
CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale

HOYOUNG KIM*, Stony Brook University, USA

AZIMBEK KHUDOYBERDIEV*, The State University of New York, Korea and Stony Brook University, USA

SHUBHANGI S. R. GARNAIK, The State University of New York, Korea and Stony Brook University, USA

ARANI BHATTACHARYA, Indraprastha Institute of Information Technology Delhi, India

JIHOON RYOO†, The State University of New York, Korea

Storing large volumes of traffic video content in cloud storage is an expensive undertaking, given the limited capacity of cloud storage

and its inability to store data beyond a few weeks. To address this issue, this paper introduces CLOUD-CODEC, a novel video encoding

approach tailored specifically for traffic monitoring video. CLOUD-CODEC offers three key advantages: (i) real-time encoding without

any delay, (ii) near-perfect video quality upon decoding, and (iii) one-fifth the storage size of traditional encoding methods. CLOUD-

CODEC is generally applicable to traffic cameras under various weather and lighting conditions. The encoding algorithm is a lightweight

DNN-based object detection and box shaped segmentation approach. The method can uniquely detect and segment cars, pedestrians, and

moving objects with the marginal box shaped contours. Periodic object detection makes it possible for CLOUD-CODEC to operate in

real-time and estimate the movement of objects between predictions. Proof-of-concept evaluations using a massive dataset indicate that

CLOUD-CODEC reduces video size by 80%—surpassing AV1 (34.9%), CloudSeg (58.4%), Detection (76.9%), Segmentation (73.1%),

and Segm&Sort (69.5%). It achieves a frame rate of 95.8 when encoding, and a VMAF score of 72.54 after decoding, with a storage size

that is one-fifth of traditional methods. Field-testing of CLOUD-CODEC on metropolitan traffic cameras demonstrates its ability to

extend storage time by 74.92 percent.

CCS Concepts: • Information systems→ Storage management; Multimedia information systems; • Computing methodologies→
Computer vision problems.

Additional Key Words and Phrases: Traffic Video Storage, Video Encoding, Foreground Extraction, Background Extraction, Cloud

Storage Optimization, Dynamic Object Detection

ACM Reference Format:
Hoyoung Kim, Azimbek Khudoyberdiev, Shubhangi S. R. Garnaik, Arani Bhattacharya, and Jihoon Ryoo. 2025. CLOUD-CODEC: A

New Way of Storing Traffic Cameras Footage at Scale. In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05,

2018, Woodstock, NY. ACM, New York, NY, USA, 28 pages. https://doi.org/XXXXXXX.XXXXXXX

*Both authors contributed equally to this research.
†Corresponding author: Jihoon Ryoo

Authors’ Contact Information: Hoyoung Kim, hoyokim@cs.stonybrook.edu, Stony Brook University, Stony Brook, New York, USA; Azimbek Khudoy-
berdiev, azimbek.khudoyberdiev@stonybrook.edu, The State University of New York, Incheon, Korea and Stony Brook University, Stony Brook, New York,
USA; Shubhangi S. R. Garnaik, shubhangisaile.garnaik@stonybrook.edu, The State University of New York, Incheon, Korea and Stony Brook University,
Stony Brook, New York, USA; Arani Bhattacharya, arani@iiitd.ac.in, Indraprastha Institute of Information Technology Delhi, Delhi, India; Jihoon Ryoo,
jihoon.ryoo@sunykorea.ac.kr, The State University of New York, Incheon, Korea.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0003-3227-2804
HTTPS://ORCID.ORG/0000-0002-3659-0001
HTTPS://ORCID.ORG/0009-0005-3211-1703
HTTPS://ORCID.ORG/0000-0003-2586-7308
HTTPS://ORCID.ORG/0000-0002-8330-8347
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0003-3227-2804
https://orcid.org/0000-0002-3659-0001
https://orcid.org/0000-0002-3659-0001
https://orcid.org/0009-0005-3211-1703
https://orcid.org/0000-0003-2586-7308
https://orcid.org/0000-0002-8330-8347

2 Kim et al.

DB

Encoding

F/G
DB

B/G
DB

CLOUD-CODEC

F/G Video

B/G Image

H.264

H.264

Legacy codec

Deep
Foreground
Extractor

Decoding

Fig. 1. System Flow of CLOUD-CODEC.

1 INTRODUCTION

As urban populations continue to grow and cities become increasingly interconnected, the need for efficient and effective

traffic management has never been more crucial. Traffic surveillance systems employing CCTV cameras have emerged as

indispensable tools for monitoring, analyzing, and managing urban traffic flow [32, 35]. These systems not only contribute

to improved public safety and security but also facilitate data-driven decision-making for urban planning and transportation

policies. Moreover, they are essential for monitoring traffic conditions, detecting accidents, and enforcing traffic laws,

which can ultimately lead to a reduction in congestion and improve overall transportation efficiency [24, 34, 76].

However, the proliferation of high-definition traffic surveillance cameras has generated an immense volume of video

data, which poses significant challenges in terms of storage and bandwidth requirements [23, 59]. Conventional video

encoding methods, while widely used, often struggle to strike the right balance between storage efficiency and video

quality, particularly in real-time traffic monitoring scenarios. The limitations of these methods have a direct impact on the

practicality and effectiveness of traffic surveillance systems.

Furthermore, the rapid growth in video data outpaces the limited capacity of cloud storage, which typically retains

traffic videos for only a few weeks. This short retention period may hinder the investigation of older incidents and limit

the utility of traffic data for long-term analysis and planning. In addition, the cost of storing large volumes of traffic

video content in cloud storage can be quite substantial, making it financially impractical for many municipalities and

organizations to maintain extensive archives of traffic videos [2, 56, 62].

To address these challenges, this study introduces a novel video encoding approach, CLOUD-CODEC, specifically

tailored for traffic monitoring video. CLOUD-CODEC leverages a lightweight deep neural network (DNN)-based

object detection and box shaped segmentation algorithm to achieve real-time encoding, near-perfect video quality upon

decoding, and a significant reduction in storage size compared to traditional encoding methods. By uniquely detecting

and segmenting cars, pedestrians, and other moving objects with box shaped marginal contours, CLOUD-CODEC can

accurately estimate object movement between real-time predictions.

CLOUD-CODEC offers significant industrial advantages in managing large-scale traffic surveillance footage through

its innovative background-foreground extraction techniques. Key benefits include a reduction in data volume by encoding

dynamic moving objects and static background separately, which alleviates storage demands and allows organizations to

manage extensive surveillance data efficiently. This approach leads to cost optimization for long-term storage, making it

a financially viable solution for city governments and private entities by lowering expenses related to data centers and
Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 3

cloud services. Urban areas, especially expanding cities, benefit from CLOUD-CODEC ability to retain video footage for

extended periods to meet legal, security, and operational needs without a substantial increase in storage costs, supporting

the preservation of historical footage over time. The proposed approach has been extensively evaluated using a massive

dataset, demonstrating impressive performance in terms of encoding frame rate, video quality, and storage size reduction.

Moreover, CLOUD-CODEC has been tested under various weather and lighting conditions, showcasing its adaptability

and robustness in real-world traffic surveillance applications. Field-testing of CLOUD-CODEC on metropolitan traffic

cameras further highlights its potential to extend storage time by a substantial percentage, thereby addressing the critical

challenge of limited storage capacity in traffic monitoring systems.

We summarize our contributions as follows:

• We identify that isolating and extracting dynamic foreground objects from largely redundant static background

content enables substantial video size reduction without losing critical information. To the best of our knowledge,

this is the first work to apply a foreground-background extraction approach to reduce storage size in traffic

surveillance.

• We introduce a Deep Foreground Extractor that efficiently identifies moving objects, separating video into dynamic

foreground elements and static background scenes, which are stored independently to reduce storage requirements

(Fig. 1).

• We examine four different strategies for Deep Foreground Extractor; object detection, instance segmentation, box

interpolation and trajectory prediction. We adopt box interpolation approach based on two aspects, time-efficiency

and storage saving.

The remainder of the paper is structured as follows. Section 2 presents the background and a literature review of

encoding solutions. Section 3 details the methodology and key components of the DFE algorithms, Section 4 describes

the implementation and datasets used. Evaluation results based on various performance metrics are detailed in Section 5.

Finally, the remaining sections discuss the limitations, future research directions, and conclusion of the paper.

2 BACKGROUND AND RELATED WORKS

2.1 Background

Several video-storing solutions have been developed and introduced in the past decades to optimize video-storing

processes. Video compression (content and block) [8, 10, 28, 52] and motion segmentation [57, 67] techniques are

two of the most popular and active topics in this area. The video compression technique minimizes the amount of

storage required for recorded footage and reduces the transmission bandwidth over a network. In the block-based video

compression technique, the video frame is divided into small, fixed-sized blocks, and the data is compressed within

each block. As a result, the redundancy and static patterns in the video content are easily identified and eliminated. The

content-based video compression, on the other hand, analyzes the entire frame and identifies regions that accommodate

predictable or redundant information [18]. H.264/AVC, H.265/HEVC, VP9, and AV1 are examples of the most

common video compression formats [50]. BCBR proposed a block-based learning mechanism for high-efficient video

coding by introducing Block-Composed Background Reference (BCBR) [13].

Motion segmentation [33, 54] is also one of the most well-known technologies used in video size reduction by dividing

video content into regions and objects that are in motion independently. By analyzing the moving objects, the redundancy,

and predictability of the video content provide remarkable efficiency for compression algorithms. Optical flow [15],

background subtraction [3], object tracking [39], and clustering [43] methods are the most active research areas in motion
Manuscript submitted to ACM

4 Kim et al.

segmentation-based video size compression applications due to the requirement for transmission and storage of enormous

amounts of data. However, existing motion segmentation struggles with inaccurate estimations when objects in the video

move quickly or in complex ways. Furthermore, motion segmentation heavily relies on inter-frame prediction, meaning

that a single frame’s quality can depend on the quality of previous frames. This leads to the degradation of video quality

over the period, especially if there are errors or dropped frames in video streaming.

To improve video storage efficiency further, shot boundary detection (SBD) and video summarization have been

explored. Traditional SBD methods face high computational costs, limiting real-time use. To address this, recent work [31]

introduced a fast SBD method leveraging separable moments and support vector machines (SVM), significantly reducing

computation time while maintaining high detection accuracy. Meanwhile, deep learning-based video summarization [55]

offers an alternative for reducing storage while preserving key content. These advancements complement existing

compression and segmentation techniques, offering promising directions for optimizing large-scale video storing solutions.

2.2 Related Works

Existing video storage strategies fall into two categories – better encoding strategies and filtering of content on the camera

side.

Encoding Strategies: Ma et al. proposed a library-based video coding scheme to enhance compression for traffic

surveillance videos by leveraging content redundancy, using offline and online stages to extract, store, and match

reference images for encoding, though it faces challenges with library complexity and environmental variability [19].

Deep learning approaches like Residual Squeeze-and-Excitation Network (RSE-Net) improve video quality through

non-linear mapping with minimal parameters [19], while Du et al. introduced a joint compression and recognition model

using Gaussian Mixture Models for structured storage and content analysis [20]. Yeo et al. developed NeuroScaler, a

neural network framework for live stream quality enhancement by reducing super-resolution and encoding overheads [74],

while AccMPEG focuses on improving quality in regions of interest [22]. The most related work, MPEG-4’s sprite

coding [16, 58], encodes static backgrounds as panoramic sprites separate from moving objects but struggles with

global motion estimation, frame stitching, and dynamic scene changes. Unlike these methods, CLOUD-CODEC uniquely

learns object presence to encode videos more efficiently.

Filtering on Camera-side: On-camera filtering approaches for video compression have been gaining remarkable attention

to solve typical challenges in bandwidth, storage, and computation resources. Due to filtering out redundant or irrelevant

frames at the camera level, the amount of data that needs to be sent, stored, and processed on the edge or back-end servers

can be significantly reduced. Reducto, a resource-efficient on-camera filtering system, was introduced to dynamically

adapt filtering decisions based on time-varying correlations among query accuracy, filtering threshold, low-level video

feature type, and video content various parameters of real-time video [36]. Reducto achieved up to 51 − 97% frame

reduction on the camera side, which indeed allowed remarkable bandwidth and storage consumption. Kondi et. al designed

SmartFilter, a real-time application-guided edge system for filtering video frames [60]. These approaches discard

frames that are redundant on the camera-side while sending the rest to the main server for further analysis.

Server-driven streaming (DDS) was proposed to provide feedback on the quality of videos needed, and accordingly

adjust the camera parameters [21]. The DDS continuously forwards low-quality video streams to the server, and the

DNN on the server is used to determine which video chunks must be re-forwarded for better quality and higher

inference accuracy. CloudSeg sends low-resolution frames and then applies super-resolution to obtain high recover high-

resolution frames [66]. Lu et al introduced learning-based optical flow estimation for an end-to-end video compression

framework [42]. The deep reinforcement learning-based approach, CASVA was proposed to make video configuration
Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 5

choices by learning the relationship between inference accuracy and bandwidth requirement [75]. CrossRoI introduces

region of interest optimization to remove the redundant appearance of same objects in multiple cameras by establishing

offline cross-camera correlations and online real-time video inference [27]. TILECLIPPER introduced a system that

employs tile sampling—transmitting only specific rectangular frame areas, or tiles, to the server [12]. TILECLIPPER

adaptively selects these tiles based on their correlation with tile bitrates.

Most studies in the related literature primarily focus on reducing bandwidth consumption, which indirectly reduces

storage requirements. While these methods achieve short-term storage savings, their effectiveness is limited for large-scale

deployments, such as extensive traffic surveillance networks, where the cumulative volume of data remains substantial. In

contrast, CLOUD-CODEC is specifically designed to efficiently encode large volumes of traffic video data at a city-wide

scale and increase the retention period.

3 CLOUD-CODEC

In general, CCTV videos are collected on the database and require a massive amount of storage, and videos are deleted

after short retention time. Therefore we propose a novel approach to save more videos and longer retention time by

extracting dynamic moving objects (vehicles, pedestrians) from the static background. The static background remains the

same in the video thus it is captured and saved periodically to reflect slowly switching light and environment changes.

Whereas, the dynamic foreground moving objects are extracted using deep learning methods and saved to the database at

full frame speed.

Figure 1 provides a brief overview of the overall system flow of CLOUD-CODEC. CLOUD-CODEC is used to

dramatically reduce storage space. To ensure efficiency in processing numerous video streams and to consider quality

during video recovery, CLOUD-CODEC offers four foreground extraction methods explained in Section 3.1. The

background image is created by calculating the median from samples of video frames. When restoring a video, one can

achieve results that closely resemble the original by simply blending the foreground and background together.

3.1 Foreground Extraction

To reduce video size with background removal, it is important to remove noise. Noise is typically affected by weather

conditions, movement of trees or waters, camera shake, and night lighting. There are various studies on the subject

of background subtraction to address this challenge, and recently, deep learning has been used to improve its quality.

However, most models have slow processing speeds and it’s difficult to find a model that produces consistent quality in

various environments. Therefore, we implemented the Deep Foreground Extractor (DFE) to efficiently perform foreground

and background extraction based on a state-of-the-art You Only Look Once (YOLO) architecture [64].

The proposed DFE supports both an instance segmentation model and an object detection model, and it performs at a

speed close to real-time. Object detection localizes the object’s position using bounding boxes. Instance segmentation

accurately segments the area of the detected object, not just the bounding box.

We implemented four versions of the deep foreground extractor in CLOUD-CODEC based on (i) object detection,

(ii) object detection and box interpolation, (iii) instance segmentation, and (iv) instance segmentation and trajectory

prediction. Based on performance comparison, we decided which architecture CLOUD-CODEC uses.

To summarize, we have adopted the model that combines object detection and box interpolation in our system. As we

will discuss further in Section 5, it has shown relatively superior performance in terms of inference speed and file size

reduction.

Manuscript submitted to ACM

6 Kim et al.

(a) Bounding Box. (b) Silhouette. (c) Silhouette with Morphological Dilation.

Fig. 2. Three Types of Foreground Extraction.

Object Detection. In this approach, we selectively retain the regions corresponding to detected objects within each

video frame, removing the RGB information outside the bounding boxes generated by the object detector, as shown in

Figure 2(a). For each frame, a YOLO-based model detects objects, generating bounding boxes around them. A binary

mask is then applied to the frame, zeroing out all pixels outside these bounding boxes and replacing them with a green

background. This modified frame highlights only the detected objects, effectively discarding static background information

and preserving only the foreground activity for storage. Even though this approach reduces data storage by retaining only

detected objects, but it has notable drawback. Its frame-by-frame processing increases computational cost and lowering

FPS, which limits its suitability for real-time applications or high-volume video data. Additionally, artifacts like partial

shadows or nearby objects within bounding boxes can reduce the precision of the extracted foreground. Algorithm 4 in

Appendix (§A) provides a detailed description of this object detection-based foreground extraction method.

Object Detection and Box Interpolation To build a faster and lighter system, we introduce box interpolation. The

object detection is already real-time enough with an average 27.65 FPS, but the computational cost is high to process

all the video streams from numerous cameras installed in urban areas. Box interpolation is used to solve this problem.

It estimates the object’s box as the midpoint of the size and position of the bounding boxes from the previous and next

frames. When an object 𝑖’s bounding box on frame 𝑡 is B𝑖𝑡 ,

B𝑖𝑡 =
B𝑖
𝑡+1 + B

𝑖
𝑡−1

2
, 𝑤ℎ𝑒𝑟𝑒 B𝑖𝑡 = [𝑥𝑖𝑡 𝑦𝑖𝑡 𝑤𝑖

𝑡 ℎ
𝑖
𝑡] . (1)

B𝑖𝑡 includes position 𝑥𝑖𝑡 and 𝑦𝑖𝑡 and size width 𝑤𝑖
𝑡 and height ℎ𝑖𝑡 of the bounding box. As shown in Figure 3(b), this reduces

the frequency of model inference by 1/2, ensuring fast processing speed.

The pseudo-code for this approach is presented in Algorithm 1. For each input video, we apply object detection at

every other frame, generating bounding boxes for detected objects. The SORT tracker then associates these detections

across frames, ensuring consistent tracking of objects over time. Between detection frames, we interpolate bounding

boxes to smooth the object trajectories and reduce flickering effects. A binary mask is created from these bounding boxes

and applied to each frame, removing pixel information outside the detected regions. Non-detected areas are replaced with

a green background.

Instance Segmentation Similar to object detection, we delete the RGB information of the portion outside the object’s

silhouette. Since the contour of the object is precisely traced, shadows or unnecessary information do not appear in

the frame, presented in Figure 2(b). As a result, we can expect a higher compression rate than simple object detection.

However, the downside is that the inference speed is slower compared to the object detection model, due to processing all

of the frames as visualized in Figure 3(c). The detailed operational process is outlined in Algorithm 5 in Appendix (§A.1).

Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 7

Algorithm 1 Object Detection and Box Interpolation-based Foreground Extraction

Require: 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑁 } ⊲ Set of input videos
Require: MYOLO, w ⊲ YOLO model with weights
Require: T ⊲ SORT tracker
Ensure: 𝑉fg = {𝑉1,fg,𝑉2,fg, . . . ,𝑉𝑁,fg}

1: InitializeMYOLO with weights w, load hyperparameters
2: for each𝑉𝑗 ∈ 𝑉 do
3: Open𝑉𝑗 , retrieve FPS, (𝑊,𝐻)
4: Initialize writer for𝑉 𝑗, fg
5: Initialize mask 𝑀𝑗,𝑖 as 0𝐻×𝑊

6: for each frame 𝐹 𝑗,𝑖 ∈ 𝑉𝑗 do
7: 1. Convert 𝐹 𝑗,𝑖 to RGB
8: if 𝑖 mod 2 = 1 then
9: 1. {𝑂𝑘 },masks← MYOLO (𝐹 𝑗,𝑖)

10: 2. {𝑇𝑘 } ← T({𝑂𝑘 }) ⊲ Track detected objects
11: 3. Draw {𝑇𝑘 } on 𝑀𝑗,𝑖 and interpolate with {𝑇𝑘−1}
12: else
13: Interpolate bounding boxes {𝑇𝑘−1} and draw on 𝑀𝑗,𝑖

14: end if
15: 2. 𝐹 𝑗,𝑖 [𝑀𝑗,𝑖 = 0] ← (0, 255, 0) ⊲ Set non-detected regions to green
16: 3. Write 𝐹 𝑗,𝑖 to𝑉𝑗,fg
17: end for
18: Close writer for𝑉𝑗,fg
19: end for

Segmentation and Trajectory Prediction To improve the speed of the instance segmentation model, the trajectories

of each object are predicted using the SORT algorithm [11] including the Kalman filter. Due to the filter, the estimated

velocities of objects are robust against noise. With the velocities, the next bounding boxes can be predicted as described

in the following equation.

B𝑖𝑡 = B𝑖𝑡−1 + V
𝑖 , 𝑤ℎ𝑒𝑟𝑒 V𝑖 = [𝑣𝑖𝑥 𝑣𝑖𝑦 𝑣𝑖𝑤 𝑣𝑖

ℎ
] . (2)

𝑉 𝑖 is a variation of position and size of a bounding box. The segmentation model is applied to 3 frames and remembers the

silhouette of the object. The silhouette is moved along the predicted trajectory for the next 2 consecutive frames. Figure 3(a)

provides a visual explanation of this concept and the pseudo-code is detailed in Algorithm 5 in Appendix (§A.1). However,

since the prediction is based on the assumption of constant velocity, trajectory prediction can be inaccurate when the

object undergoes acceleration or rotational motion. As the video’s frame rate decreases, this prediction error increases.

In particular, as the objects are projected onto a 2D plane, their motion accelerates as they approach the camera. To

compensate, the contour of the silhouette is thickened, shown in Figure 2(c) so that objects can still be captured on the

scene even with prediction errors.

3.2 Background Extraction

To optimize storage efficiency in video surveillance, CLOUD-CODEC extracts a background image from a given video

by estimating the static background across multiple frames. Since surveillance cameras primarily capture moving objects

against a relatively stable background, storing entire video sequences results in redundant storage consumption. To

mitigate this, our approach reconstructs a representative background image by processing a sequence of frames from the

video.

Manuscript submitted to ACM

8 Kim et al.

(a) (b) (c)

Fig. 3. Different Approaches to Reduce Computational Cost in CLOUD-CODEC. Model (a) reduces computational cost by
skipping inference on two consecutive frames and applying trajectory prediction. Model (b) further optimizes by interpolating
bounding boxes on every even frame. In contrast, model (c) involves heavy computation as it processes all frames without
skipping.

The proposed background estimation technique relies on the pixel-wise median method, which determines the most

representative background pixels over time. Specifically, for each pixel location, we collect pixel values from a randomly

selected set of frames and compute their median value. This statistical approach ensures that transient foreground objects

(e.g., vehicles, pedestrians) do not persist in the extracted background [48]. Algorithm 2 outlines the detailed background

extraction concept.

3.3 Reconstruction

We restore the video by combining the foreground video and background image. The basic strategy is chroma-keying.

When creating the foreground video, the RGB value of areas outside the object is set to (0, 255, 0), creating a green

background. When combining with the background image, we remove the green background using chroma-keying and

insert the image into the background.

Algorithm 2 Background Extraction

Require: 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑁 } ⊲ Input videos

Ensure: 𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝑁 } ⊲ Extracted backgrounds

1: for each video𝑉𝑗 ∈ 𝑉 do
2: 1.Open𝑉𝑗 , retrieve dimensions (𝑊,𝐻)
3: 2.Initialize empty list 𝐹 𝑗 for frames

4: for each frame 𝐹 𝑗,𝑖 in𝑉𝑗 do
5: 1.Convert 𝐹 𝑗,𝑖 to grayscale

6: 2.Apply Gaussian blur: 𝐹 𝑗,𝑖,gray

7: 3.Add processed 𝐹 𝑗,𝑖 to 𝐹 𝑗

8: end for
9: 3.Apply Non-local Means Denoising on 𝐹 𝑗

10: 4.Compute median of 𝐹 𝑗 to obtain background 𝐵 𝑗

11: 5.Save 𝐵 𝑗 as the background image for video𝑉𝑗

12: 6.Close video𝑉𝑗

13: end for

Algorithm 3 Video Reconstruction
Require: 𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝑁 } ⊲ Backgrounds

Require: 𝑉fg = {𝑉1,fg, . . . ,𝑉𝑁,fg} ⊲ Foregrounds

Ensure: 𝑉reconstructed = 𝑉1,re,𝑉2,re, . . . ,𝑉𝑁,re ⊲ Reconstructed

1: for each𝑉𝑗,fg ∈ 𝑉fg do
2: 1.Load 𝐵 𝑗 for𝑉𝑗,fg

3: 2.Open𝑉𝑗,fg, retrieve (𝑊,𝐻) and FPS

4: 3.Initialize video writer for𝑉𝑗,re

5: for each frame 𝐹 𝑗,𝑖 in𝑉𝑗,fg do
6: 1.Define green thresholds 𝑢green, 𝑙green

7: 2.Create mask 𝑀𝑖 for segmentation

8: 3.𝐹 𝑗,𝑖,re = 𝐵 𝑗 ⊙ (1 −𝑀𝑖) + 𝐹 𝑗,𝑖 ⊙𝑀𝑖

9: 4.Write 𝐹 𝑗,𝑖,re to𝑉𝑗,re

10: end for
11: 5.Close video writer and𝑉𝑗,fg

12: end for

Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 9

Algorithm 3 details this reconstruction approach. For each foreground video, a matching background image is loaded.

Then, frame by frame, a binary mask isolates the object by filtering out non-object areas using green color thresholds.

This mask helps segment the object from the green screen background, allowing the foreground object to be layered

over the static background. Each frame is then reconstructed by merging the masked foreground with the background

image, ensuring that only areas with detected objects are updated, while the background remains consistent. The result is

a cohesive video that preserves the context of the original background and highlights the movements of relevant objects,

optimizing storage by minimizing redundant background data.

4 IMPLEMENTATION AND DATASET

Backbone. We utilized YOLOv7 with 36.9M parameters as the backbone model for the Deep Foreground Extractor. The

pre-trained weights on the MS COCO dataset [38] were employed. We used only the object categories related to outdoor

environments, including person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant, stop

sign, and parking meter, while filtering out the remaining classes. The input frame size to the backbone was resized to 640

x 640 to obtain the positions of foreground objects. The confidence threshold was set to 0.2, and the IOU threshold was

set to 0.45.

Dataset. We assess the performance of CLOUD-CODEC using a total of 145 surveillance videos obtained from various

benchmarks, as summarized in Table 1. The detailed description of the datasets is as follows:

(1) nVidia AI City Challenge [44]: Published by NVIDIA, this dataset includes 100 videos featuring camera shivering,

poor weather, and nighttime conditions. Video durations range from 19 seconds to 15 minutes, totaling 9 hours and

33 minutes. All videos are 1280×720, 10 FPS, H.264 encoded.

(2) Bellevue [46]: The Bellevue Traffic Video Dataset contains 101 hours of 1280×720, 30 FPS footage from five

traffic intersections in Bellevue, Washington, recorded in September 2017. We randomly selected 10 videos for

evaluation.

(3) UA-DETRAC [68]: We selected 20 video sequences from this benchmark dataset, which contains 100 traffic

videos at 960×540, 30 FPS. Footage is captured at highways, intersections, and T-junctions in Beijing and Tianjin,

China.

(4) AAU RainSnow [9]: This dataset focuses on traffic videos in rain and snow, collected from seven intersections in

Aalborg and Viborg, Denmark. It includes RGB and thermal camera footage at 640×480, 20 FPS, captured from

street lamp-mounted cameras. .

Encoding. In H.264 video encoding, we employ the default parameters of the FFmpeg libx264 library. It’s true that the

default parameter set of libx264 might not be the most optimal for all use cases. However, it provides a balance between

video quality, file size, and encoding time. The default parameters of the H.264 encoding are outlined in Appendix (§A.3.)

Table 1. Summary of datasets used for evaluation

Dataset # of Videos Resolution Duration Type
AICC21 100 1280x720 19s-15 min Benchmark
Bellevue 10 1280x720 1-25 min Benchmark
DETRAC 20 960x540 1-2 min Benchmark

AAU RainSnow 15 640x480 4-5 min Benchmark

Manuscript submitted to ACM

10 Kim et al.

(a) High/low traffic volume (b) Pedestrian activity (c) Profound darkness (d) Early night/morning darkness

(e) Major intersections (f) Straight streets (g) Weather conditions (h) Severe conditions

Fig. 4. Examples of video captures over time, camera locations, traffic volume, pedestrian activity, and various weather
conditions.

Dataset Diversity. The dataset varies across time periods, locations, traffic, weather, and lighting, as shown in Figure 4.

Daytime videos have more objects and congestion, while nighttime videos show uniform object distribution. To ensure a

diverse evaluation of CLOUD-CODEC and baselines, we selected 50 videos from 145, covering camera shaking, traffic

variations, pedestrian activity, extreme darkness, intersections, straight roads, and severe weather conditions. Further

details on these scenarios and video distribution. Further details on these scenarios and video distribution are provided in

Appendix (§A.2).

Hardware. We have implemented and tested baseline deep foreground extraction (detection, segmentation, segmentation

& prediction) and CLOUD-CODEC on Windows 11 machine and it has an Intel i9-10800 CPU with NVIDIA Titan

RTX Graphics Card, and 128 GB memory. The videos are stored onto the local storage and streamed out to the baseline

schemes and CLOUD-CODEC.

Baseline Schemes. As baselines, in addition to the detection, segmentation, segmentation & prediction-based foreground

extraction modules, we have re-implemented CloudSeg [66] and an AV1 video encoder. CloudSeg is a model

designed to perform real-time semantic segmentation by introducing the edge-to-cloud concept. The core idea is to

reduce the resolution of streaming videos on the edge to increase inference speed and reduce network bandwidth.

Then, apply super-resolution (SR) using the CARN model [1] to restore high-quality resolution from the low-resolution

stream on the server side. To align with the requirements of CloudSeg, we apply a 2× bilinear down-sampling to

all videos. Specifically, AICC21 and Bellevue videos are reduced from 1280×720 to 640×360, DETRAC videos from

960×540 to 480×270, and AAU RainSnow videos from 640×480 to 320×240. This technique—commonly used in VR

streaming—reduces bandwidth usage by lowering quality during transmission, followed by enhancement on the user

side [6, 7].

The AV1 video encoder performs compression on raw traffic surveillance footage, converting it to AV1 format. The

AV1 video encoding can achieve about 30% higher compression efficiency than VP9, and up to 50% higher

efficiency than H.264 [14]. FFmpeg libaom-av1 library is used to implement the AV1 video encoder and its

parameters are detailed in Appendix (§A.3.) After performing all required experiments in CloudSeg and AV1 video

encoder, we were able to compare the performance of the baseline and CLOUD-CODEC based on below mentioned

metrics.
Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 11

Metrics. The performance evaluation considers the following five metrics:

(1) Storage Size. We report the comparative analysis of storage size based on baseline video compression and

CLOUD-CODEC approaches to evaluate the encoding efficiency.

(2) FPS. FPS is used to measure the frame rate or how many frames of a video can be processed per second during

encoding processes. FPS score serves as a key determinant of the system’s real-time performance capabilities.

(3) Video quality metrics. We report three metrics—VMAF, SSIM, and PSNR—to assess how closely the decoded

video matches the quality of the original source.

(4) mAP Score. We define the mAP score to evaluate the quality of decoded videos compared with original videos. The

mAP (mean Average Precision) incorporates the ability of the detector to make correct classifications (precision)

and the ability of the detector to find all relevant objects (recall) on the reconstructed videos with respect to ground

truth (original videos).

(5) Cost Analysis. We demonstrate a cost analysis comparing the price of original video storing on bulk storage

(HDD) versus encoding and storing videos with CLOUD-CODEC (GPU processing).

Evaluation Methodology. Our evaluation methodology encompasses three distinct strategies: first, we utilize four

different benchmarks and evaluate them separately in our solution against the baselines. We asses storage saving (§5.1),

encoding speed (§5.2), and video quality (§5.3) metrics, without considering the content of the videos and their variations

across different conditions. Second, we use manually classified 50 videos to evaluate the impact of various conditions

(camera shivering, traffic volume, weather, etc) on the performance of baselines and CLOUD-CODEC (§5.4). Lastly, we

perform a cost analysis(§5.5) to determine which is cheaper: long-term bulk storage (HDD) or the GPU operational cost

for CLOUD-CODEC-based video encoder.

5 EVALUATION RESULTS

5.1 Storage Saving

Figure 5 shows a comparison of CLOUD-CODEC and other baseline techniques across datasets in terms of encoded video

size savings. The video size reduction results across the AICC21, Bellevue, DETRAC, and AAU datasets demonstrate

varying levels of efficiency among the evaluated methods.

In the AICC21 dataset, the original video size is 4915 MB when encoded using the H.264 video format. On the other

hand, the state-of-the-art AV1 video encoder demonstrated significantly better performance, compressing the same data

to a size of 3092 MB which is 38% smaller than what was achieved using the H.264 encoder. After applying CLOUD-

CODEC and other baseline approaches, the overall size of videos decreased remarkably. The detection, segmentation, and

segmentation & prediction approaches could decrease video size up to 3.7×, 3.3×, and 2.8×, respectively. Similarly, in

the Bellevue dataset, the original video size of 1140 MB is best encoded by CLOUD-CODEC. Other approaches like AV1

and CloudSeg reduce the size up to 20% and 65%, respectively. In terms of DETRAC and AAU datasets, the original

video sizes are reduced 4.5× and 6.2× using CLOUD-CODEC, respectively. Whereas, the AV1 achieves 1.6× and 1.7×
video size reduction rate, and CloudSeg reduces the original video sizes around 50% and 65% on these datasets.

Figure 6(a) shows that our proposed foreground-background extraction solutions achieve higher video size reduction

rates compared to AV1 and CloudSeg solutions. Specifically, Detection, Segmentation, Segmentation&Sort, and

CLOUD-CODEC based video encoding solutions present moderate storage savings, exceeding 70% across the datasets.

This significant storage saving is due to the smaller size occupied by foreground moving objects, whereas, the background

static objects significantly influence the video’s overall size. Among the foreground-background extraction approaches
Manuscript submitted to ACM

12 Kim et al.

4
9
1
5

3
0
9
2

2
4
4
6

1
3
4
2

1
4
6
7 1
7
5
6

1
2
1
6

a) AICC21
0

0.2

0.4

0.6

0.8

1
1140

898

392

246
278

318

229

b) Bellevue
0

0.2

0.4

0.6

0.8

1
292

180

139

71
86

97

65

c) DETRAC
0

0.2

0.4

0.6

0.8

1
553

334

193

101
121133

90

d) AAU
0

0.2

0.4

0.6

0.8

1

V
id

e
o

 S
iz

e
 (

M
B

)

Original AV1 CloudSeg Detection Segmentation Segm&Sort CLOUD-CODEC

Fig. 5. Encoded Video Size Comparison of CLOUD-CODEC with Alternative Methods across datasets.

CLOUD-CODEC dominates in achieving the highest video size reduction rates across all datasets. The reason why

a foreground video in the shape of a bounding box is estimated to achieve the best size reduction may be due to the

block-based motion compensation used in H.264 [69]. CLOUD-CODEC encodes the video in the H.264 format, just like

the original video, right before storage. During this encoding process, the block size and number are determined while

performing motion compensation. Because the shape of the bounding box is simpler than the exact contour of the object,

fewer blocks may be required for the calculation, leading to greater storage savings.

5.2 Encoding Speed

We now measure the encoding speed of CLOUD-CODEC and competing approaches on the datasets. The FPS metric

is employed to evaluate the encoding speed. Figure 6(b) represents the comparative analysis of the average FPS rate of

the mentioned techniques over the four datasets. As can be seen, the AV1 video encoder achieves one of the lowest FPS

rates and it can encode 16, 23, 24, and 19 frames per second on AICC21, Bellevue, DETRAC, AAU RainSnow datasets,

respectively. While the segmentation-assisted video encoder exhibits consistently lower FPS (between 15 and 18) due to

higher computational demand in the foreground extraction processes. Wheres, the detection and segmentation&sort-based

foreground extraction approaches encode on average 28 fps over the datasets, respectively. The proposed CLOUD-CODEC

based encoding approach has outperformed with 96, 90, 93, and 88 fps throughout the datasets among the other foreground

extraction approaches. According to the FPS score, we can claim that the proposed CLOUD-CODEC is highly acceptable

for real-time video encoding. It is true that, CloudSeg achieves the better FPS rate compared to the CLOUD-CODEC

across all datasets, this is because it only down-samples the video quality to the resolution of 0.5× the original.

Table 3 in Appendix (§A.4) presents the statistical summary of the video size reduction rates (%) across different

datasets for CLOUD-CODEC and competing methods. The results highlight that CLOUD-CODEC consistently outper-

forms all baseline approaches across the four datasets. Specifically, for the Bellevue and AAU datasets, CLOUD-CODEC

achieves the highest compression rates of 80.3% and 82.4%, respectively, surpassing detection-based methods, which

were the second-best performers. Similarly, for the AICC21 and DETRAC datasets, CLOUD-CODEC reduces video

sizes by 74.9% and 78.8%, respectively, demonstrating its effectiveness across diverse datasets. The 95 % confidence

intervals, Cl Upper and Cl Lower, demonstrate the statistical stability of the method, further validating its reliability in

practical scenarios.

Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 13

AICC21 Bellevue DETRAC AAU

Datasets

0

20

40

60

80

100

S
a
v
in

g
s
 (

%
)

AV1

CloudSeg

Detection

Segmentation

Segm&Sort

CLOUD-CODEC

(a) Storage savings

16
23 24 19

160

181 175
164

28 25
33 27

18 15 15 16
31

24 26 28

96 90 93 88

AICC21 Bellevue DETRAC AAU

Datasets

0

50

100

150

200

250

E
n
c
o
d
in

g
 S

p
e
e
d
 (

F
P

S
) AV1

CloudSeg

Detection

Segmentation

Segm&Sort

CLOUD-CODEC

(b) Encoding speed

Fig. 6. Comparative analysis of storage savings and encoding speed.

5.3 Quality of Reconstructed Videos

5.3.1 Analysis of video quality. As mentioned above, the foreground moving objects and background scenes are

combined in the reconstruction phase to decode the full scene. We evaluated the reconstructed video quality using VMAF

(v0.6.1), SSIM, and PSNR, leveraging FFmpeg for automated computation. VMAF, SSIM, and PSNR were computed

using FFmpeg to evaluate reconstructed video quality. VMAF was obtained via the libvmaf filter [45], assessing perceptual

quality by comparing reconstructed videos to their originals. SSIM and PSNR were calculated using the ssim and psnr

filters [25], measuring structural similarity and pixel-level distortion in decibels (dB), respectively. The descriptions of

these metrics are as follows:

(1) VMAF: The VMAF score ranges from 0 to 100, with higher scores indicating better video quality based on human

subjective ratings [37]. A score below 50 is poor, 50–70 is fair, 70–90 is good, and 90+ is excellent. A VMAF

score of 70 indicates a transition between "fair" and "good" quality.

(2) SSIM: Structural Similarity Index evaluates structural details, luminance, and contrast, ranging from 0 to 1, where

higher values indicate greater similarity. Scores below 0.6 indicate poor quality, 0.6–0.8 suggests noticeable

degradation, 0.8–0.95 is good quality, and above 0.95 is nearly identical to the original.

(3) PSNR: Peak Signal-to-Noise Ratio (PSNR), measured in decibels (dB), quantifies pixel-level differences. A PSNR

below 20 dB suggests poor quality, 20–30 dB indicates moderate quality with visible artifacts, 30–40 dB represents

good quality, and above 40 dB is nearly lossless.

Figure 7 presents a comparative analysis of video quality metrics for CLOUD-CODEC and baseline techniques across

all datasets. In Figure 7(a), detection, segmentation, Segm&Sort prediction, and CLOUD-CODEC achieved VMAF scores

of 74, 70, 76, and 73 on AICC21, all classified as “good” (VMAF > 70). AV1 (96) and CloudSeg (83.5) outperformed all

methods. As validated by previous studies [78], AV1 is the top codec, offering the same perceived quality as H.265 while

using 12% less data. CloudSeg retains all foreground and background scenes, resulting in high VMAF. Foreground

extraction-based methods generally maintain "good" quality, though segmentation slightly underperforms on Bellevue

and DETRAC datasets. The AAU RainSnow dataset, with rain, snow, and night conditions, presents greater challenges,

where only AV1 and CloudSeg maintain high quality, while foreground extraction methods are rated as "fair."

Figure 7(b) assesses structural similarity (SSIM) between reconstructed and original videos, emphasizing luminance,

contrast, and structural integrity. AV1 achieves SSIM values of 0.96–0.98, preserving near-perfect structure, while

CloudSeg, Detection, Segmentation, and Segm&Sort range from 0.72 to 0.96. Some methods exhibit moderate quality on
Manuscript submitted to ACM

14 Kim et al.

AICC21 Bellevue DETRAC AAU

Datasets

0

25

50

75

100

V
M

A
F

Good

Fair

AV1

CloudSeg

Detection

Segmentation

Segm&Sort

CLOUD-CODEC

(a) VMAF

AICC21

Bellevue

DETRAC

AAU

0.4

0.6

0.8

1

Poor

Fair

Good

Lossless

AV1

CloudSeg

Detection

Segmentation

Segm&Sort

CLOUD-CODEC

(b) SSIM

AICC21 Bellevue DETRAC AAU

Datasets

20

30

40

50

P
S

N
R

 (
d
B

)

Fair

Good

AV1

CloudSeg

Detection

Segmentation

Segm&Sort

CLOUD-CODEC

(c) PSNR

Fig. 7. Reconstructed video quality comparison of CLOUD-CODEC and baseline methods using (a) VMAF, (b) SSIM, and
(c) PSNR metrics.

difficult datasets. CLOUD-CODEC consistently falls in the "good" to "lossless" range, balancing quality and storage

efficiency.

Figure 7(c) analyzes pixel-level differences using Peak Signal-to-Noise Ratio (PSNR). Our approach enhances storage

efficiency by separating foreground from background, storing only dynamic objects while keeping the static background

as an image. During reconstruction, the video is regenerated by overlaying the foreground onto the stored background.

While effective for compression, this method may reduce PSNR since the reconstructed video does not perfectly match

original frames. AV1 consistently achieves the highest PSNR, retaining full pixel data, while CloudSeg also performs

well by preserving both foreground and background. Foreground extraction methods, including CLOUD-CODEC, yield

moderate PSNR values (Fair: 20–30 dB, Good: 30–40 dB), reflecting minor pixel inconsistencies due to background

substitution.

5.3.2 Analysis of mAP score. To address how well the reconstructed videos preserve foreground information, we

adopt the mAP score in deep foreground extraction. This involves YOLOv8m-based object detection [49] on both

the original and the reconstructed videos. We consider the object detection results from original videos as the ground

truth-standard for comparison. Then, we calculate the mAP scores for the reconstructed videos, focusing on how closely

object detection results match the ground truth from the original videos.

Table 2 summarizes the overall performance of the detection similarity between the original and reconstructed videos

across different datasets and encoding solutions. As can be seen, the mAP score of the object detection on both original

and reconstructed videos is remarkably high in AV1 throughout datasets, and it consistently outperforms other encoding

solutions. This strong performance is attributed to AV1’s advanced encoding techniques, which ensure that the encoded

Table 2. Average Precision Scores across Different Datasets and Solutions

Datasets AICC21 Bellevue Detrac AAU
Solutions 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃 𝐴𝑃50 𝐴𝑃75
AV1 0.89 0.94 0.93 0.90 0.93 0.92 0.90 0.94 0.93 0.89 0.91 0.92
CloudSeg 0.84 0.90 0.89 0.82 0.89 0. 85 0.87 0.92 0.91 0.83 0.91 0.90
Detection 0.87 0.93 0.93 0.86 0.91 0.90 0.89 0.92 0.91 0.79 0.82 0.80
Segmentation 0.84 0.93 0.92 0.82 0.92 0.91 0.80 0.93 0.92 0.75 0.81 0.79
Segmentation & Sort 0.87 0.93 0.93 0.84 0.90 0.89 0.87 0.91 0.90 0.75 0.84 0.81
CLOUD-CODEC 0.85 0.93 0.92 0.84 0.92 0.91 0.85 0.93 0.92 0.76 0.82 0.80

Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 15

Camera

shivering

Early night &

morning

Midnight Intersection Lengthy

road

High

traffic

Low

traffic

Weather

conditions

Traffic&

Weather&

Shivering

Pedestrain

activity

0

0.25

0.5

0.75

1

S
iz

e
/O

ri
g

in
a

l

Original AV1 CloudSeg Detection Segmentation Segm&Sort CLOUD-CODEC

(a) Storage Saving

Camera

shivering

Early night &

morning

Midnight Intersection Lengthy

road

High

traffic

Low

traffic

Weather

conditions

Traffic

+weather

+shivering

Pedestrain

activity

0

25

50

75

100

V
M

A
F

 S
c
o

re

Good

Fair

AV1 CloudSeg Detection Segmentation Segm&Sort CLOUD-CODEC

(b) Reconstructed Video Quality (VMAF)

Fig. 8. Performance analysis under various conditions.

videos are nearly identical to the original ones in terms of visual quality and detail. Whereas, CloudSeg demonstrates

lower mAP scores over the datasets compared to the other approaches. The resolution and detail of the videos are

significantly reduced due to CloudSeg’s downsampling method, impacting the object detection model’s accuracy in

detecting and localizing objects.

In deep foreground extraction-based encoding solutions, we observe nearly consistent mAP scores across the AICC21,

Bellevue, and Detrac datasets. This consistency indicates a high degree of similarity between the original and reconstructed

videos, enabling the object detection algorithm to perform effectively. Note that the algorithm struggles to distinguish

between the original and reconstructed videos, highlighting the robustness of the encoding process in preserving important

foreground information. However, the AAU Rain-Snow dataset comprises challenging environmental conditions that

significantly affect foreground extraction and the quality of the reconstructed videos. Factors such as rain, snow, and

nighttime scenes reduce the clarity and visibility of foreground objects, leading to decreased mAP scores on this dataset.

5.4 Impact of Various Conditions

To evaluate CLOUD-CODEC robustness, we consider various conditions over time, camera locations, traffic volume,

weather conditions, and pedestrian activity as described in §4. Figure 8 summarizes the overall size reduction and VMAF

score analysis under diverse scenarios. Below, we discuss our findings in detail according to each condition.

Camera shivering. Camera shivering indirectly affects video size reduction as compression algorithms (e.g., H.264,

H.265) rely on frame-to-frame redundancies. Increased frame variations due to shaking lead to larger file sizes. CLOUD-

CODEC achieves an 85% size reduction, outperforming CloudSeg (58%) and AV1 (42%). Other foreground extraction

methods—detection (76%), segmentation (81%), and segmentation & sort (70%)—offer varying levels of efficiency.

In terms of quality, DFE-based decoded videos range from "fair" to "good" (VMAF: 62–70) under camera-shivering

conditions, whereas CloudSeg and AV1 achieve significantly higher scores of 85 and 95, respectively.

Midnight vs early night/morning. The time of the day and lighting conditions significantly affect CCTV video sizes.

The AV1 achieves 24% and 38% compression for early night/morning and midnight videos, respectively. CloudSeg

maintains a 65% encoding rate under both conditions, while CLOUD-CODEC outperforms both, achieving 84% for early

night/morning and 91% for midnight videos. Although original video sizes remain similar across both conditions, fore-

ground extraction methods (including CLOUD-CODEC) demonstrate significantly better compression than CloudSeg

and AV1. Since early night/morning has more moving objects, foreground extraction achieves an even higher encoding
Manuscript submitted to ACM

16 Kim et al.

rate for midnight videos, where static backgrounds dominate. Regarding decoded video quality, both conditions yield

similar ratings (VMAF: 62–68). Overall, CLOUD-CODEC proves highly effective for nighttime surveillance, offering

superior encoding efficiency and quality retention.

Intersection vs Lengthy road. We analyzed encoding rates and decoded video quality based on camera placement. For

major intersections, AV1 and CloudSeg had the lowest encoding rates at 35% and 68.7%, while detection, segmentation,

and segmentation&sort achieved 77%, 75%, and 69%, respectively. CLOUD-CODEC led with 81%, demonstrating

superior compression efficiency. For lengthy roads, CloudSeg encoded at 62%, other baselines averaged 72%, and

CLOUD-CODEC reached 75%. Decoded video VMAF scores ranged from 72 to 80 for intersection videos and 70 for

lengthy roads. AV1 and CloudSeg provided the highest quality, while CLOUD-CODEC balanced strong encoding

efficiency with competitive quality across camera placements.

High vs Low traffic. We compared encoding efficiency and decoded video quality under high and low traffic conditions,

where a video is classified as high traffic if a single frame contains more than 15 moving objects. CloudSeg achieved

compression rates of 66.5% and 71% for high and low-traffic videos, respectively, while CLOUD-CODEC outperformed

with 81% and 89% file size reduction. Among other foreground extraction methods, only the detection-based approach

achieved a comparable encoding rate across both conditions. For video quality, low-traffic videos yielded higher VMAF

scores, as fewer moving objects resulted in less compression loss. However, both high and low-traffic videos maintained

"good" viewer ratings, demonstrating CLOUD-CODEC’s ability to balance efficient compression with quality retention.

Weather and Severe conditions. We assessed CLOUD-CODEC’s performance across various weather conditions (rain,

snow, fog) and mixed severe conditions (high traffic, camera shivering, rain or snow). Detection, segmentation, and

segmentation & sort methods achieved 85% size reduction, while CloudSeg and CLOUD-CODEC reached 63% and

90%, respectively. Decoded videos maintained a VMAF score of 70, indicating good quality across different conditions.

AV1 struggled in weather-affected scenarios, achieving only 18% compression due to frame variations. While CLOUD-

CODEC and other baselines achieved similar size reductions, VMAF scores were notably lower under severe conditions

due to increased motion, camera instability, and extreme weather effects.

Pedestrian activity. We analyzed five recordings where pedestrian density exceeds vehicle density. AV1 reduced video

size to 45%, while CloudSeg and detection achieved 67% and 82%, respectively. Segmentation-based methods showed

similar efficiency, and CLOUD-CODEC achieved the highest compression at 90%. For video quality, AV1 scored highest

with a VMAF of 92.45, followed by CloudSeg at 83.14. Detection and segmentation methods yielded moderate VMAF

scores, slightly below the "good" threshold. Segmentation & Sort (72.5) and CLOUD-CODEC (70.5) maintained "better"

quality ratings, balancing compression and visual fidelity.

5.5 Cost Analysis

We now discuss a cost analysis by comparing two approaches for storing traffic surveillance videos. The first approach

involves directly storing the original videos on bulk storage (HDD), while the other uses GPU-based processing with

the CLOUD-CODEC method to encode the videos before storage. Appendix (§A.5) details the HDD and GPU service

providers and their prices.

We evaluate two scenarios:

(1) Static Storage: The dataset size remains constant over 12 months. The AICC21 and Bellevue datasets are selected

due to their large-scale video data. AICC21 (4.9 GB original, 1.3 GB encoded) requires 0.47 hours of A100 GPU

processing and 0.17 hours on an H100. Bellevue (62.3 GB original, 12.6 GB encoded) requires 14.03 hours on an

Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 17

0 2 4 6 8 10 12

Months

0

0.5

1

1.5

2

2.5

U
s
a
g
e
 C

o
s
t
(U

S
D

)

HDD for Original

A100 GPU

H100 GPU

HDD for Encoded

(a) AICC21

0 2 4 6 8 10 12

Months

0

5

10

15

20

25

30

35

U
s
a
g
e
 C

o
s
t
(U

S
D

)

HDD for Original

A100 GPU

H100 GPU

HDD for Encoded

(b) Bellevue

0 2 4 6 8 10 12

Months

0

100

200

300

400

U
s
a

g
e

 C
o

s
t

(U
S

D
)

HDD for Original

A100 GPU

H100 GPU

HDD for Encoded

(c) Incremental

Fig. 9. HDD and GPU usage cost analysis. The datasets AICC21 9(a) and Bellevue 9(b) are used for static data storing
scenario, while figure 9(c) shows the incremental storing scenario.

A100 and 5.27 hours on an H100. Smaller datasets (UA-DETRAC and AAU RainSnow) are excluded due to their

lower resolution and size.

(2) Incremental Storage: Data grows by 1,000 GB each month, starting from 1,000 GB, with an average encoded size

of 210 GB. GPU processing times increase with data size, averaging 230 hours on an A100 and 84.6 hours on an

H100. To manage storage, videos older than six months are deleted.

Table 5 in Appendix (§A.5) summarizes the processing time and video size results before and after encoding. Figure 9

presents a cost analysis of HDD and GPU usage across three datasets over 12 months. Across all cases, H100 usage costs

are about 30% lower than A100 due to reduced processing time. Figures 9(a) and 9(b) illustrate static storage scenarios

for AICC21 and Bellevue datasets. Storing the 4.9 GB AICC21 dataset on Amazon Optimized HDD costs 0.22, 0.44,

0.66, and 0.88 USD for 1 to 4 months. Encoding it to 1.3 GB costs 0.48 (A100) and 0.33 (H100), with the encoded dataset

incurring storage costs of 0.05, 0.11, 0.17, and 0.234 USD over the same period. If stored for more than three months,

CLOUD-CODEC achieves higher cost efficiency, and at six months, H100-assisted encoding is 2× cheaper than storing

original videos on HDD. For the 62.3 GB Bellevue dataset, encoding costs 14.6 (A100) and 10.5 (H100) per month, while

storing the unencoded dataset ranges from 3𝑡𝑜14 in the first five months. Beyond five months, encoding & storing with

CLOUD-CODEC consistently reduces costs compared to raw HDD storage.

In the incremental storage scenario, where data grows by 1,000 GB per month, initial H100 GPU processing costs

are 3.5× higher than HDD storage. At 2 and 3 months, GPU costs drop to 2× and 1.4× higher than HDD, respectively.

However, for longer retention (4+ months), CLOUD-CODEC becomes more cost-effective. Although GPU costs are

higher in shorter retention periods (0–4 months), the long-term savings justify encoding overhead. Appendix (§A.5)

highlights additional insights supporting our claim.

6 DISCUSSIONS

6.1 Challenging Scenes

The system introduced in this paper is improved and more effective as compared to the pre-existing approaches. Our

proposed approach ensures real-time performance and efficient storage space. However, due to certain limitations, it is not

applicable in challenging conditions where details are crucial. In this section, we describe these limitations and discuss

possible solutions to address them.

Residual Vehicle Lights in Night Scene Although CLOUD-CODEC performs well with a moderately good VMAF score

for dark conditions as mentioned in Section 5.4, some results have certain limitations as depicted in Figure 10. Here the
Manuscript submitted to ACM

18 Kim et al.

O
ri

gi
na

lS
ce

ne
R

ec
on

st
ru

ct
ed

Night Scene Snow Falling Occluded Object Stationary Objects

Fig. 10. Challenging Conditions.

vehicle’s lights seem to leave light traces in the background image. This can be reduced by referring to the research of

flare removal [40, 72]. Additionally, a lesser number of vehicles were detected compared to the count in daytime videos.

This is because the model has not been trained for nighttime videos. If the model is re-trained with the night scenes, it is

expected to improve the current performance.

Outliers in Weather Conditions. After decoding all video files, we conducted a manual inspection to assess the quality

of the reconstructed videos. This review identified a few outliers in severe weather conditions. For example, when the

original footage depicted snowfall, the reconstructed video often failed to capture falling snowflakes accurately, as shown

in Figure 10. While retraining the model to detect snowfall, rain, and other weather elements could enhance video quality,

it would also increase file size. To balance quality and storage efficiency, we classified these weather-related discrepancies

as outliers and accepted the current limitations to maintain optimal compression.

Occluded Objects Most videos in our dataset contain identifiable objects, but some include occluded objects, which may

be critical or insignificant depending on the context. Our system relies on object detection algorithms, which can detect

most occlusions. However, when occlusion exceeds a certain threshold, detection may fail, as these algorithms focus on

visible objects per frame and may overlook occluded ones. To address this, integrating tracking algorithms [70, 77] with

YOLOv7 can enhance occlusion handling. Unlike standalone YOLOv7, tracking methods maintain object consistency

across frames, improving detection and reducing missed occlusions.

Objects in Long Distance The proposed approach might achieve low detection performance for distant objects. While

using a larger model that can handle high-resolution inputs is possible, it may eliminate the advantage of real-time

processing due to increased computational cost. There are studies that have addressed this issue using modified YOLOv3

[41] or Mixture of Gaussian (MoG) model and Variable Weighted Pipeline Filter [73]. Through these studies, we can

improve the performance of this aspect in the future.

Untrained Objects The biggest disadvantage of object detection is that it cannot detect objects that have not been trained.

Moreover, even with trained objects, it may fail to detect them depending on their shape. As a solution, there are methods

such as applying unsupervised learning-based models or using ensemble with the results of other models. Another way is

to utilize zero-shot learning-based models. More research is needed to apply these methods to our system while ensuring

real-time performance.
Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 19

Ambiguous Background Criteria Distinguishing background elements can be challenging, especially when stationary

objects are later in motion, potentially leaving afterimages in reconstructed videos— a common limitation of dynamic

background extraction. To address this, leveraging weeks of contextual data helps replenish excluded pixels once objects

move, while prior background frames can replace pixels for long-term stationary objects. Additionally, shadows, glare,

and stationary objects may obscure road markings. HomoFusion [65] can extract complementary cues from adjacent

frames, improving background modeling and preserving occluded road features.

Challenges in Dynamic Camera Environments Our study focuses on static cameras, which maintain a fixed position and

are widely used in traffic surveillance for their reliability. However, dynamic cameras (e.g., PTZ models or mobile setups)

pose challenges for foreground and background extraction due to shifting scenes. Addressing these conditions requires

adaptive background models that adjust to changing viewpoints, potentially using multiple models or adaptive learning

techniques. Future work will explore these methods to improve adaptability in motion-capable camera environments.

6.2 Mitigating Information Loss Risks

Due to the limitations mentioned above, it is impractical to apply the proposed system even though the compression rate is

high. This is because the information judged as the background and removed by the system can be important. In particular,

background information plays a crucial role in analyzing video footage of traffic accidents. For this reason, instead of

directly applying this system to video data, we suggest applying it only to occasional data after going through abnormal

traffic analysis [53, 63]. Additionally, we recommend storing the data as is for a certain period, and then applying this

system only for long-term storage to mitigate any potential risks occurring by information loss.

6.3 Trade-off between Quality and Size

As shown in Figure 6, AV1 and CloudSeg have higher VMAF scores but less size reduction rate compared to the

foreground videos. The trade-off between quality and file size is an inevitable aspect when discussing video compression.

AV1 and CloudSeg maintain high quality by preserving background information almost identically to the original,

resulting in lower compression rates. In contrast, foreground videos dramatically reduce in size by eliminating static

background information, but this leads to a relatively lower quality due to the loss of background information. CLOUD-

CODEC prioritizes the importance of foreground, maintaining quality in this aspect while accepting loss in the background

to achieve higher compression rates.

6.4 Broader Applicability of CLOUD-CODEC

In addition to optimizing surveillance storage, CLOUD-CODEC has the potential to significantly impact various urban

computing applications. For instance, in infrastructure maintenance, it can process crowdsourced dashcam footage

to detect pavement distresses, enhancing road safety and maintenance efficiency [17]. In intelligent transportation

systems, CLOUD-CODEC enables real-time traffic analysis, supporting improved traffic management and congestion

reduction [26].

Furthermore, CLOUD-CODEC preserves essential visual characteristics while optimizing storage efficiency. We

evaluated its visual quality using VMAF, PSNR, and SSIM, all of which indicate high-fidelity visual representation.

This ensures that compressed videos retain key spatial, temporal, and object-level details, making them valuable for

transportation analytics, infrastructure assessment, and environmental monitoring. These capabilities reinforce CLOUD-

CODEC’s role beyond surveillance, positioning it as a versatile tool for broader urban computing research.

Manuscript submitted to ACM

20 Kim et al.

7 FUTURE WORKS

CLOUD-CODEC has potential applications beyond traffic surveillance, such as general video storage scenarios. Imple-

menting CLOUD-CODEC can lead to significant storage size reductions (Figure 11), up to 74.92%. The system can be

adapted to process concurrent surveillance videos from multiple cameras, further improving storage efficiency. With the

integration of server-level GPUs, the performance of CLOUD-CODEC can be significantly enhanced, as object detection

algorithms will benefit from faster processing. As better GPUs become more affordable, this will become increasingly

feasible. Combining CLOUD-CODEC with motion-sensor cameras can optimize storage use by only capturing frames

containing moving objects, instead of recording continuously. This approach can save considerable storage space. By

incorporating CLOUD-CODEC directly into cameras’ firmware could generate a single background image and a fore-

ground video with a much smaller file size. This would reduce the bandwidth needed to send data to the server, improving

overall efficiency.

Size Reduction Rate

FPS

mAP

VMAF

50

70

Detection
Segmentation
Segm & Sort
CloudSeg
AV1
CLOUD-CODEC

 64 128

0.83

0.91

 76 92

Fig. 11. Comparison of Overall Performance

8 CONCLUSION

CLOUD-CODEC offers a promising solution for reducing storage space and management costs in traffic surveillance

systems by effectively separating video data into foreground and background. While the current approach may not

capture extremely abnormal events in detail, the adoption of the bounding box with the interpolation method allows for

real-time performance and efficient processing of numerous video streams. Future advancements in foreground extraction

algorithms may further enhance the system’s robustness and processing speed, making CLOUD-CODEC even more

effective.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and ICT (MSIT) through the ICT Creative Consilience program

(IITP-2019-2011-1-00783), and by the Ministry of Land, Infrastructure and Transport (MOLIT) through the K-Tunnel

project titled Development of Technology to Enhance Safety and Efficiency of Ultra-Long K-Underground Expressway

Infrastructure (RS-2024-00416524). Arani Bhattacharya’s portion of this work was additionally supported by the Cisco
Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 21

University Research Fund, Cisco Grant number 76417363 (SVCF Grant 2022-318921). The authors sincerely thank the

anonymous reviewers and editors for their insightful comments and constructive suggestions.

REFERENCES
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. 2018. Fast, accurate, and lightweight super-resolution with cascading residual network. In

Proceedings of the European conference on computer vision (ECCV). 252–268.
[2] Aftab Alam, Irfan Ullah, and Young-Koo Lee. 2020. Video big data analytics in the cloud: A reference architecture, survey, opportunities, and open

research issues. IEEE Access 8 (2020), 152377–152422.
[3] Panteha Alipour and Asadollah Shahbahrami. 2022. An adaptive background subtraction approach based on frame differences in video surveillance. In

2022 International Conference on Machine Vision and Image Processing (MVIP). 1–5. https://doi.org/10.1109/MVIP53647.2022.9738762
[4] AWS. 2024. Amazon EBS pricing. https://aws.amazon.com/ebs/pricing/?did=ap_card&trk=ap_card 2024-09-10.
[5] AWS. 2024. Amazon EC2 Capacity Blocks for ML Pricing. https://aws.amazon.com/ec2/capacityblocks/pricing/ 2024-09-10.
[6] Duin Baek, Mallesham Dasari, Samir R. Das, and Jihoon Ryoo. 2021. dcSR: practical video quality enhancement using data-centric super resolution.

In 2021 CoNEXT. ACM, 336–343.
[7] Duin Baek, Hangil Kang, and Jihoon Ryoo. 2020. SALI360: design and implementation of saliency based video compression for 360° video streaming.

In 2020 MMSys. ACM, 141–152.
[8] Duin Baek, Youngchan Lim, and Jihoon Ryoo. 2024. SenseQ: Context-Aware Video Quality Adaptation for Optimal Mobile Video Streaming in

Dynamic Environments. IEEE Access 12 (2024), 20209–20220.
[9] Chris H. Bahnsen and Thomas B. Moeslund. 2018. Rain Removal in Traffic Surveillance: Does it Matter? IEEE Transactions on Intelligent

Transportation Systems (2018), 1–18. https://doi.org/10.1109/TITS.2018.2872502
[10] Kamel Belloulata, Amina Belalia, and Shiping Zhu. 2014. Object-based stereo video compression using fractals and shape-adaptive DCT. AEU-

International Journal of Electronics and Communications 68, 7 (2014), 687–697.
[11] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. 2016. Simple online and realtime tracking. In 2016 IEEE International

Conference on Image Processing (ICIP). 3464–3468. https://doi.org/10.1109/ICIP.2016.7533003
[12] Shubham Chaudhary, Aryan Taneja, Anjali Singh, Purbasha Roy, Sohum Sikdar, Mukulika Maity, and Arani Bhattacharya. 2024. {TileClipper}:

Lightweight Selection of Regions of Interest from Videos for Traffic Surveillance. In 2024 USENIX Annual Technical Conference (USENIX ATC 24).
967–984.

[13] Fangdong Chen, Houqiang Li, Li Li, Dong Liu, and Feng Wu. 2016. Block-composed background reference for high efficiency video coding. IEEE
Transactions on Circuits and Systems for Video Technology 27, 12 (2016), 2639–2651.

[14] Yue Chen, Debargha Mukherjee, Jingning Han, Adrian Grange, Yaowu Xu, Sarah Parker, Cheng Chen, Hui Su, Urvang Joshi, Ching-Han Chiang, et al.
2020. An overview of coding tools in AV1: The first video codec from the alliance for open media. APSIPA Transactions on Signal and Information
Processing 9 (2020), e6.

[15] Zhenghao Chen, Guo Lu, Zhihao Hu, Shan Liu, Wei Jiang, and Dong Xu. 2022. LSVC: a learning-based stereo video compression framework. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6073–6082.

[16] Der-Chun Cherng and Shao-Yi Chien. 2007. Video segmentation with model-based sprite generation for panning surveillance cameras. In 2007 IEEE
International Symposium on Circuits and Systems. IEEE, 2902–2905.

[17] Bahar Dadashova, Chiara Silvestri Dobrovolny, Mahmood Tabesh, Safety through Disruption, et al. 2021. Detecting pavement distresses using
crowdsourced dashcam camera images. Technical Report. Safety through Disruption (Safe-D) University Transportation Center (UTC).

[18] Prasanga Dhungel, Prashant Tandan, Sandesh Bhusal, Sobit Neupane, and Subarna Shakya. 2020. Video Compression for Surveillance Application
using Deep Neural Network. Journal of Artificial Intelligence and Capsule Networks 2, 2 (2020), 131–145.

[19] Dandan Ding, Junchao Tong, and Lingyi Kong. 2020. A deep learning approach for quality enhancement of surveillance video. Journal of Intelligent
Transportation Systems 24, 3 (2020), 304–314.

[20] Dongna Du, Chenghao Zhang, Yanbo Wang, Xiaoyun Kuang, Yiwei Yang, Kaitian Huang, and Kejie Huang. 2021. A Compression and Recognition
Joint Model for Structured Video Surveillance Storage. In International Conference on Frontiers of Electronics, Information and Computation
Technologies. 1–8.

[21] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang, Henry Hoffmann, and Junchen Jiang. 2020. Server-driven video
streaming for deep learning inference. In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication. 557–570.

[22] Kuntai Du, Qizheng Zhang, Anton Arapin, Haodong Wang, Zhengxu Xia, and Junchen Jiang. 2022. Accmpeg: Optimizing video encoding for video
analytics. arXiv preprint arXiv:2204.12534 (2022).

[23] Omar Elharrouss, Noor Almaadeed, and Somaya Al-Maadeed. 2021. A review of video surveillance systems. Journal of Visual Communication and
Image Representation 77 (2021), 103116.

[24] Aleksandr Fedorov, Kseniia Nikolskaia, Sergey Ivanov, Vladimir Shepelev, and Alexey Minbaleev. 2019. Traffic flow estimation with data from a
video surveillance camera. Journal of Big Data 6 (2019), 1–15.

Manuscript submitted to ACM

https://doi.org/10.1109/MVIP53647.2022.9738762
https://aws.amazon.com/ebs/pricing/?did=ap_card&trk=ap_card
https://aws.amazon.com/ec2/capacityblocks/pricing/
https://doi.org/10.1109/TITS.2018.2872502
https://doi.org/10.1109/ICIP.2016.7533003

22 Kim et al.

[25] FFmpeg Developers. 2025. FFmpeg Filters Documentation. https://ffmpeg.org/ffmpeg-filters.html Accessed: 2025-02-19.
[26] Matt Franchi, Debargha Dey, and Wendy Ju. 2024. Towards Instrumented Fingerprinting of Urban Traffic: A Novel Methodology using Distributed

Mobile Point-of-View Cameras. In Proceedings of the 16th International Conference on Automotive User Interfaces and Interactive Vehicular
Applications. 53–62.

[27] Hongpeng Guo, Shuochao Yao, Zhe Yang, Qian Zhou, and Klara Nahrstedt. 2021. CrossRoI: cross-camera region of interest optimization for efficient
real time video analytics at scale. In Proceedings of the 12th ACM Multimedia Systems Conference. 186–199.

[28] Xiaoming Guo, Guang Jiang, Zhaopeng Cui, and Pei Tao. 2016. Homography-based block motion estimation for video coding of PTZ cameras.
Journal of Visual Communication and Image Representation 39 (2016), 164–171.

[29] Marius Hobbhahn and Tamay Besiroglu. 2022. Trends in GPU Price-Performance. https://epochai.org/blog/trends-in-gpu-price-performance
Accessed: 2024-10-28.

[30] HPC-AI.COM. 2024. Accelerating Al to power the future of Intelligence. https://hpc-ai.com/ 2024-10-27.
[31] Zinah N Idan, Sadiq H Abdulhussain, Basheera M Mahmmod, Khaled A Al-Utaibi, Syed Abdul Rahman Al-Hadad, and Sadiq M Sait. 2021. Fast shot

boundary detection based on separable moments and support vector machine. IEEE Access 9 (2021), 106412–106427.
[32] Yeondae Jung and Andrew P Wheeler. 2023. The effect of public surveillance cameras on crime clearance rates. Journal of Experimental Criminology

19, 1 (2023), 143–164.
[33] Shailesh Kamble, Nileshsingh Thakur, and Preeti Bajaj. 2017. Modified three-step search block matching motion estimation and weighted finite

automata based fractal video compression. (2017).
[34] Ashutosh Kumar, Takehiro Kashiyama, Hiroya Maeda, Hiroshi Omata, and Yoshihide Sekimoto. 2022. Real-time citywide reconstruction of traffic

flow from moving cameras on lightweight edge devices. ISPRS Journal of Photogrammetry and Remote Sensing 192 (2022), 115–129.
[35] Julian Laufs, Hervé Borrion, and Ben Bradford. 2020. Security and the smart city: A systematic review. Sustainable cities and society 55 (2020),

102023.
[36] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu, and Ravi Netravali. 2020. Reducto: On-camera filtering for

resource-efficient real-time video analytics. In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer communication. 359–376.

[37] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle Swanson, Anush Moorthy, and JD Cock. 2018. VMAF: The journey continues. Netflix
Technology Blog 25 (2018), 1.

[38] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13. Springer, 740–755.

[39] Nam Ling, C-C Jay Kuo, Gary J Sullivan, Dong Xu, Shan Liu, Hsueh-Ming Hang, Wen-Hsiao Peng, Jiaying Liu, et al. 2022. The Future of Video
Coding. APSIPA Transactions on Signal and Information Processing 11, 1 (2022).

[40] Shu-yun Liu, Qun Hao, Yu-tong Zhang, Feng Gao, Hai-ping Song, Yu-tong Jiang, Ying-sheng Wang, Xiao-ying Cui, and Kun Gao. 2022. Single-image
night haze removal based on color channel transfer and estimation of spatial variation in atmospheric light. Defence Technology (2022).

[41] Bin Lu, Lijuan Zhou, Shudong Zhang, Xin Chen, and Weidong Feng. 2021. Detection of small objects in complex long-distance scenes based on
Yolov3. In 2021 4th International Conference on Data Science and Information Technology. 98–102.

[42] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. 2019. Dvc: An end-to-end deep video compression framework. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11006–11015.

[43] Hengyu Man, Chang Yu, Feng Xing, Yang Cheng, Bo Zheng, and Xiaopeng Fan. 2022. Deep learning-assisted video compression framework. In 2022
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 3210–3214.

[44] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng Tang, Ming-Ching Chang, Xiaodong Yang, Yue Yao, Liang Zheng, Pranamesh Chakraborty,
Christian E. Lopez, Anuj Sharma, Qi Feng, Vitaly Ablavsky, and Stan Sclaroff. 2021. The 5th AI City Challenge. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops.

[45] Netflix. 2025. VMAF - Video Multi-Method Assessment Fusion. https://github.com/Netflix/vmaf/blob/master/libvmaf/README.md Accessed:
2025-02-19.

[46] The City of Bellevue. 2022. Repository Name. https://github.com/City-of-Bellevue/TrafficVideoDataset Accessed: 2024-08-15.
[47] NetMind Power. 2024. NetMind Power: Rent GPUs at a Fraction of the Cost. https://power.netmind.ai/gpuDashboard 2024-10-27.
[48] Graciela Ramirez-Alonso, Juan A Ramirez-Quintana, and Mario I Chacon-Murguia. 2017. Temporal weighted learning model for background

estimation with an automatic re-initialization stage and adaptive parameters update. Pattern Recognition Letters 96 (2017), 34–44.
[49] Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad Daoudi. 2023. Real-Time Flying Object Detection with YOLOv8. arXiv preprint

arXiv:2305.09972 (2023).
[50] Adhi Rizal, Aries Suharso, Panji Abujabbar, and Munir Munir. 2020. Objective Quality Assessment of Multi-Resolution Video based on H. 264/AVC

and H. 265/HEVC Encoding. In Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019,
12 October 2019, Bandung, West Java, Indonesia.

[51] RunPod.io. 2024. Deploy GPU Cloud. https://www.runpod.io/console/deploy 2024-10-27.
[52] Jihoon Ryoo, Kiwon Yun, Dimitris Samaras, Samir R. Das, and Gregory Zelinsky. 2016. Design and evaluation of a foveated video streaming service

for commodity client devices. In 2016 MMSys. ACM, Article 6, 11 pages.

Manuscript submitted to ACM

https://ffmpeg.org/ffmpeg-filters.html
https://epochai.org/blog/trends-in-gpu-price-performance
https://hpc-ai.com/
https://github.com/Netflix/vmaf/blob/master/libvmaf/README.md
https://github.com/City-of-Bellevue/TrafficVideoDataset
https://power.netmind.ai/gpuDashboard
https://www.runpod.io/console/deploy

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 23

[53] Sepehr Sabour, Sanjeev Rao, and Majid Ghaderi. 2021. DeepFlow: Abnormal Traffic Flow Detection Using Siamese Networks. In 2021 IEEE
International Smart Cities Conference (ISC2). 1–7. https://doi.org/10.1109/ISC253183.2021.9562915

[54] Avishek Saha, Young-Woon Lee, Young-Sup Hwang, Kostas E Psannis, and Byung-Gyu Kim. 2018. Context-aware block-based motion estimation
algorithm for multimedia internet of things (IoT) platform. Personal and Ubiquitous Computing 22 (2018), 163–172.

[55] Parul Saini, Krishan Kumar, Shamal Kashid, Ashray Saini, and Alok Negi. 2023. Video summarization using deep learning techniques: a detailed
analysis and investigation. Artificial Intelligence Review 56, 11 (2023), 12347–12385.

[56] Amanpreet Kaur Sandhu. 2021. Big data with cloud computing: Discussions and challenges. Big Data Mining and Analytics 5, 1 (2021), 32–40.
[57] Sandeep Singh Sengar and Susanta Mukhopadhyay. 2020. Motion segmentation-based surveillance video compression using adaptive particle swarm

optimization. Neural Computing and Applications 32, 15 (2020), 11443–11457.
[58] Ajmal Shahbaz and Kang-Hyun Jo. 2020. Deep atrous spatial features-based supervised foreground detection algorithm for industrial surveillance

systems. IEEE Transactions on Industrial Informatics 17, 7 (2020), 4818–4826.
[59] Zhenfeng Shao, Jiajun Cai, and Zhongyuan Wang. 2017. Smart monitoring cameras driven intelligent processing to big surveillance video data. IEEE

Transactions on Big Data 4, 1 (2017), 105–116.
[60] Jude Tchaye-Kondi, Yanlong Zhai, Jun Shen, Dong Lu, and Liehuang Zhu. 2022. Smartfilter: an edge system for real-time application-guided video

frames filtering. IEEE Internet of Things Journal 9, 23 (2022), 23772–23785.
[61] Vast.ai. 2024. Global GPU Market: low-cost GPU rental. https://vast.ai/ 2024-10-27.
[62] Shaohua Wan, Songtao Ding, and Chen Chen. 2022. Edge computing enabled video segmentation for real-time traffic monitoring in internet of

vehicles. Pattern Recognition 121 (2022), 108146.
[63] Chen Wang, Aibek Musaev, Pezhman Sheinidashtegol, and Travis Atkison. 2019. Towards Detection of Abnormal Vehicle Behavior Using Traffic

Cameras. In Big Data – BigData 2019, Keke Chen, Sangeetha Seshadri, and Liang-Jie Zhang (Eds.). Springer International Publishing, Cham,
125–136.

[64] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. 2022. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time
object detectors. arXiv preprint arXiv:2207.02696 (2022).

[65] Shan Wang, Chuong Nguyen, Jiawei Liu, Kaihao Zhang, Wenhan Luo, Yanhao Zhang, Sundaram Muthu, Fahira Afzal Maken, and Hongdong Li.
2023. Homography Guided Temporal Fusion for Road Line and Marking Segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 1075–1085.

[66] Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai Chen. 2019. Bridging the Edge-Cloud Barrier for Real-time Advanced Vision
Analytics.. In HotCloud.

[67] Zhao Wang, Shiqi Wang, Xinfeng Zhang, Shanshe Wang, and Siwei Ma. 2019. Three-zone segmentation-based motion compensation for video
compression. IEEE Transactions on Image Processing 28, 10 (2019), 5091–5104.

[68] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang Qi, Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. 2020.
UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking. Computer Vision and Image Understanding 193 (2020),
102907.

[69] Mathias Wien. 2003. Variable block-size transforms for H. 264/AVC. IEEE Transactions on Circuits and Systems for Video Technology 13, 7 (2003),
604–613.

[70] Nicolai Wojke and Alex Bewley. 2018. Deep Cosine Metric Learning for Person Re-identification. In 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV). IEEE, 748–756. https://doi.org/10.1109/WACV.2018.00087

[71] Ping-Hao Wu, Ioannis Katsavounidis, Zhijun Lei, David Ronca, Hassene Tmar, Omran Abdelkafi, Colton Cheung, Foued Ben Amara, and Faouzi
Kossentini. 2021. Towards much better SVT-AV1 quality-cycles tradeoffs for VOD applications. In Applications of Digital Image Processing XLIV,
Vol. 11842. SPIE, 236–256.

[72] Yicheng Wu, Qiurui He, Tianfan Xue, Rahul Garg, Jiawen Chen, Ashok Veeraraghavan, and Jonathan T Barron. 2021. How to train neural networks
for flare removal. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 2239–2247.

[73] Xinggui Xu, Ping Yang, Hao Xian, and Yong Liu. 2019. Robust moving objects detection in long-distance imaging through turbulent medium. Infrared
Physics & Technology 100 (2019), 87–98.

[74] Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye, and Dongsu Han. 2022. NeuroScaler: neural video enhancement at scale. In
Proceedings of the ACM SIGCOMM 2022 Conference. 795–811.

[75] Miao Zhang, Fangxin Wang, and Jiangchuan Liu. 2022. CASVA: Configuration-Adaptive Streaming for Live Video Analytics. In IEEE INFOCOM
2022-IEEE Conference on Computer Communications. IEEE, 2168–2177.

[76] Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong Zhong. 2019. Edge video analytics for public safety: A review. Proc. IEEE 107, 8 (2019),
1675–1696.

[77] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. 2022. ByteTrack:
Multi-Object Tracking by Associating Every Detection Box. (2022).

[78] Anastasia V Zvezdakova, Dmitriy L Kulikov, Sergey V Zvezdakov, and Dmitriy S Vatolin. 2020. BSQ-rate: a new approach for video-codec
performance comparison and drawbacks of current solutions. Programming and computer software 46 (2020), 183–194.

Manuscript submitted to ACM

https://doi.org/10.1109/ISC253183.2021.9562915
https://vast.ai/
https://doi.org/10.1109/WACV.2018.00087

24 Kim et al.

A ONLINE APPENDIX

A.1 Foreground extraction algorithms

Algorithm 4 outlines a detailed description of the object detection-based foreground extraction approach. The detection

model is applied to a set of input videos 𝑉 = 𝑉1,𝑉2, . . . ,𝑉𝑁 , where each video undergoes several steps. For each video 𝑉𝑗 ,

the algorithm retrieves essential properties as the frame rate (FPS), width (𝑊), and height (𝐻) to ensure the processed

frames maintain the same structure and timing as the original. For each frame 𝐹 𝑗,𝑖 in video 𝑉𝑗 , the YOLO model detects

objects by identifying bounding boxes 𝑂𝑘 for each object instance in the frame. This detection process captures only

the regions of interest, effectively filtering out background pixels. Then, a binary mask 𝑀𝑗,𝑖 of dimensions 𝐻 ×𝑊 is

initialized for each frame. This mask is used to differentiate detected object regions (foreground) from the non-object

regions (background). For each detected object, the corresponding pixels within the bounding box are marked as 1 in 𝑀𝑗,𝑖 .

Using the binary mask, the algorithm modifies the frame to set all pixels outside detected regions to a green background

color, represented as (0, 255, 0) in RGB format. After processing each frame, the modified frame 𝐹 𝑗,𝑖 is written to a new

video 𝑉𝑗,fg, which contains only the extracted foreground. Finally, once all frames in 𝑉𝑗 are processed, the video writer is

closed, and the resulting foreground-extracted video 𝑉𝑗,fg is saved.

Instance segmentation-assisted foreground extraction approach is presented in Algorithm 5. Unlike the object detection

method, which relies solely on bounding boxes to localize the detected objects, this approach uses instance segmentation

masks. Each detected object is represented by a fine-grained segmentation mask, allowing for precise pixel-level separation

of objects from the background. Non-maximum suppression (NMS) is applied to filter out overlapping detections, using

confidence (𝑇conf) and IoU (𝑇iou) thresholds to retain only the most confident detections. A binary mask 𝑀𝑗,𝑖 is created by

adding the instance-specific segmentation masks 𝑀𝑘 of selected object classes with confidence scores above a threshold

(𝑇conf). The mask is then applied to isolate only the segmented object areas, making non-object areas more accurately

Algorithm 4 Object Detection-based DFE

Require: 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑁 } ⊲ Input videos
Require: w ⊲ YOLO model weights
Ensure: 𝑉fg = {𝑉1,fg,𝑉2,fg, . . . ,𝑉𝑁,fg} ⊲ Foreground videos

1: Initialize YOLO modelMYOLO with w
2: for each𝑉𝑗 ∈ 𝑉 do
3: Retrieve video properties: FPS,𝑊 ,𝐻

4: Initialize video writer for𝑉𝑗,fg
5: for each frame 𝐹 𝑗,𝑖 ∈ 𝑉𝑗 do
6: Detect objects: {𝑂𝑘 } ← MYOLO (𝐹 𝑗,𝑖)
7: Initialize binary mask 𝑀𝑗,𝑖

8: for each bounding box 𝑂𝑘 do
9: 𝑀𝑗,𝑖 [𝑂𝑘] ← 1 ⊲ Mark detected regions

10: end for
11: Modify frame: 𝐹 𝑗,𝑖 [𝑀𝑗,𝑖 = 0] ← (0, 255, 0)
12: Write modified frame to𝑉𝑗,fg
13: end for
14: Encode𝑉𝑗,fg to H.264 format
15: Close writer for𝑉𝑗,fg
16: end for

Algorithm 5 Instance Segmentation-based DFE

Require: 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑁 } ⊲ Input videos
Require: MYOLO,w, hyp ⊲ model, weights, hyperparameters
Ensure: 𝑉seg = {𝑉1,seg,𝑉2,seg, . . . ,𝑉𝑁,seg} ⊲ Segmented videos

1: InitializeMYOLO with w and load hyp
2: for each𝑉𝑗 ∈ 𝑉 do
3: Open𝑉𝑗 , get FPS, dimensions (𝑊,𝐻)
4: Initialize video writer for𝑉𝑗,seg
5: while frame 𝐹 𝑗,𝑖 available do
6: Resize 𝐹 𝑗,𝑖 to (640, 640) and Convert 𝐹 𝑗,𝑖 to tensor
7: Perform: { (𝑂𝑘 , 𝑀𝑘 ,𝐶𝑘 , 𝑝𝑘) } ← MYOLO (𝐹 𝑗,𝑖)
8: Initialize mask 𝑀𝑗,𝑖

9: for each detection (𝑂𝑘 , 𝑀𝑘 ,𝐶𝑘 , 𝑝𝑘) do
10: if 𝐶𝑘 ∈ selected classes and 𝑝𝑘 > 𝑇conf then
11: 𝑀𝑗,𝑖 ← 𝑀𝑗,𝑖 +𝑀𝑘

12: end if
13: end for
14: Set background green: 𝐹 𝑗,𝑖 [𝑀𝑗,𝑖 = 0] ← (0, 255, 0)
15: Write 𝐹 𝑗,𝑖 to𝑉𝑗,seg
16: end while
17: Close writer for𝑉𝑗,seg
18: end for

Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 25

distinguishable compared to simple bounding boxes. However, this method is computationally more intensive than the

object detection model due to the pixel-level processing required for each segmentation mask.

Algorithm 6 presents the pseudo-code for a segmentation and trajectory prediction-based foreground extraction

approach that integrates object tracking and trajectory prediction using a SORT (Simple Online and Realtime Tracking)

tracker. By employing the SORT tracker, each detected object is assigned a unique ID, allowing the model to consistently

associate objects across consecutive frames. The tracker updates its state with each new detection, and if an object

reappears in later frames, it is reassigned its original ID. This ID-based tracking enables a continuous and stable trajectory

for each object, promoting smoother transitions and frame-to-frame continuity.

For each frame, a binary mask 𝑀𝑗,𝑖 is initialized with dimensions (𝐻 ×𝑊). The SORT tracker identifies objects with

unique IDs, and for each tracked object (𝑂𝑘 , 𝑀𝑘 ,𝐶𝑘 , ID𝑘, 𝑝𝑘) that meets the class and confidence threshold requirements,

the corresponding segmentation mask 𝑀𝑘 is added to 𝑀 𝑗, 𝑖. This process isolates only the desired object regions, offering

greater accuracy compared to frame-by-frame segmentation by maintaining the object’s position and size, even when

minor occlusions or fluctuations occur.

Algorithm 6 Segmentation and Trajectory Prediction-based Foreground Extraction

Require: 𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑁 } ⊲ Set of input videos
Require: MYOLO, w, hyp ⊲ YOLO model with weights, hyperparameters
Ensure: 𝑉sort = 𝑉1,sort,𝑉2,sort, . . . ,𝑉𝑁,sort ⊲ Tracked output videos

1: Initialize YOLO modelMYOLO with w, load hyp
2: Set device D and precision (half if D = GPU)
3: Define output folder
4: for each𝑉𝑗 ∈ 𝑉 do
5: Open𝑉𝑗 , retrieve FPS FPS𝑗 and dimensions (𝑊,𝐻)
6: Initialize video writer for𝑉 𝑗, sort, initialize SORT tracker TSORT
7: for each frame 𝐹 𝑗,𝑖 from𝑉𝑗 do
8: 1. 𝐹 𝑗,𝑖 ← letterbox(𝐹 𝑗,𝑖 , 640) ⊲ Resize to (640, 640)
9: 2. 𝐹 𝑗,𝑖 ← Tensor(𝐹 𝑗,𝑖) , move to D

10: 3. { (𝑂𝑘 , 𝑀𝑘 ,𝐶𝑘 , 𝑝𝑘) } ← NMS(MYOLO (𝐹 𝑗,𝑖),𝑇conf,𝑇iou)
11: 4. Update SORT tracker: { (𝑂𝑘 , ID𝑘) } ← TSORT .𝑢𝑝𝑑𝑎𝑡𝑒 ({𝑂𝑘 , 𝑀𝑘 })
12: 5. Initialize mask 𝑀𝑗,𝑖 ∈ {0, 1}𝐻×𝑊
13: for each tracked (𝑂𝑘 , 𝑀𝑘 ,𝐶𝑘 , ID𝑘 , 𝑝𝑘) do
14: if 𝐶𝑘 ∈ selected classes and 𝑝𝑘 > 𝑇conf then
15: 1. 𝑀𝑗,𝑖 ← 𝑀𝑗,𝑖 +𝑀𝑘 ⊲ Update mask with object region
16: 2. Annotate 𝐹 𝑗,𝑖 with ID𝑘

17: end if
18: end for
19: 6. 𝐹 𝑗,𝑖 [𝑀𝑗,𝑖 = 0] ← (0, 255, 0) ⊲ Set background to green
20: 7. Write 𝐹 𝑗,𝑖 to𝑉𝑗,sort
21: end for
22: Close writer for𝑉𝑗,sort
23: end for

A.2 Dataset diversity

(1) Camera shivering can adversely affect traffic footage quality. We identified and chose 5 out of 145 videos with

significant instability, emphasizing the need to address this issue for accurate traffic monitoring and analysis.

Manuscript submitted to ACM

26 Kim et al.

(2) Night time videos, categorized into two classes based on darkness levels. The first set includes 5 profoundly dark

videos, with only vehicle lights visible, while the second set consists of 5 videos taken during the early night and

pre-dawn, with additional ambient illumination from sources like moonlight and streetlights.

(3) Camera locations are at major intersections or along lengthy streets. Cameras at intersections capture more

slow-moving objects than those in suburban areas. We considered 5 videos from major intersections and 5 videos

from straight streets to account for these differences.

(4) Traffic volume is assessed by counting moving objects in video footage. Videos with more than 15 objects are

classified as high traffic, while those with fewer are considered low traffic. Our evaluation used 5 videos each for

low and high traffic volume conditions.

(5) Weather conditions like rain, snow, fog, high temperature, and wind can affect traffic camera quality and reliability.

To evaluate system performance, 5 videos captured under various weather conditions were used, comparing the

baseline schemes and CLOUD-CODEC.

(6) Severe conditions in traffic videos refer to situations with impeded traffic flow due to factors like high traffic

volume, nighttime, inclement weather, or camera instability. Five videos from the dataset, representing traffic under

severe conditions, were used for system evaluation.

(7) Pedestrian activity refers to the presence, movement, and behavior of pedestrians in various traffic scenarios,

including crowded sidewalks, crosswalk usage, biking, and interactions with vehicular traffic. Five videos from the

AICC21 dataset are considered in this scenario.

A.3 H.264 and AV 1 video encoder implementation parameters

The default parameters of the H.264 encoding are as follows:

• Constant Rate Factor (CRF)- The default value is 23. The range of the CRF scale is 0–51, where 0 is

lossless, and 51 is the worst quality possible. A lower value generally leads to higher quality.

• Preset-The default setting is medium. This setting is used to balance video quality and encoding speed. A

slower preset achieve better quality, while very fast or faster presets provide high encoding speed but at

the expense of video quality.

• Profile-The default setting is high, which allows for advanced encoding methods and a better compression

ratio. Other profiles, like baseline and main are primarily used with very old and obsolete devices.

FFmpeg libaom-av1 library is used to implement the AV1 video encoder with the following parameters:

• Constant Rate Factor (CRF)-The CRF value can be from 0 to 63 in AV1. Lower values provide better

quality but also larger file size. A CRF value of 31 in AV1 produces a quality level approximately equivalent to a

CRF value of 23 in H.264, a level that is generally perceived as visually equal [71]. Therefore, 31 has been chosen

as the CRF parameter.

• CPU Used-This parameter balances the efficiency between video quality and encoding speed, with values ranging

from 0 to 8. Lower values result in slower encoding speeds but higher video quality, and vice-versa. Since in H.264

we have chosen default medium preset, in AV1 we used value 4 for CPU Used.

• Row Multi-threading allows row-based multi-threading to enhance the encoding process’s speed with

minimal impact on quality. Using -row-mt 1 activates this feature, while -row-mt 0 deactivates it. In our

work, we have opted to enable this feature by setting the parameters to 1.

Manuscript submitted to ACM

CLOUD-CODEC: A New Way of Storing Traffic Cameras Footage at Scale 27

Table 3. Statistical summary of video size reduction rate (%) for CLOUD-CODEC and competing approaches across four
different datasets.

Dataset Error AV1 CloudSeg Detection Segmentation Segm&
Sort

CLOUD-
CODEC

AICC21

Mean 37.9 49.9 71.9 69.3 64.2 74.9
Std Dev 11.22 13.80 9.82 10.48 11.57 9.94

CI Lower 34.83 45.14 69.97 67.25 61.90 70.94
CI Upper 38.15 52.65 73.86 71.41 66.49 76.89

Bellevue
Mean 22.5 64.13 78.9 74.5 70.2 80.3

Std Dev 9.00 12.91 10.26 10.77 12.48 9.02
CI Lower 19.11 52.90 66.57 62.79 57.29 72.93
CI Upper 31.99 71.36 81.24 78.19 75.14 83.84

DETRAC

Mean 39.5 55.2 76.6 72.5 69.62 78.8
Std Dev 10.61 8.65 9.26 10.24 11.23 9.00

CI Lower 35.10 50.57 65.89 64.83 62.52 69.43
CI Upper 47.03 64.07 78.62 74.41 72.04 80.62

AAU

Mean 39.97 64.49 80.25 76.24 73.94 82.40
Std Dev 9.39 6.63 13.38 17.65 18.12 12.78

CI Lower 34.68 61.9 72.84 66.47 63.91 75.32
CI Upper 47.56 67.06 87.66 86.01 83.98 89.48

A.4 Video size reduction rate results

A.5 GPU cost analyses

For storing original videos, we selected Amazon EBS (Elastic Block Store) HDD cloud service and the corresponding

pricing details are summarized in Table 4. Amazon EBS offers two types of HDD services: Cold HDD and Throughput-

Optimized HDD. Cold HDD (sc1) is ideal for infrequent, archival storage due to its cost-effectiveness, while Throughput-

Optimized HDD (st1) is suited for large, sequential workloads like video streaming and logging, prioritizing sustained

throughput. Therefore, we focus on the pricing of the TO HDD (st1) and this service is billed per GB for a month but

charged in per-second increments [4] as presented in Eq 3.

Cost = 𝑃 × 𝑆 × 𝑇𝑢

𝑇𝑚
(3)

Where 𝑃 represents the price per GB-month, such as 0.045 USD/GB-month. 𝑆 denotes the provisioned storage in gigabytes

(GB). 𝑇𝑢 is the usage duration measured in seconds, while 𝑇𝑚 refers to the total number of seconds in a month.

For GPU processing pricing, we analyze the costs of H100 and A100 GPU units offered by four major service providers

(Table 4): Amazon EC2 [5], Vast.AI [61], RunPod [51], HPC-AI [30], and NetMind Power [47]. Each provider offers

GPU rental services, and we consider single A100 and H100 GPU units for a straightforward price comparison. Among

these providers, NetMind Power offers the lowest hourly rate at $1.04 for the A100 and $2.00 for the H100. Consequently,

our cost analysis focuses on the pricing rates offered by NetMind Power. CLOUD-CODEC achieves average encoding

rates of approximately 575 frames per second (fps) on the H100 GPU and 215 fps on the A100 GPU.

Below are key points that strengthen this claim:

(1) Future Decline in GPU Prices: GPU costs, especially in cloud environments, are expected to decline over time

due to advancements in technology, increased competition, and economies of scale. This trend will improve the

long-term economic feasibility of CLOUD-CODEC encoding.

Manuscript submitted to ACM

28 Kim et al.

Table 4. Overview of HDD and GPU Service Providers and
Their Usage Costs

HDD
Provider

($/GB/mon)

AWS
EBS

Cold Optimized

0.015 0.045

GPU
Provider
($/hours)

A100 H100
AWS EC2 [5] 1.84 4.91
Vast.AI [61] 1.06 2.85
RunPod [51] 1.19 2.79
HPC-AI [30] 1.25 2.5
NetMind Power [47] 1.04 2.0

Table 5. Video Size and GPU Processing Time

Storing
Scenarios Datasets

Video Size (GB) CLOUD-CODEC
Proc. Time (h)

Original Encoded A100 H100

Static
AICC21 4.9 1.3 0.47 0.17
Bellevue 62.3 12.6 14.03 5.27

Incremental Synthetic 1000 210 230 84.6

Fig. 12. Trends in GPU price-performance improvement over time, measured as floating-point operations per second per
dollar (FLOP/s per $) on a logarithmic scale. [29]. Note: The "Our data" label in the figure refers to Epoch AI.

(2) Ownership of In-House GPU Resources: CCTV data centers with in-house GPU infrastructure can avoid

the recurring costs of cloud providers like AWS. For these centers, operational expenses for encoding, such

as electricity, maintenance, and cooling, are generally lower than cloud GPU costs, making in-house GPUs a

cost-saving alternative that leverages existing resources.

(3) Emerging GPU Rental Models and Competitive Pricing: Certain cloud providers offer cost-effective GPU

rental models, like spot instances and reserved pricing, which can significantly reduce GPU costs. As competition

increases, rental rates are becoming more affordable, with providers like Vast.AI and HPC-AI offering lower-cost

alternatives to AWS EC2, making GPU-based encoding more accessible and economical.

(4) Higher Price-Performance Improvements in GPUs: Recent analyses [29] published by Epoch AI on GPU

price-performance trends strongly support the potential long-term cost-effectiveness of GPU-based encoding and

storage solutions. By examining data from 470 GPU models released between 2006 and 2021, the authors report

that FLOP/s per dollar approximately doubles every 2.5 years. This rate of improvement is notable, especially

compared to Moore’s law, which doubles every two years, highlighting significant gains in the affordability of

GPU processing over time, as shown in Figure 12.

Received 9 June 2024; revised 27 February 2025; accepted 31 May 2025

Manuscript submitted to ACM

