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Abstract—Light Fidelity (LiFi) is one of the most promising
techniques to meet such high demand for indoor users by utilizing
the visible light spectrum. A major challenge of LiFi is that its
coverage is relatively limited, as the surrounding walls, objects,
and other surfaces mostly absorb visible light. Thus, a number
of studies have proposed aggregating the bandwidth of WiFi and
LiFi to serve all users within a room. However, complementing
LiFi with WiFi via bandwidth aggregation typically comes with
an overhead in terms of both aggregation and computation,
which reduces the data rates that can be used. Furthermore,
data provided to users are often also limited by the backhaul
capacity, which is typically wired Ethernet in indoor settings. In
this work, we model the utilization of the functioning of WiFi and
LiFi access points as a two-dimensional flow graph and show that
the problem of maximizing the sum of data rate across all users
is NP-Hard in practice. We then design an algorithm FLADA
to solve this problem by solving its relaxed version where the
variables are treated as real numbers, and then rounding to the
nearest integer. We prove formally that it provides a solution that
is at least 0.5ˆ the optimal. We further compare it with a greedy
baseline approach through extensive simulations and show that
it outperforms it by up to 81.6%.

Index Terms—LiFi, WiFi, Aggregation, Linear programming,
Hybrid LiFi-WiFi Network, Link aggregation overhead.

I. INTRODUCTION

The last few years have witnessed a considerable increase
in demand for higher data rates from wireless devices, es-
pecially in indoor communication scenarios. This has put an
additional burden on wireless networks, predominantly using
radio frequency (RF) to facilitate communication among users
and access points (APs). This may precipitate the scenario of
‘spectrum crunch’ or the unavailability of the RF spectrum by
2035 [1]. Thus, researchers are exploring extended parts of the
electromagnetic spectrum, such as visible light (VL), which
can be one of the possible alternatives to the RF spectrum.
Light Fidelity (LiFi) is one of the most promising such alter-
natives that are currently being explored [2]. Unlike its WiFi
counterpart, light fidelity (LiFi) employs the VL spectrum
for indoor communication. Specifically, LiFi utilizes light-
emitting diodes (LEDs) for illumination and communication
by exploiting existing illumination infrastructure. Moreover,
LiFi has additional advantages as it can offer high data rates in
the Gbps range due to the availability of a massive unregulated
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spectrum [3]. Furthermore, it is inherently secure as lights
cannot penetrate the walls, has no health hazards, and has
minimal interference with other electromagnetic (EM) devices.
Thus, the utilization of LiFi has a lot of promise for emerging
applications such as augmented reality (AR) and virtual reality
(VR), which demand large bandwidth.

Utilizing LiFi, however, has some challenges, as it is signif-
icantly affected by blockages and has confined coverage areas
due to the strong directional nature of light. Therefore, the data
rates provided by LiFi fall significantly if the users are present
in the ‘blind spots’, i.e., locations where the intensity of the
signal is low. To circumvent this limitation, prior studies have
suggested the utilization of LiFi/WiFi heterogeneous network
[4]. In such a network, LiFi is complemented with WiFi so
that LiFi offers a higher data rate in a confined coverage area,
whereas WiFi provides a moderate data rate with extensive
coverage for indoor users. Further, LiFi and WiFi operate at
different frequencies; hence they do not interfere with each
other. In a conventional heterogeneous (HetNet) network, users
can receive data from either LiFi or WiFi AP. However, in such
a network, users at the edge of blind spots or having small
amounts of movement would require frequent handovers from
LiFi to WiFi APs or vice-versa [5].

A possible technique of reducing number of handovers
in heterogeneous networks is link aggregation (LA). In link
aggregation-enabled LiFi and WiFi HetNet (LA-HLWN), as
shown in Fig. 1, users receive data concurrently from LiFi
and WiFi APs [6]. Therefore, the data rate can be enhanced by
fulfilling user satisfaction with fewer handovers from LiFi to
WiFi. However, since WiFi’s signals travel physically farther
than that of a LiFi AP, the WiFi APs would get overloaded
unless user data rate demands are intelligently allocated. Thus,
AP selection and allocation of data rate need to be done
efficiently to avoid unnecessarily overloading WiFi APs.

Prior works that have looked at the problem of intelligent
allocation in LA-HLWN have primarily utilized deep rein-
forcement learning [7], [8]. Furthermore, they utilize sim-
plified models of subcarrier allocation in modern WiFi and
LiFi systems, without considering the constraints used by the
new WiFi standards while utilizing OFDMA [9]. While such
techniques provide high data rates to users, they come with
the overhead of long convergence times and high computation
complexity [10]. Since the controller used by HLWN has
limited compute capability, we argue for the need to have a
less compute-intensive technique of data rate allocation.

A second challenge of utilizing LiFi comes from connec-
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Fig. 1: An illustration of realistic LA-enabled hybrid LiFi and
WiFi network. A user at the edge of LiFi AP coverage region
tends to utilize both WiFi and LiFi.

tivity with the network core. Traditional WiFi usually used
Ethernet protocol to carry data to the network core. While
most LiFi deployments available today utilize Ethernet, this
often reaches capacity of the underlying Ethernet backhaul
[11]. Current studies on network aggregation, however, do not
consider the limitations of the backhaul and limit their study
to efficient aggregation.

In this paper, we formulate the allocation of user data
rates as a multi-dimensional commodity flow problem [12],
[13], [14]. Our formulation takes into account the data rates
demanded by the user, the quality of the signal to each AP,
the condition of the backhaul networks of each AP, and the
constraints inherent in LA-HLWN networks as well as the
requirement of fair data rates. We show that this problem
is NP-Hard [15], and thus cannot be solved optimally in
polynomial time. We, therefore, propose an algorithm FLADA
(Flow-based Algorithm for Data rate Allocation) that first
formulates it as an integer linear programming (ILP) and then
solves its relaxed version as a linear programming problem
(LPP). We apply rounding on the solution given by the
LPP, which leads to the release of some data rates. These
released data rates are reallocated as much as possible without
violating the fairness constraints. We formally prove that the
result obtained gives at least 0.5 times the optimal result (see
Theorem 3 of Section IV.C for details).

Our simulation setup considers an indoor scenario for anal-
ysis, as shown in Fig. 1. We have evaluated the performance
of the LA-enabled heterogeneous LiFi-WiFi network for our
proposed algorithm FLADA using various performance met-
rics such as sum rate, average rate, contributions of APs for
the user’s achieved rate, user satisfaction, Jain’s fairness, time
complexity, and energy efficiency. The evaluation in Section
V shows that our proposed algorithm FLADA provides 82%
of the optimal data rates given by an optimal ILP approach in
a single room with 4 LiFi APs and 1 WiFi AP. Furthermore, it
also outperforms a baseline greedy approach by 56% and the
basic LPP version without additional reallocations (referred to
as Base-FLADA) by 31% in the above scenario.
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Fig. 2: Comparison of the sum rate obtained in two distinct
cases of hybrid LiFi-WiFi network – aggregation with an
optimal case of ILP, aggregation with greedy algorithm.

A. Motivation

Our primary motivation is to maximize data rates allocated
to the users in link aggregation-enabled heterogeneous LiFi-
WiFi networks. To motivate this using a single case study
(details of the setting is discussed in Section VI), we show
the improvement in the sum rate for link aggregated LiFi-
WiFi networks in Fig. 2. The sum rate is defined as the sum
of all users’ achieved data rate for a specified network and a
specified number of users. The most straightforward strategy,
greedy, allocates APs to users by identifying the one that
provides the highest data rate. We observe that utilizing the
greedy algorithm to allocate data rates leads to a significant
fall in the total allocation of around 50%. Data rates using
aggregation may fall because aggregation comes with some
additional overhead due to channel heterogeneity [16]. This
shows that a more intelligent algorithm to allocate data rates
is essential to ensure high allocation.

However, assigning APs to users to maximize the data rates
is non-trivial. An optimal approach, typically solved using an
integer linear programming solver, often takes on average over
10s on even a desktop machine, making it unsuitable for use
(details in Section V). Thus, an algorithm that runs fast in
practice while also providing high data rates is essential.

B. Summary of Contributions

We summarize our major contributions as follows:
‚ We formulate the problem of AP selection and rate

maximization for an LA-enabled HLWN as a flow graph.
‚ We design an algorithm, FLADA that utilizes LPP round-

ing and reallocation that guarantees a data rate of at least
0.5 times the optimal for the proposed model.

‚ We evaluate the proposed system for multiple simulation
settings under different fairness constraints to show that
the proposed system outperforms the baseline greedy by
up to 81.6% for tight fairness and 56% for moderate
fairness case. We also show that link aggregation of
LiFi with WiFi provides a significantly higher data rate
compared to the case of no link aggregation.

II. RELATED WORK

We classify related works into three categories – het-
erogeneous LiFi/WiFi networks but without aggregation,
aggregation-enabled heterogeneous LiFi/WiFi networks, and
link aggregation in other networks.
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Heterogeneous LiFi/WiFi Networks Without Aggregation:
Multiple studies have proposed solutions to alleviate the
problem of spectrum scarcity owing to the limited availability
of RF spectrum. For instance, [17], [18], [19], [6] alleviate
the above problem of limited availability of RF spectrum by
using heterogeneous LiFi/WiFi system. In a heterogeneous
LiFi/WiFi system, the user receives the data from either LiFi
or WiFi based on the received signal strength (RSS) at a par-
ticular location. In [17], the authors have provided a dynamic
load-balancing scheme to mitigate the problem of overload
on WiFi AP due to the mobility of the users. The quasi-
static users are connected to LiFi, and the mobile users get
connected to WiFi. The authors have also considered the utility
function, which deals with fairness and throughput. X.Li et al.
have proposed centralized as well as distributed load balancing
algorithms in [18] for cooperative load balancing in a hybrid
RF/VLC system. The authors have analyzed both throughput
and fairness in scenarios having diverse cell formations. The
work [19] discussed the difference between homogeneous
and heterogeneous networks and proposed a two-stage AP
selection algorithm. They developed a fuzzy logic system
for heterogeneous LiFi/WiFi network in the first stage. The
remaining users are assigned to a homogeneous LiFi network
in the second stage. This paper compared the proposed method
with optimization methods, such as the max-sum-log-rate to
show that it improves throughput than conventional methods
and also achieves a close-to-optimal throughput with lower
complexity. The work [6] investigated the benefits of energy
efficiency for heterogeneous LiFi/WiFi systems. They formu-
lated an optimization problem of maximizing energy efficiency
with the constraints of power and bandwidth allocations.

The above works discussed about heterogeneous LiFi/WiFi
network performance without link aggregation. Alternatively,
the following works have focused on the performance im-
provement of the heterogeneous LiFi/WiFi network with link
aggregation (LA).
Link-Aggregation Enabled Heterogeneous LiFi/WiFi Net-
works: Only a few works on heterogeneous LiFi/WiFi net-
works have explored link aggregation. The authors in [5], [20],
[21], [22],[23], [24], and [25] have explored various layers of
the protocol stacks for LA-enabled heterogeneous LiFi-WiFi
network. Fan Jin et al. in [5] have proposed a decentralized al-
gorithm to solve the sub-optimal problem of network selection
and resource allocation for multimode and multihome mobile
terminals. Multihome MTs are able to aggregate the resources
from different networks, whereas multimode MTs are able
to select single networks. The authors have evaluated and
compared the performance of both multihome and multimode
MTs based on delay requirements. However, these works
have focused on RSS-based user association to demonstrate
the advantage of LA without optimizing the data rates. The
work [26] uses Lyupanov optimization to ensure that the
required data rates are achieved while balancing the energy
consumption among visible light and RF waves. In [20],
authors have provided the proof of concept of link aggregation
of LiFi and WiFi in a LA enabled HLWN. The authors in [21]
have focused on the demonstration of link aggregation, which
considers multiple access, mobility, handover, and multipath

transmission control protocol. In [22] and [25], the authors
have implemented and demonstrated link aggregation at the
physical layer using IEEE 802.11ac-supported WiFi interface.
Further, the authors in [23] have implemented link aggregation
at the data link layer using the Linux operating system’s
bonding driver. Y.S.M. Pratama et al. in [24] have used the
Lyapunov optimization function to achieve desired throughput
in a bandwidth-aggregated RF-VLC system. However, none
of these works consider the constraints of the user’s demand,
location, capacity, fairness, and AP’s backhaul capacity for
optimal data rate allocation.

On the other hand, Yang, Helin, et al. in [27] focused on
energy-efficient resource management problem, which deals
with joint network selection, sub-channel assignment, and
power management to meet the required transmission relia-
bility and latency. They have proposed a reinforcement-based
learning algorithm to manage the resources intelligently in
heterogeneous industrial networks. Further, in [7], the authors
have proposed a complex reinforcement learning-based algo-
rithm to solve the problem of load balancing in heterogeneous
LiFi-WiFi networks. In [28], J. Kong et al. explored the power
allocation problem by proposing a Q-learning-based algorithm.
However, these works do not provide performance guarantees
and require extensive training data for bootstrapping.

All these works do not consider the overhead due to link
aggregation. Moreover, the trade-off between fairness and user
satisfaction has also not been addressed for LA-enabled LiFi-
WiFi Hetnets. Although our previous work [29] considers the
overhead, it relies on exhaustive search to allocate resources,
which is computational as well as time intensive and may be
difficult to implement in realistic scenarios.
Flow-based Optimization of Multipath Transmission: In
[30], authors have formulated a joint optimization problem
of resource allocation and transmission coordination for the
heterogeneous network of macro and pico base stations. They
use the a flow-based framework as a tool to evaluate the
performance of the network. Wang et al. [31] have focused on
optimizing user association, subchannel, and power allocation
jointly for a multicell multi-association orthogonal frequency
division multiple access (OFDMA) heterogeneous networks
for downlink transmissions in long-term evolution. The au-
thors have solved this optimization problem in two steps:
(a) optimized the user association and subchannel allocation
for fixed power allocation using graph theory, (b) optimized
power allocation for fixed user association and subchannel
allocation by using the Karush-Kuhn-Tucker conditions and
approximation algorithm. In [32], the authors have proposed
a belief propagation (BP) algorithm to optimize user asso-
ciation, subchannel assignment, and power allocation jointly
for heterogeneous cellular networks using a factor graph
model. In [33], the authors have minimized the resources used
with respect to user association in three-tier HetNets using
a distributed algorithm that used 1D and 2D search. These
works are not directly applicable to our scenario, as they do
not consider the type of resource unit allocations performed by
WiFi or LiFi networks. Furthermore, cellular networks have
much better backhaul capacities [34] than indoor networks, as
in indoor networks the wired ethernet serves as the backhaul.
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TABLE I: Symbols and variables with their descriptions

Symbol Description
r0i data rate allocated to user i
r1i number of APs allocated to user i
g0wi data rate allocated to user i over WiFi channel
g1wi number of WiFi APs utilized by user i (either 1 or 0)
g0li data rate allocated to user i over LiFi channel
g1li number of LiFi APs utilized by user i (either 1 or 0)
h0
ij data rate allocated to user i over jth AP

h1
ij whether user i utilizes jth AP

uij resource units utilized by user i over jth AP
bj data rate utilized of jth AP across all users
Ri demand required by user i’s application
Hij channel capacity of user i from jth AP per RU
Uj number of RUs available in jth AP
Bj backhaul capacity of jth AP
β link aggregation overhead
γ constraint on user satisfaction
m total number of users
n total number of WiFi APs
p total number of LiFi APs
s user application, serving as the source node of the graph
t Internet, serving as the sink node of the graph

Thus, these works cannot be directly used for our purpose.
Our work builds on these strategies to model the problem in
the context of heterogeneous LiFi/WiFi network.

III. SYSTEM MODEL AND DESIGN

A. Description of the System

We consider a system with m number of users, n WiFi APs,
and p LiFi APs for an indoor scenario of known dimensions.
The APs are mounted on the room’s ceiling, and a set of users
are present in the room. A central controller (CC) connected to
all the APs, assigns APs to each user based on their individual
demand and channel conditions. The demand Ri of ith user
is the maximum data rate that a user requires, and it depends
on applications which varies among the users. For example, a
video with a maximum resolution of 1080p is known to have
a maximum data rate of 7.4Mbps.

The user may be given either part or its entire data rate
demand. We denote the data rate available to the user i by
r0i . Each user can be connected to at most one LiFi AP, one
WiFi AP, or both. If both the APs are used by a single user,
we then say that the user is using link aggregation.

The data rate r0i allocated to a user is limited by its demand
Ri as well as the total bandwidth allocated. As in modern
WiFi standards IEEE 802.11ax and IEEE 802.11be (WiFi 6
and 7), we assume OFDMA is used to allocate bandwidth to
each user. The bandwidth can be allocated in pre-specified
resource units (RU) as specified in the IEEE 802.11be (WiFi
7) standard [9]. In this standard, a bandwidth of 20 MHz
can be split into 9 smaller RUs of 2 MHz, 4 smaller RUs
of 4 MHz, 2 smaller RUs of 8 MHz or 20 MHz utilized
together. Each of these RUs has its own modulation and
coding scheme (MCS) ranging from binary phase-shift keying
to 4096-Quadrature Amplitude Modulation (4096-QAM), as
allowed by the standard. A single user receives a maximum
data rate equal to the product of the number of RUs allocated,
the amount of bandwidth per RU, and the spectral efficiency
of the MCS, which is a known constant. In case blockages

are present, we assume the probability of a particular user
facing a blockage is known, and we consider the expected
bandwidth. For convenience, we denote the product of the
amount of bandwidth per RU and the spectral efficiency of
the MCS by Hij .

We denote the data rate used by user i from the AP j by h0
ij .

We assume that the total number of resource units available at
jth AP is equal to Uj . For notational convenience, we assume
that the WiFi APs are numbered from 1 to n, whereas the LiFi
APs are numbered from n`1 to n`p. Note that although for
LiFi APs, OFDMA has been proposed by multiple research
works, it is not yet part of the standard. We assume a similar
mechanism of splitting RU’s as in WiFi APs, as the LiFi
standards borrow most of the channel allocation mechanisms
from the WiFi standards.

In case a user utilizes link aggregation, then there is reorder-
ing of packets, which consumes some additional overhead,
leading to reduction of throughput. We quantify this overhead
as 1 ´ β where 0 ď β ď 1, i.e., p1 ´ βq times the sum
of data rates is lost due to reordering of packets. Thus, if a
user receives data from both LiFi and WiFi APs, its data rate
r0i is also limited to β ˆ pg0wi ` g0liq”. Based on the values
considered in literature [8], [29], an average link aggregation
overhead value of 0.2, i.e., β = 0.8 has been considered.

Each AP also has a backhaul that connects it to the
core network. Each such backhaul has a bandwidth capacity,
depending on the AP’s own capability and the type of wired
network used for the backhaul. Since this network is usually
stable, we consider this to be a constant denoted by Bj for
each AP j.

The goal of the above system is to maximize the sum of the
data rates allocated to each user. However, this is also subject
to fairness constraints, where a few users should not get more
allocated data rates at the cost of other users. We model this
by adding a parameter called fairness coefficient, denoted by
γ. The minimum data rate allocated to the user must exceed
γ times the highest data rate allocated.

B. Our Graph Model

We visualize this entire system as a flow graph shown in
Fig. 3. The flow graph consists of five layers of nodes:

1) The source node s, which represents overall user re-
quirements according to the applications.

2) A node corresponding to each user, denoted by fi.
3) Each fi has one node representing the utilization of WiFi

or LiFi AP each, denoted by fw
i and f l

i , respectively.
4) Each WiFi AP and LiFi AP has one corresponding node,

denoted by aj where j “ 1, 2, ...., n and j “ n` 1, n`

2, ...., n ` p for WiFi and LiFi, respectively.
5) The destination node t, representing the Internet.
The numbers above the edges in Fig. 3 denote their flow

capacities. The first dimension of the flow capacities represents
whether the amount of data available for use. The second
dimension of the flow capacities represents a limit on the
number of possible connections. Thus, since each user can
only connect to a total of two APs, but can utilize data rates
up to their demand, the capacity of an ă s, fi ą edge is
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Fig. 4: Two specific flows are depicted on the flow graph. The
blue and green arrows represent data rates over the WiFi and
LiFi channels respectively.

rRi, 2s. Similarly, since a user can use only one WiFi and one
LiFi AP, and data is not constrained by the type of AP, the
capacities of ă fi, f

w
i ą and ă fi, f

l
i ą are equal to r8, 1s.

An example of data rates obtained (flows) by a specific user
is shown in Fig. 4, with the blue and green lines denoting
the data rates over WiFi and LiFi channels respectively. Note
that the first-dimensional flow is correlated with the second-
dimensional flows, as without a connection from a user to an
AP, the user cannot use the corresponding channels. Having
visualized the problem in the form of a flow graph, we now
formulate it formally.

IV. PROBLEM FORMULATION & SOLUTION

We now formulate the above problem as a mixed integer-
linear programming problem (MILP). Our goal is to select the
data rates rqi , h

q
ij and bj , @i “ 1, . . . ,m, j “ 1, . . . , n`p, q “

t0, 1u. This corresponds to a multi-dimensional flow maxi-
mization problem, which can be formally solved as an instance

of integer linear programming. The goal is to maximize the
total data rates given to the user, i.e.

Maximize
m
ÿ

i“1

r0i . (1)

We now formally define the constraints. A basic feature of
this problem is that for any intermediate node (i.e. all nodes
except s and t), the flows are conserved. Intuitively, this is
because any data cannot be stored by either the user devices
or the APs. Formally,

rqi “ gqwi ` gqli,@i “ 1, . . . ,m,@q “ t0, 1u, (2)

gqwi “

n
ÿ

j“1

hq
ij ,@i “ 1, . . . ,m,@q “ t0, 1u, (3)

gqli “

n`p
ÿ

j“n`1

hq
ij ,@i “ 1, . . . ,m,@q “ t0, 1u, (4)

m
ÿ

i“0

h0
ij “ bj ,@j “ 1, . . . , n ` p. (5)

Our next constraints are the capacity constraints on all the
flows. These constraints depend on the type of edge. We
enumerate each of them along with a brief explanation:

r0i ď Ri,@i “ 1, . . . ,m, i.e,
(each user gets data rate at most equal to demand ) (6)

h0
ij ď Hijuij ,@i “ 1, . . . ,m,@j “ 1, . . . , n ` p,

(each user gets data rate not more than the product (7)
of capacity of RU and number of RU’s allocated)

bj ď Bj ,@j “ 1, . . . , n ` p, and
(the data rate of each AP is limited by its backhaul capacity)

(8)

r1i ď 2,@i “ 1, . . . ,m, i.e.
(no user can connect to more than two APs) (9)

We also have constraints that specify that an AP can be
used to provide data rate if and only if a user connects to it.
We formalize this for both WiFi and LiFi APs as follows:

h1
ij ą ruij{Ujs (10)

We also consider the overhead of aggregation by setting
an additional constraint on the data given to a user ui. This
constraint is activated only if both WiFi and LiFi APs are
used. Formally,

r0i ď βg0wi ` βg0li ` Mp1 ´ g1wiq ` Mp1 ´ g1liq, (11)

where M is a large constant with a value higher than all the
flows. We formalize the fairness constraints for APs using a
relaxed form of max-min fairness, where the minimum rate
allocated to user i must not be lower than γ times of the
maximum allocated rate to any other user in the system:

r0i ě γr0j ,@i, j P t1, . . . ,mu (12)

The bandwidth constraints on WiFi and LiFi APs are:
m
ÿ

i“1

uij ď Uj ,@j P t1, . . . , n ` pu (13)
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Also, we note that all the variables denoting data rates r0i , g0wi,
g0li, h

0
ij , bj are real numbers, i.e:

r0i , g
0
wi, g

0
li, h

0
ij , bj P R,@i “ 1, . . . ,m, j “ 1, . . . , n ` p

The variables denoting individual AP allocation g1wi, g
1
li, h

1
ij

are binary integers, i.e:

g1wi, g
1
li, h

1
ij P t0, 1u,@i “ 1, . . . ,m, j “ 1, . . . , n ` p

The variable denoting number of APs allocated to each user
can be an integer from 0 to 2, i.e:

r1i P t0, 1, 2u,@i “ 1, . . . ,m

The number of RUs allocated uij can be any non-negative
integer, i.e.

uij P Zě0,@i “ 1, . . . ,m, j “ 1, . . . , n ` p.

Expressions (1)–(13) together represent a well-defined mixed
integer linear programming (MILP) problem. We call this
as the 2-dimensional mixed max-flow (2DMMF) problem.
Solving it would provide the connections for each pair of user
and AP, such that the total user demand is satisfied. However,
solving an MILP is an NP-Hard problem that takes exponential
time, and so it is not feasible to run it fast enough in practice.
Furthermore, we prove by a reduction in the following theorem
that the above-defined flow problem is NP-Hard.

Theorem 1. The 2DMMF Problem is NP-Hard.

Proof. We prove this by showing that a particular instance
of the above problem is the 0-1 multiple knapsack problem.
Assume that we have only LiFi APs, i.e., n “ 0. Furthermore,
let Ri “ 8, Bj “ 8 and γ “ 0. Each LiFi AP has a total
of Uj RUs. Thus, each user has to be allocated an integral
number of RU’s from specific APs. We write this as:

Maximize
m
ÿ

i“1

p
ÿ

j“0

Hijuij , (14)

subject to the constraints:

m
ÿ

i“1

uij ď Uj ,@j “ 1, . . . , p, uij is an integer, and (15)

p
ÿ

j“1

ruij{Ujs ď 1,@i “ 1, . . . ,m. (16)

The above problem is identical to the 0-1 multiple knapsack
problem, indicating that our problem is NP-Hard.

Since this problem is NP-Hard, it is not feasible to get
an optimal solution in polynomial time. While it is possible
to utilize integer linear programming to obtain an optimal
solution, the amount of time taken to allocate channels is
unacceptably high (as discussed in Section I.A). We, therefore,
design an approximate algorithm to solve the problem.

Formulate ILP
(Algorithm 1: Line 1)

Relaxation  
(Algorithm 1: Lines 2-9)

Rounding & Releasing
(Algorithm 1: Lines 10-30)

Reallocation
(Algorithm 2: Lines 1-21)

Reduction of allocation to 
ensure fairness

(Algorithm 3: Lines 1-31)

Fig. 5: Flow chart detailing the steps of FLADA.

Algorithm 1 Generation of feasible result using LPP solver
and rounding
INPUT: Ri, H

0
ij , Bj ,@i “ 1, . . . ,m, j “ 1, . . . , n ` p,

OUTPUT: Values rqi , h
q
ij , bj ,@i “ 1, . . . ,m, j “ 1, . . . , n ` p, q “ t0, 1u,

1: Formulate the ILP as described in Expressions (1)–(12)
2: Use LPP solver to solve the relaxed version of ILP
3: for all i P r1, . . . ,ms do
4: aw Ð argmaxnj“1 h

0
ij

5: al Ð argmaxn`p
j“n`1 h

0
ij

6: hq
ij Ð 0, uij “ 0,@j “ n, . . . , n ` p, j R tal, awu,@q P t0, 1u

7: g0wi “ h0
ij , j “ aw

8: g0li “ h0
ij , j “ al

9: end for
10: for all i P r1, . . . ,ms do
11: if r1i “ 2 then
12: /* Release WiFi AP if overhead is higher than WiFi rate alone */
13: if rg0wi ` g0lis ˆ β ă g0li then
14: aw Ð argmaxnj“1 g

0
wi

15: bj Ð bj ´ g0wi, j “ aw
16: uij Ð 0, j “ aw
17: gqwi Ð 0,@q P t0, 1u

18: r0i Ð g0li
19: r1i Ð 1
20: /* Release LiFi AP if overhead is higher than LiFi rate alone */
21: else if rg0wi ` g0lis ˆ β ă g0wi then
22: al Ð argmaxn`p

j“n g0li
23: bj Ð bj ´ g0li, j “ al
24: uij Ð 0, j “ al
25: gqli Ð 0,@q P t0, 1u

26: r0i Ð g0wi
27: r1i Ð 1
28: end if
29: end if
30: end for
31: return r, g, h, u, b

V. OUR SOLUTION APPROACH

Our solution approach FLADA as shown in Fig. 5 consists
of five steps. The first step, shown in Algorithm 1 includes
using an LPP solver and rounding. We relax the MILP into a
linear programming problem. Thus, we relax all the integer
values to real numbers, and solve the linear programming
problem (Line 2). We then use a rounding algorithm to convert
them back into integers and then compute the actual flows. The
rounding algorithm (Lines 3-9) checks for each user the AP
that provides the highest data rate separately for both LiFi and
WiFi. The data rates from the other APs are all set to 0, as
users can utilize only one among WiFi and LiFi. After that, for
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Algorithm 2 Reallocation to increase the data rate.
INPUT: Ri, H

0
ij , Bj ,@i “ 1, . . . ,m, j “ 1, . . . , n ` p,

OUTPUT: Values rqi , h
q
ij , bj ,@i “ 1, . . . ,m, j “ 1, . . . , n ` p, q “ t0, 1u,

1: for all r1, . . . ,ms do
2: L Ð sorted users in ascending order of Ri ´ r0i
3: a Ð maxmi“1 Ri ´ r0i
4: i Ð Lr0s

5: aw “ maxnj“1 h
0
ij

6: al Ð maxn`p
j“n`1 h

0
ij

7: if aw ą 0 then
8: j “ aw
9: vij Ð minpRi ´ ri0, HijUij ´ h0

ij , Bj ´ bj , a{γq

10: h0
ij Ð vij ` h0

ij

11: g0wi Ð vij ` g0wi
12: bj Ð vij ` bj
13: end if
14: if al ą 0 then
15: j Ð al
16: vij Ð minpRi ´ r0i , HijUij ´ h0

ij , Bj ´ bj , a{γq

17: h0
ij Ð vij ` h0

ij

18: g0li Ð vij ` g0li
19: bj Ð vij ` bj
20: end if
21: end for
22: return r

Algorithm 3 Release of data rates to satisfy fairness constraint.
INPUT: Ri, H

0
ij , Bj ,@i “ 1, . . . ,m, j “ 1, . . . , n ` p,

OUTPUT: Values rqi , h
q
ij , bj ,@i “ 1, . . . ,m, j “ 1, . . . , n ` p, q “ t0, 1u,

1: L Ð sorted users in descending order of Ri ´ r0i
2: for all i P L do
3: b1 Ð r0i ´ a{γ
4: /*Reduce allocation to ui by b1 */
5: if b1 ă 0 then
6: return r
7: end if
8: /*Reduce WiFi allocation by wr to xij*/
9: xij Ð minpb1, g0wiq

10: r0i Ð r0i ´ xij

11: g0wi Ð g0wi ´ xij

12: for all j P r1, . . . , ns do
13: if h0

ij ą 0 then
14: vij Ð maxp0, h0

ij ´ xijq

15: h0
ij Ð v

16: bj Ð bj ´ v
17: xij Ð xij ´ v
18: r0i Ð r0i ´ v
19: end if
20: end for
21: /*Reduce LiFi allocation by xij to ui*/
22: xij Ð b1 ´ wr

23: g0li Ð g0li ´ xij

24: for all j P rn ` 1, . . . , n ` ps do
25: if r0ij ą xij then
26: g0li Ð maxp0, g0li ´ xijq

27: bj Ð bj ´ xij

28: r0i Ð r0i ´ xij

29: end if
30: end for
31: end for
32: return r

LiFi and WiFi it checks whether using aggregation provides
higher data rate than any one of them individually (Lines 10-
30). If so, then it retains the connections to both LiFi and
WiFi without making any changes. Otherwise, it retains the
connection only to the AP that provides the maximum.

Utilizing Algorithm 1, however, leads to a substantial
amount of unutilized capacity. This is because the capacity

released during the rounding process is not allocated. Thus, we
introduce our second step of reallocation, shown in Algorithm
2. Algorithm 2 observes the association with the APs, and sorts
the users in the descending order of their remaining demands
of data rates. It then identifies the allocation of data rates that
could be added without exceeding any among the demand of
the user, the channel capacity and the backhaul capacity. It
adds this allocation and then goes to the next user to repeat
this process.

Running Algorithm 2 could lead to the fairness constraint
being violated. Thus, we utilize Algorithm 3 to reduce the
allocation for a user violating the fairness constraint by the
amount necessary to satisfy it. Note that a higher value of γ
imposes stricter fairness, and thus it would reduce the alloca-
tion by a higher amount (Line 3 of Algorithm 3). Once this
computation is complete, it then releases the resources used
from both WiFi and LiFi channels and backhaul capacities.
Finally, it returns the flows r.

A. Performance Bounds of FLADA

We now prove the performance guarantee of FLADA. Our
proof relies on the fact that FLADA uses an LP solver, which
is known to give optimal solution to the assignment problem.
We then show that the LP rounding technique only leads to
a reduction of data rate of half the total allocated, and thus
gives us an approximation ratio of 0.5.

Lemma 1. Given a fixed flow into fw
i ’s and f l

i ’s, the alloca-
tion given by the LP is optimal.

Proof. We note that identifying the optimal WiFi APs and
allocating their data rates is equivalent to the 2-dimensional
assignment problem. Similar is the case for identifying the
optimal LiFi APs. Note that 2-dimensional assignment prob-
lems get optimal results by solving an LPP. Since Algorithm 1
also allocates APs by solving LPP, our technique also ensures
optimal allocation of the data rates through WiFi and LiFi APs
given the values sent over WiFi and LiFi APs are fixed.

Theorem 2. LP-Rounding followed by running Algorithms 2–
3 provides a feasible solution to the 2DMMF Problem.

Proof. We note that the LP-rounding technique allocates be-
tween 1-2 APs to each user (according to Expressions (6)–(8)).
The LP-rounding also satisfies all the capacity, demand and
backhaul constraints. However, after rounding and releasing,
the data rate allocated to the least user may reduce. Note that
reallocation can only add additional allocation (preferably to
the user with the lowest allocation), but does not guarantee
satisfaction of the fairness constraint. Thus, Algorithm 3
checks if the fairness constraint (given by Expression (12)) is
violated and if so, it reduces the allocation from the users who
have received the highest data rates by a value that satisfies
the fairness constraint. Thus, all the constraints are satisfied
by the solution eventually given by Algorithm 3, and so our
solution is feasible.
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Lemma 2. The solution given by Algorithm 1 provides a
constant-factor approximation that is at least 0.5 times the
optimal, i.e.

Or ě 0.5O˚, (17)

where Or and O˚ denote the sum of data rates assigned by
our approach and the ILP respectively.

Proof. We first consider the relaxed version of the 2DMMF
problem obtained by LP-Rounding. Let the solution returned
by this problem be OLPP . We denote the optimal solution,
returned by the ILP, by O˚. Then, since the LPP has weaker
constraints but identical objective, we have:

OLPP ě O˚. (18)

We now consider the solution obtained after rounding and
releasing (Lines 10-30 of Algorithm 1). This step reduces the
amount of data rate allocated. We now show that the amount
of allocation can only be reduced to half of OLPP . To see this,
we note that from each node corresponding to each user fi,
there are only two outgoing edges from fi. Thus, the lowest
value of g0wi or g0li is set to 0, which retains at least a data
rate of maxpg0wi, g

0
liq. We note that:

maxpg0wi, g
0
liq ě pg0wi ` g0liq ˆ 0.5. (19)

Summing on both sides over the users, we get:

m
ÿ

i“1

maxpg0wi, g
0
liq ě

m
ÿ

i“1

pg0wi ` g0liq ˆ 0.5. (20)

Note that the expression on LHS above gives us the flow
received after rounding Or. The expression on RHS is equal
to half the total flow given by the LPP. Thus, we get:

Or ě 0.5OLPP . (21)

Now, from the inequalities (18) and (21), we get Eqn. (17).

Lemma 3. The amount of reduction of data allocated from a
user to an AP in Algorithm 3 never exceeds the data added in
Algorithm 2, i.e. xij ď vij @i “ 1, . . . ,m, j “ 1, . . . , n ` p.

Proof. From Line 9 of Algorithm 2, we have: vij ď b{γ,
where b is the flow of the user which has minimally satisfied.
From Lines 4 and 8 of Algorithm 3, b1 is the amount of
reduction necessary to achieve fairness. Now, note that b1 ď b,
since the amount of reduction must be smaller than the flow of
the least user. This implies that the total amount of reduction
in Algorithm 3 is less than the amount of flow added in
Algorithm 2.

Lemmas 2-3 now clearly show that the total sum rate after
running Algorithms 1-3 satisfy the following result:

Theorem 3. The sum rate obtained after running Algorithms
1-3 is at least 0.5 times the optimal sum rate.

B. Time Complexity

To find out the time complexity, we first compute the total
number of variables by counting the total number of edges in
the flow graph as:

1) A total of m edges from s to node corresponding to
each user fi’s.

2) A total of 2m edges from node corresponding to each
user fi to node corresponding to each user’s possible
connection fw

i and f l
i .

3) A total of mpn ` pq edges from all the fw
i ’s to node

corresponding to each AP aj’s for j “ 1, 2, ...., n ` p.
4) A total of n ` p edges from all the aj’s to t for j “

1, 2, ...., n ` p.
The total number of edges is, therefore, equal to 3m ` mn `

mp`n`p. This gives us a total of 2ˆp3m`mn`mp`n`pq

variables. Since solving LPP takes Opv3q time complexity,
where v is the number of variables, this gives us a time com-
plexity of Opm3pn3`p3q in solving the LPP. For the rounding,
our algorithm iterates over all the users, and then computes
the AP that gives the maximum. This takes Opmn ` mpq

time. Similarly, reallocation also iterates over all users and
APs, taking Opmn ` mpq time. Thus, the time complexity is
dominated by the LPP solver, giving us a total time complexity
of Opm3pn3 ` p3qq. Since the number of users is limited
to 30, the number of WiFi APs is smaller than the number
of LiFi APs (which is in turn usually smaller than 15 in a
room), so the overall problem is easily tractable and solvable
in a few milliseconds. Note that directly solving the ILP takes
Op2mn`mpq, which in practice takes more than a second to
run. This makes it impractical to use.

VI. PERFORMANCE EVALUATION AND DISCUSSION

A. Simulation settings

We consider an indoor environment of 5 ˆ 5 ˆ 3m3 room,
as shown in Fig. 1. Four LiFi APs are installed on the four
quadrants of the ceiling, and a single WiFi AP is at the center
of the ceiling. However, the WiFi AP provides full coverage
compared to a single LiFi AP in this room dimension. The four
LiFi APs are placed to get the coverage area of approximately
3m2 to 4m2 with some LiFi attocell overlapping. Thus, the
user can receive the data from LiFi and WiFi APs concurrently
using the link aggregation technique. Furthermore, we define
ζLiFi
i,k is signal-to-interference noise ratio (SINR) received at

the user from LiFi AP and is modelled as [19]:

ζLiFi
ij “

`

RPDILiFi
ij Popt{K

˘2

NLiFiUij `
ř

lαPlj
α‰j

`

RPDILiFi
ij Popt{K

˘2 . (22)

Here, RPD is the responsivity of the PD, K is the coefficient
of optical to electrical power conversion, Popt is the trans-
mitted power from LiFi AP. NLiFi is defined as the power
spectral density (PSD) of noise. Also, the LiFi channel impulse
response is expressed as [19]:

ILiFi
ij “

pLm ` 1qAPD

2πd2ij
cosl pΘijq cos pΦijq gc pΦijq gf .

(23)
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TABLE II: LiFi and WiFi channel parameters [6], [29]

LiFi channel parameters
Height of the AP from user level (h) 2.15 m

PD’s Area pAPDq 1 cm2

Optical filter’s gain pgfq 1
PD’s FOV 90˝

Optical to electric conversion efficiency pKq 3
Responsivity of the detector pRPDq 0.53 A/W

LiFi AP’s optical transmit power pPoptq 3 Watts
Fixed power consumption of LiFi AP pPLiFiq 4 Watts

LiFi AP’s bandwidth pUijq 40 MHz
LiFi noise PSD pNLiFiq -210 dBm/MHz

WiFi channel parameters
Central carrier frequency pfcq 2.4 GHz

Transmit Power of WiFi AP pPWiFiq 20 dBm
Power consumption in WiFi AP pPwq 6.7 Watts

Bandwidth of WiFi AP pUijq 20 MHz
WiFi noise PSD pNWiFiq -75 dBm/MHz

In (23), di,j is the euclidean distance between the AP j and
user i. The Θi,j and Φi,j are irradiance and incidence angles,
respectively, APD is the physical area of the PD, gf and gc
are the optical filter and concentrator gain respectively. Further,
Lm denotes the Lambertian order [19].

The SINR ζWiFi
i,j between user i and WiFi AP j is calcu-

lated as [19]:

ζWiFi
ij “

GWiFi
ij PWiFi

NWiFiUij `
ř

wαPwj

α‰j

`

GWiFi
ij PWiFi

˘ , (24)

where PWiFi and NWiFi are WiFi AP’s transmit power and
noise power spectral density, respectively.

The channel capacity of user i from AP j per RU can be
calculated as [8]:

H0
ij “ ηijWj , (25)

where, ηij represents the spectral efficiency of user i connected
to AP j, determined through adaptive modulation and coding
scheme (AMCS) based on the SINR values [35], and Wj is
the amount of bandwidth per RU.

The channel gain is expressed as [19]:

GWiFi
ij “

ˇ

ˇIWiFi
ij

ˇ

ˇ

2
10´

PLpdijq
10 , (26)

where IWiFi
ij is the WiFi channel response and PLpdijq is

pathloss of the WiFi multipath propagation model [19].
When the user receives the data from both LiFi and WiFi

APs, there is an effect of overhead on the total data, i.e. the
total data is limited to β times the sum. We consider the
value of β as 0.8 as reported in prior implementations [16] i.e.
80% of the packets are aggregated successfully. The simulation
parameters for the above indoor environment for LiFi and WiFi
channels are listed in Table II.

B. Performance Evaluation of FLADA

We first compare the performance of FLADA with the ILP
and a few baseline techniques. The baseline technique Greedy
always uses the maximum data rate possible from the AP
nearest to it. The baseline technique Base-FLADA utilizes
only Algorithm 1, but not Algorithms 2-3 so that it uses
only the LP-rounding approach without any reallocation of

the released data rates. In each of the experiments, we choose
the location of the users randomly with uniform distribution a
total of 200 times, and then report the statistics as box plots.

1) Comparison of Sum Rates Obtained using FLADA: Fig.
6(a) compares the sum rate using a box plot for the techniques
Greedy, Base-FLADA and ILP for the specified network along
with FLADA for a total 10 number of users. Note that FLADA
theoretically only guarantees a sum rate that is not less than
50% of the optimal. In practice, FLADA performs much better
in practice on average than its worst-case result, with the
median being 82%, 79% and 66% of the median optimal ILP
for γ values of 0.1, 0.5 and 0.9 respectively.

We also observe that the achieved sum rate falls with an
increase of the fairness coefficient γ. This is expected, as we
have a hard fairness constraint, which leads to the release of
additional data rates in Algorithm 3. However, the performance
of the greedy algorithm falls much more drastically than that of
FLADA or ILP. This is because the greedy algorithm does not
consider the data rate received by other users at all while doing
the first allocation, making its initial allocation more unfair.
Thus, FLADA provides much higher data rates than Greedy
in terms of percentage at higher values of γ. Likewise, we
evaluated the effectiveness of our proposed FLADA without
reallocation, referred to as Base-FLADA. The results unveiled
a significant decrease in the sum rate when compared to the
optimal FLADA. This reduction can be attributed to the fact
that a significant amount of additional allocation occurs due
to the utilization of Algorithms 2-3.

We further observe the approximation ratios obtained by
taking the ratio of FLADA and ILP for each instance of
the problem (shown in Fig. 7). As expected, in all cases,
the approximation ratio is over 0.5. In general, the median
ratio is 0.82, 0.79 and 0.66 for γ values of 0.1, 0.5 and 0.9
respectively. This confirms the statement of Theorem 3, i.e.
FLADA always provides ě 0.5ˆ the optimal result.

2) Effect of Blockage on Sum Rate: In this paper, we
address the phenomenon of human blockage within a confined
indoor space measuring 5m ˆ 5m ˆ 3m. Following the mod-
eling framework established in literature [36], we represent
human blockages within this environment. Specifically, for
each user within the system, we consider the presence of
pm ´ 1q human blockages, where m corresponds to the total
number of users. To characterize the channel impulse response
between user i and access point j in the presence of blockages,
we employ the following expression:

IB “ Iijr1 ´ P pBqs, (27)

where P pBq denotes the probability of encountering block-
ages. To effectively model human blockages, we leverage
Matérn hard-core point processes (MHCP), a well-established
approach in the literature [36].

We examine the impact of blockages on the system’s
overall performance by comparing the sum rate under different
fairness coefficients. We find that under the unfair allocation
scenario γ = 0.1, we observe negligible impact from blockages
on the sum rate. However, as fairness increases γ “ 0.5
and 0.9, the sum rate experiences a noticeable decline in the
presence of blockages compared to a blockage-free network.



10

GreedyBase 
 FLADA

FLADA ILP GreedyBase 
 FLADA

FLADA ILP GreedyBase 
 FLADA

FLADA ILP

0

200

400

600

800

1000

Su
m

 ra
te

 (M
bp

s)

 = 0.1  = 0.5  = 0.9

Greedy Base FLADA FLADA ILP(a)

GreedyBase 
 FLADA

FLADA ILP GreedyBase 
 FLADA

FLADA ILP GreedyBase 
 FLADA

FLADA ILP 

0
200
400
600
800

1000
1200
1400
1600

Su
m

 ra
te

 (M
bp

s)

 = 0.1  = 0.5  = 0.9

Greedy Base FLADA FLADA ILP(b)

Fig. 6: Comparisons of sum rate for proposed FLADA with
the baselines greedy search, proposed no-reallocated based
FLADA (Base-FLADA) and optimal ILP case for various
fairness coefficient values for two scenarios: (a) four LiFi APs
and single WiFi AP in a small room of 5ˆ5ˆ3m3 dimension,
and (b) twelve LiFi APs and three WiFi APs in a large room
of dimension 15 ˆ 5 ˆ 3m3.
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Fig. 7: Comparisons of approximation ratio for different
fairness coefficients for FLADA which provides a minimum
of 0.5, as proven by Theorem 3 (§IV C).

Furthermore, our FLADA technique demonstrates significant
performance enhancements, achieving a 14 % and 24 %
improvement in the sum rate under blockage-free conditions
compared to scenarios with blockages for γ = 0.5 and 0.9,
respectively, within the Hybrid LiFi/WiFi Network (HLWN),
as illustrated in Fig. 9.

3) Comparison of Sum Rates Obtained using FLADA in
a large setup: Fig. 6(b) compares the sum rate using a box
plot for the techniques Greedy, Base-FLADA, and ILP for the
specified network, along with FLADA for a total 30 number
of users in a room of dimension 15 ˆ 5 ˆ 3m3. We have
considered 12 LiFi APs and 3 WiFi APs to evaluate the sum
rate. In practice, FLADA performs much better on average
than its worst-case result, with the median being 69%, 66%,
and 96% of the median optimal ILP for γ values of 0.1, 0.5,
and 0.9 respectively as illustrated in Fig. 6.
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Fig. 8: Jain’s fairness index for different values of fairness
coefficient.
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Fig. 9: Comparison of sum rate for proposed FLADA in the
presence of blockage and no blockage scenarios in case of
data rate allocated to users over LiFi channel.

4) Jain’s Fairness: Jain’s fairness is evaluated for the
proposed FLADA algorithm for different fairness coefficient
values as depicted in Fig. 8 for m = 10. Jain’s fairness eval-
uation for a ten-user system shows that the baseline Greedy
approach and Base-FLADA perform approximately similarly
to the proposed FLADA for γ “ 0.1 due to a less fair network.
With an increase in the value of γ, FLADA performs better in
Jain’s fairness evaluation metric than the baseline. Because the
network becomes fairer with the increase in γ. For γ “ 0.5,
Jain’s fairness follows the same trend as γ “ 0.1; but Jain’s
fairness is nearly the same for all the approaches. The reason
is that fairness is already being considered in the evaluation
of the throughput of the network. However, with an increase
in γ to 0.9, the proposed FLADA performs better than the
baseline greedy approach. We observe that there is a trade-
off between average throughput and fairness. Therefore, Jain’s
fairness decreases while the sum rate increases in FLADA,
greedy, Base-FLADA, and ILP as illustrated in Fig. 6.

5) Run Time: : The run time for the proposed FLADA and
ILP is illustrated in Fig.10 for small as well as large room
dimensions. The system’s configuration is AMD Ryzen 5 3600
6-Core Processor @ 3.8 GHz and 16 GB RAM. We observe
that the proposed solution takes a maximum of 3.92 ms, while
ILP takes a maximum of 0.136 seconds in a single room.
For the larger hall, FLADA still takes a maximum of around
50ms, whereas an ILP even takes as much as 1 minute. Thus,
FLADA is around 35ˆ faster than ILP in the single room, and
over 1200ˆ faster in the larger room. Furthermore, ILP has
large variations that even exceeds 10s of run time for larger
dimensions of rooms with more users, LiFi, and WiFi APs.
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Fig. 10: Comparison of run time for FLADA and ILP in small
and large room dimensions.
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Fig. 11: Sum rate comparisons for FLADA with link aggre-
gation and without link aggregation enabled HLWN network
for various fairness coefficient values.

FLADA has very little variation in the run time, making it
more reliable to use in practice.

C. Detailed Performance Analysis of FLADA

We now show a more detailed analysis of FLADA by
analyzing its behavior in different situations. These include its
utilization of aggregation, its individual data rates for different
number of users, the contribution of LiFi and WiFi individu-
ally, overall user satisfaction ratios, and energy efficiency.

1) Performance of Link Aggregation: We further show the
sum rate of the HLWN with and without aggregation for
different values fairness coefficients in Fig. 11. We observe
that there is an improvement of the sum rate of approximately
149 Mbps for γ “ 0.5 and m “ 10 in the case of
link aggregation-enabled HLWN than the case without link
aggregation. Similarly, we notice that HLWN also performs
better by enabling link aggregation than without enabling link
aggregation for γ “ 0.1 and γ “ 0.9.

2) Effect of Varying Number of Users: We compare the
average achieved data rate by varying the number of users
from m “ 1 to 20 for FLADA for various fairness coefficients
as shown in Fig. 12. We observe that from m “ 2 to 20, there
is a consistent fall in the average data rates achieved. This
is expected, as both channel and backhaul capacity remain
constant. Only from m “ 1 to m “ 2, the average data rate
increases slightly as the channel capacity is not a constraint for
such few number of users with less fair case. Furthermore, the
fairness constraint has a limited role in affecting the data rate
for a low (ă 2) number of users, as it is possible to provide
a high enough data rate to satisfy almost all the users.
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Fig. 12: Average achieved rate for various numbers of users
by using FLADA for HLWN with link aggregation.
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Fig. 13: Contributions of LiFi APs and WiFi APs for the LA-
enable network for various number of users.

We notice that the average data rate variations remain same
for γ “ 0.1 and 0.5 upto m “ 8 ; i.e., there is no effect of
the fairness for less number of users. The average data rate
is higher in case of γ “ 0.1 than with γ “ 0.5 for m “ 9
to 20, as some of the users get very high data rate and some
gets very low data rate in case of γ “ 0.1 than with γ “ 0.5 .
Furthermore, strict fairness of γ “ 0.9 provides lower average
data rate as compared to other fairness values.

3) Contribution of LiFi and WiFi APs: Fig. 13 illustrates
the contributions of the APs towards the achieved data rate of
the users. We observe that the average achieved rate depends
on the LiFi and WiFi APs contributions. The LiFi APs and
WiFi APs serve multiple users based on the available capacity
of APs. With an increase in the number of users, the available
capacity reduces, and the contribution to the achieved data
rates of the APs decreases. In the case of a lower number
of users (ă 4), the contribution of LiFi APs increases upto
four number of LiFi APs, which is obvious. The average data
rate obtained by each r0i lies at around 0.97ˆ the summation
of data rates received from LiFi and WiFi APs (denoted by
g0wi ` g0li). Note that the data rate must lie between βˆ and
1ˆ the summation, due to the overhead. Thus, the amount of
data rate lost to overhead is only 0.03 times the summation.
This small amount of overhead incurred in practice suggests
that our algorithm performs better, as it is largely able to avoid
the overhead of aggregation by intelligent data rate allocation.

4) Study of User Satisfaction: The user’s satisfaction S is
defined as the ratio of the achieved data rate by the user to
the user’s demand, i.e. S “ r0i {Ri. The complementary cumu-
lative distribution function (CCDF) of the user’s satisfaction
is shown in Fig. 14. Here, the requested data rate is Poisson
distributed with mean pλq of 100 Mbps [37] and m “ 10. The
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Fig. 14: Analysis of user satisfaction for LA-enabled HLWN
for different fairness coefficient values.
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Fig. 15: Efficiency in terms of the maximum total number of
bits that the heterogeneous LiFi-WiFi network can deliver per
Joule of energy with and without aggregation.

capacity bj of each LiFi and for WiFi are 200 Mbps and 100
Mbps, respectively.

The user satisfaction for γ “ 0.1 has large deviations as
compared to γ “ 0.5 and 0.9 cases. This is because there is a
trade-off between fairness and user satisfaction. For γ “ 0.5,
user satisfaction has a maximum value of 0.73. Note that the
sum of user demand is around 1000 Mbps, whereas the total
backhaul capacity equals 900 Mbps. This implies that the best
possible user satisfaction equals 900{1000 “ 0.9. Thus, the
user satisfaction achieved by our algorithm FLADA is close
to the best possible value for lower fairness, i.e., γ “ 0.1.
However, user satisfaction is sacrificed for a more fair network,
i.e., for γ “ 0.5 and 0.9.

5) Energy-efficiency of Link Aggregation: Fig. 15 depicts
the network efficiency measured as the maximum number
of bits that can be received per joule of energy at the user
end. We consider the cases both with and without aggregation
in a heterogeneous LiFi-WiFi network. Note that both WiFi
and LiFi APs have significant static power that is consumed
even if no data communication is performed. We observe that
aggregation enables higher energy efficiency than the case of
no aggregation. This is because aggregation enables us to re-
utilize the static energy (as per Table II) that is already being
spent by the APs for data communication.

VII. CONCLUSION

In this work, we proposed an algorithm FLADA to maxi-
mize the sum of data rates across all the users for LA-enabled
heterogeneous LiFi and WiFi network. FLADA satisfies the
required fairness constraints, while also handling the data
availability based on SINR and the backhaul capacity of APs.
We first proved that the problem of maximizing the data
rate in such a setting is NP-Hard. Thus, FLADA works by

using an LP-Rounding technique, followed by a series of steps
involving reallocation and release of data rates. We compare
the performance of FLADA to an optimal case of ILP with
the baselines greedy approach and Base-FLADA. We observed
that FLADA provides 82% of the optimal solution given by
ILP while also outperforming the baseline greedy approach
and Base-FLADA by 81.6% and 64% for most faired case,
respectively. For future work, we plan to improve energy
efficiency by performing better power allocation, as well as
consider mobility in the system.
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