level, slice level or macro-block level) in
the video structure with an aim of achieving better decode performance by load
balancing and distribution of workload between available processors, while hon-
ouring video dependency constraints as applicable.

For intra-coded videos, strategies exploiting macro-block level parallelism
have been found to be more successful in general. The problem in this setting
essentially is to identify the macro-block dependency structure inside a H.264
slice / frame, process the macro-blocks in parallel (honouring dependencies as
applicable) on the available processors in a multi-core setting, with an objective
to minimize the end-to-end decode time. Both static and dynamic macro-block
scheduling strategies have been proposed. Static scheduling strategies in general
assume worst case dependency patterns among the constituent macro-blocks and
often, equal processing times, irrespective of their types.

This paper has two important considerations. A static scheduling approach,
which assumes uniform macro-block processing times, leads to poor processor
utilization. In reality, macro-block processing times vary depending on the in-
puts and the dependency structure. Hence, it is possible to improve the effective

processor utilization by adopting a dynamic scheduling approach that assigns
macro-blocks to free processors as soon as they are ready, as opposed to a static
solution that would normally schedule at pre-defined intervals. In addition to im-
proving utilization, we also show that the effective speed-up obtained crucially
depends on the cache interaction of the decode strategy in a multi-processor set-
ting with a hierarchical (private L1, shared L2, DRAM) memory structure. Many
of the existing decode strategies often do not consider the cache misses resulting
from cache oblivious selection of the macro-blocks to be processed, which in turn
leads to significant slowdown in decoder performance due to frequent accesses
to the lower and slower memory levels.

Our work has two proposals for harnessing the effective power of parallel
computation in a multi-core setting. On one hand, we propose a cache-aware [5]
scheduling strategy to minimize the number of cache misses, by carefully se-
lecting the macro-blocks to be considered next, keeping in view the chance of
a macro-block it depends on, getting evicted from the cache due to capacity
or conflict misses. On the other hand, we attempt to improve the number of
macro-blocks available for processing at every time point, which in turn implies
better processor utilization and hence, improvement in speedup.

We implemented our schedule heuristic and evaluated it on a number of
standard benchmarks. Experiments have shown significant speed up as compared
to methods that currently exist.

2 Background and Related work

A H.264 video [1] consists of a sequence of frames. A frame is an array of luma
samples and two corresponding arrays of chroma samples. Each frame is further
divided into spatial units called slices. A slice consists of blocks of 16 x 16
pixels, known as macro-blocks (MB). A macro-block contains type information
describing the choice of methods used to code the macro-block and prediction
information such as intra prediction mode information and coded residual data.
Within a macro-block, luma samples may be coded as blocks of 4 x 4, 8 x 8 or
16 x 16 pixels. Chroma samples are commonly coded as blocks of 8 x 8 pixels.

Fig. 1. A 3x3 H.264 frame Fig. 2. 2-d wavefront in action

Reconstruction is an important step in the decode of a H.264 video frame. Re-
construction of a decoded macro-block involves obtaining the data from neigh-

bouring macro-blocks based on which motion prediction had been made by the
encoder. This cannot be done independently, but only after fetching data of
neighbouring macro-blocks. In an intra-coded video frame, all dependencies are
in the same frame of video. In addition, a MB includes a variable amount of
residual information that cannot be inferred from previous MBs.
Attempts to parallelize the reconstruction step have been done at frame-level,
slice-level and macroblock-level. At the frame level, different frames are decoded
by different cores. However, this leads to too much pressure on the memory
system. Since there are no dependencies among macro-blocks across slices, slice-
level parallelism places much lower demands on the memory system. However,
since the number and dimensions of the slices are variable, it leads to poor
load-balancing. Thus, macro-block level parallelism is the most commonly used
technique to implement parallel H.264 decoders. [3] presents an excellent survey
of approaches to H.264 decoder parallelization proposed in literature.

The 2-d wavefront approach [3] for parallel H.264 decoding exploits macro-
block level parallelism and computes a static schedule and a processor allocation
strategy. This has been quite successful in practice and proved to be an efficient
solution in a multi-processor setting. Figure 2 shows a snapshot of this method
in action on a frame with 99 MBs, in a 4 processor setup. A, B, C, and D are
the 4 processors. Each MB is labelled with the processor to which it is assigned.
Also, the number labelling each MB denotes the cycle at which the MB will
be processed. For example, the topmost leftmost MB (labelled as 1A) will be
processed in the first cycle on processor A. The next MB to its right, being
dependent on it (1A), cannot start till it finishes, and hence, is assigned to time
unit 2 in the same processor. The entire frame is processed in 38 time units on
4 processors, in the schedule as mentioned as labels on the MBs in Figure 2.
In order to improve scalability, this has been further extended to 3-dimensional
approach (3-d wavefront), where two or more frames are decoded simultaneously
depending on the number of idle cores in the multiprocessor system [2].

3 Motivation and Objectives

Our work has several important considerations that makes it different from those
proposed in literature. Static approaches to parallelize decoding [3], in general,
assume, a regular dependency structure for a MB and equal processing times,
i.e. each MB is dependent on all its four neighbours [1] (top left, top, top right,
and side left), depending on which of these are actually present according to its
position (the top row MBs excepting the leftmost one, for example, only have
left dependency edges). However, in reality, there is a lot of input-dependent
variation, and in practice, the dependencies vary across MBs. In effect, a MB
can actually turn out to depend on one / two / three / all /none of its neighbours,
a fact that can lead to improvement in decode performance in a parallel setting.
This motivates a dynamic run-time schedule strategy.

Secondly, static methods often schedule MBs at uniform intervals on all cores,
assuming all MBs have equal processing times. This is not true in H.264. This

forces some of the cores to remain idle. For example, in Figure 2, if processor
A finishes processing MB 15A early, it has to wait for other cores. We assume
variable processing times, and also attempt to improve on processor utilization
through our MB selection method.

Finally, most of the techniques for parallel decoding do not consider cache
misses. Consider the working of the wavefront strategy as shown in Figure 2. The
gray shaded MBs are the ones needed in the processor cache for processing the
yellow ones (since worst case 4-neighbour dependency is assumed). For example,
for processing the MB marked 15A in core A, the processor needs to load the
MBs 9A, 11A, 13A and 13B in the local cache. Since 13B is being processed in
core B, this means, we need to fetch its data present in core B of L1 through L2.
An important consideration that can reduce cache misses is to avoid the same
MB being reloaded into cache. This can be done by giving priority to MBs whose
parents have a chance of being expelled due the cache replacement policy. In our
schedule heuristic, we keep this under consideration.

4 Cache-Aware Heuristic

In this section, we present the details of our MB scheduling and processor allo-
cation strategy in a multi-processor setting with a private L1 cache, a shared L2
cache and DRAM. We assume the following about the processor model.

– Every cache uses Least Recently Used (LRU) replacement policy.
– All caches are assumed to follow multi-level inclusion policy, i.e., if some data

item is present in L1 cache, then it is also present in L2 cache and DRAM.
Similar policy is also followed for L2 cache. However, the data present in
DRAM may be obsolete.

– L1 cache is assumed to use write-through policy. L2 cache is, however, as-
sumed to use write-back policy.

– Write-invalidate is used at L2 cache to ensure memory consistency. In other
words, when some data is written to the cache, that data is immediately
invalidated at all L1 caches, and the updated data is brought in from L2.

– Bus arbitration of L2 cache is done on First Come First Serve (FCFS) basis.

We further assume that all frames are fully accommodated in the main memory.
Thus, there is no need for disk access at any point of time. We now define the
concept of cache flush time, a key element of our schedule heuristic.

Definition 1 The cache flush time τ of a node u is the number of cache misses
for which the node will be present in the cache.

Since we assume a LRU replacement policy, the cache flush times can be obtained
from the LRU counters in a modern architecture. The MB scheduling problem
is modelled as a scheduling problem on a task graph, where the MBs form the
nodes and a directed edge between two MBs depicts the dependency relation
(from a MB to its dependent MBs). We call such a task graph that is used to
model this problem as a frame task graph. A node (i.e. a MB) of the frame task
graph is labelled with three components.

– Macro-block type: Indicates which of 4x4 / 8x8 / 16x16 is present.

– Position of macro-block dependency in memory hierarchy: For each depen-
dency of a macro-block, the position in the memory hierarchy (L1 cache, L2
cache or DRAM) where it is present.

– Cache flush time: For each dependency of a macro-block, the τ value.

4.1 Proposed Algorithm

Our heuristic uses simple priority-based scheduling. It involves having a ready
queue A of macro-blocks that can be accessed by any processor. A processor
that becomes idle accesses the ready queue, calculates the priority value of each
macro-block present in the queue and then chooses the one for decoding having
the highest priority. Priority of a macro-block depends on the position of the
macro-blocks in memory, their cache flush times and the number of available
macro-blocks in the ready queue. While assigning priority, we take into account
the following factors:

– Minimum cache flush time of L2 among all nodes (CFTL2): We examine
each node in A whose one or more parents reside in the L2 cache. For each
node, we compute the parent with minimum τ value (has the most chance of
being evicted), and find that node in A whose parent has the highest chance
of being evicted, i.e. the minimum τ value – we call this CFTL2. We have
a threshold value tL2, which we compare with CFTL2. If CFTL2 is greater
than the threshold value, we then know that there are no nodes in the L2
cache that are at risk of being flushed. So, we are then free to choose which
node will be selected depending on other constraints. On the other hand, if
CFTL2 is less than or equal to the threshold value, then we need to ensure
that those nodes which are about to be flushed are accessed quickly by the
decoder. The scheduler, therefore, needs to schedule the children of nodes
about to be flushed from L2 cache as quickly as possible.

– Minimum cache flush time of L1 among all nodes (CFTL1): As with L2, we
similarly use the threshold value tL1 to compare with CFTL2.

– Memory access time of L1 and L2: We know that L1 has a much lower
memory access time as compared to L2. When there is no danger of any
required node to be flushed from L1 or L2, we assign higher priority to
nodes whose parents are in L1. Higher the number of parents in L1, higher
is a node’s priority.

– Number of free nodes in available list: One of our objectives is to ensure that
idle time of processor cores is reduced. So we aim to have enough nodes in
our available list so that processor cores remain busy in processing nodes.
So, when fewer nodes are present in the available list, we give more priority
to nodes that have more outgoing edges.

– For source nodes i.e. nodes with no incoming edges, we give weightage to the
number of neighbours that have been processed. This ensures adjacent nodes
are processed at approximately similar times to maintain temporal locality.

Algorithm 1 CalculatePriority

1: pdata ← CalculateDataPriority(A)
2: pavailable ← CalculateAvailablePriority(A)
3: for all node n ∈ A do
4: p[n]← 1

pdata
+

pparallel
x

// x is the number of available MB nodes in A
5: end for

Algorithm 2 CalculateDataPriority

1: Q← ∪
n∈A

parent[n]

2: CFTL2 ← min
n∈Q∩L2

τL2[n]; CFTL1 ← min
n∈Q∩L1

τL1[n]; cachePriority ← none

3: if CFTL2 < tL2 then
4: cachePriority ← L2
5: else if CFTL1 < tL1 then
6: cachePriority ← L1
7: end if
8: if cachePriority! = none then
9: for all node n ∈ A do

10: pdata[n]← min
p∈parent[n]

τcachePriority[p]

11: end for
12: else
13: for all node n ∈ A do
14: pdata[n]← (l ∗ |nodes[L2] ∩ parent[n]|+ |nodes[L1] ∩ parent[n]|)/ |parent[n]|
15: end for
16: end if
17: return pdata

Algorithm 3 CalculateAvailablePriority

1: for all node n ∈ A do
2: poutgoing[n] ← no of outgoing edges from current available node
3: if n is source then
4: psource[n] ← no of spatial neighbours of this node processed
5: pparallel[n] ← k ∗ psource[n] + (1− k) ∗ poutgoing[n]
6: else
7: pparallel[n] ← poutgoing

8: end if
9: end for

10:
11: return pparallel

Algorithm 1 uses simple priority-based scheduling exploiting the factors dis-
cussed. There are two distinct priority components – pdata and pparallel. pdata is
calculated based on the position of a node’s parents in the cache. A node whose
parent is in danger of being evicted from the L2 cache (obtained by comparing
the parent node’s CFT with tL2) is given priority. If no parent is in danger of
being evicted from L2 cache, we then perform the same process for L1 cache.

The reason behind avoiding misses from L2 cache getting higher priority is that
data that is expelled from L2 cache takes a much longer time to bring back com-
pared to L1 cache. If we find that no parent node is in danger of being evicted
from either L1 or from L2, we then calculate the average priority of each node,
assuming that L1 has a higher priority than L2. This is done to ensure that
memory access times are minimized. The other component, pparallel, is used to
assign priority depending on the number of outgoing edges. Higher the number
of child nodes, greater is the value of pparallel. k denotes a scaling factor. For
source nodes, this also includes how many of its spatial neighbours have been
processed. The total priority, p, is then calculated by assigning weightage to the
two priority factors. The node having the highest priority is then processed by
the core that executed the scheduler. If there is a tie among two processor who
started the priority computation at the same time and ended up selecting the
same MB, we resolve it arbitrarily in favour of any of the processors.

We now explain the working of our algorithm on Figure 2. We assume L1 can
accommodate 2 macroblocks, and L2 can accommodate 8 macroblocks. Let us
assume the macroblock labelled 15A is dependent on 13B and 11A, while 15B
is dependent on 11B and 13C. The first processor is idle and calls the scheduler.
11A is in L1 with τ value 1, 13B is in L2 with τ 5, 11B is in L2 with τ 4, whereas
13C is in L2 with τ value 8. The threshold values are 2 for L1 and 4 for L2.
No MB in L2 is in the danger of being evicted (comparing τ values with the
threshold), and hence, we look at nodes whose parents are in L1. Then, 15A is
scheduled to be processed next using our algorithm, since its parent 11A will be
flushed out of L1 cache before the threshold. If, however, 11A had a τ value of
2, whereas 13C had a τ value 3, then 15B would have been selected.

5 Experimental Results

We implemented an architecture simulator to evaluate our proposed scheduling
strategy in a multi-processor setting. We assume a cache block size of 32 bytes,
and fetching from DRAM in bursts of 256 bytes. We ran our method on a set of
standard test videos. We selected a set of 12 video clips which are widely used
across the digital video domain for benchmarking the decoding, encoding and
other pre/post processing algorithms. All the clips are of HD (720p) resolution
and contain 150 frames. Most of them have high details and large variations
within a frame; hence the intra coded frames are expected to have very good
distribution of intra prediction modes (and hence the dependencies among mac-
roblocks). Our goal was to generate an intra-only stream suite which has a good
variation of dependency relations among the macroblocks.

We used the Joint Model reference software (JM) [4] version 17.2 for encoding
the contents in order to generate our test suite consisting of all only intra-coded
videos. The streams were then parsed with our in-house H.264 decoder and the
task-graphs were generated. For our experiments, we used the value 4 for both
the cache thresholds and 0.5 for k. Simulations were done on a 2GHz machine.

We compared the speedup obtained by our method over the wavefront ap-
proach. We implemented the wavefront method using the algorithm discussed
in [3] and our schedule heuristic as described in Algorithm 1. Results are shown
in Table 1. Each row of the table represents the speedup obtained for a par-
ticular video clip when 4, 8, 16, 32 and 64 processors are present. For most
of the videos, our algorithm offers improvements (speedup > 1) or comparable
performances. For the ones, for which our method is slower than the wavefront
method, the runtime overhead (graph extraction, dependency structure build-
ing, processing time calculation, scheduling overhead) turns out to slow down
the decode process, in comparison to a simple-minded static strategy.

Video 4-proc. 8-proc. 16-proc. 32-proc. 64-proc.

bus 1.12 1.08 1.08 0.9 1.05

crowdrun 1.52 1.57 1.68 1.43 1.72

duckstakeoff 1.78 1.98 2.31 2.11 2.94

intotree 1.31 1.24 1.19 0.95 1.43

night 1.25 1.24 1.31 1.039 1.105

oldtowncross 1.26 1.16 1.1 0.26 0.93

parkjoy 1.79 1.76 1.87 1.64 2.1

parkrun 1.39 1.26 1.33 1.08 1.12

shields 1.07 1.19 1.27 0.95 0.93

shuttlestart 1.12 1.06 0.94 0.72 0.68

stockholm 1.26 1.25 1.29 0.99 0.9
Table 1. Speedup over wavefront

6 Conclusion

In this paper, we present a cache aware schedule heuristic for improving the
speedup of a H.264 decode algorithm in a multi-processor setting. We believe
that a cache-oblivious strategy can benefit tremendously using the proposed
modifications. We are currently looking at extending similar ideas to the other
compression standards.

References

1. Richardson, Iain E. The H. 264 advanced video compression standard Wiley, 2011.
2. Azevedo, A. et. al. ”A highly scalable parallel implementation of H. 264.” Transac-

tions on High-Performance Embedded Architectures and Compilers IV. Springer
Berlin Heidelberg, 2011. 111-134.

3. Juurlink, B. et. al., Scalable Parallel Programming Applied to H.264/AVC Decod-
ing, Springer 2012 (ISBN: 978-1-4614-2229-7)

4. H.264/AVC JM software, http://iphome.hhi.de/suehring/tml/
5. Guan, N. et. al. Cache-aware scheduling and analysis for multicores, In Proceedings

of EMSOFT 2009, pp. 245-254

