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Abstract of the Dissertation

Towards Performance Guarantees in Emerging Wireless Network Applications

by

Arani Bhattacharya

Doctor of Philosophy

in

Computer Science

Stony Brook University

2019

The growing interest in mobile systems and Internet-of-Things (IoT) has
engendered complex technical challenges ranging from e�cient utilization
of radio spectrum to developing applications on platforms widely varying in
computational power and connectivity. Scalability is increasingly emphasized
with exploding number of connected devices, complexity of applications and
network data demands with proportionate pressure on limited radio spectrum
resources. Our work picks two speci�c problem domains and explores algorithms
that provide performance bounds while scaling to large problem instances.
The domains we target are related to distributed radio spectrum monitoring
and computation o�oading.

In distributed spectrum monitoring we target the spectrum patrolling
problem where unauthorized transmitters are localized using a distributed
set of spectrum sensors. We speci�cally consider a crowdsourcing model
where a large number of inexpensive sensors are deployed to monitor the
radio spectrum. We address di�erent versions of transmitter detection and
localization problems, speci�cally considering the limited budget for the
sensors. We develop algorithms to reduce the cost of running a crowdsourced
spectrummonitoring system and improve the accuracy of transmitter detection
and localization. We also develop FPGA-based spectrum sensors and benchmark

iii



the performance improvements in terms of lower latency and energy consumptions
than conventionally used sensors that use commodity embedded processor
boards.

Our second problem domain is related to computation o�oading from
weakly powered devices to more powerful cloud servers. Because of the
uncertainty inherent in wireless connectivity, and the presence of a large
number of devices, deciding which part of the computation to o�oad or
where to o�oad is challenging. To address this, we propose algorithms
that optimize the process of o�oading. We focus on providing probabilistic
guarantees on the performance of o�oaded applications in the presence of
channel errors. We further suggest a technique to minimize the completion
time of the o�oaded application using a novel scheduling technique called
task duplication. We show the e�ectiveness of our algorithm via trace-driven
simulation.
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Chapter 1

Introduction

The Internet is witnessing an explosion in terms of data consumption and the
number of connected devices. The Internet was originally designed to connect
autonomous computers. A key feature of the Internet till the late 90's was
that communication was slow and expensive. Thus, computers connected to
the Internet typically tried to conserve bandwidth by limiting the data sent.

The rapid improvement in the capacity of both wired and wireless networks
has changed the structure of the Internet. Devices connected to the Internet
are no longer autonomous in nature, but can perform some dedicated task
(such as taking videos or pictures) and then transfer the data to a server.
Such devices are usually connected over a wireless network. This new Internet
structure is commonly referred to as the Internet of Things (IoT). Since the
number of such devices can be much larger than autonomous computers,
this requires accommodating a large number of devices within a wireless
network. Enabling smooth evolution of IoT requires allowing a massive
number of wireless devices to connect and transfer large amounts of data
over the wireless network at a low cost.

1.1 The Current State of the Internet

To further understand the current state of the Internet, we track the amount
of data transferred over wireless networks all across the world from 2005.
The amount of data transferred is reported by Cisco, as part of the Cisco
Visual Networking Index reports. We summarize the collated data in Figure
1.1. We �nd that till 2005, the amount of data was less than 1 Petabyte
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Figure 1.2: Median cost of 700-900
MHz spectrum all over the world
from 2009 to 2016.

(PB). By 2015, this had risen over 1000 times to 1 Exabyte (EB), and this is
expected to rise to 35 EB by 2020. This is a rise of over 35000 times in the
last 15 years. Wireless networks need to evolve to handle such large increases
in demand.

1.1.1 Rising Cost of Spectrum

Amajor consequence of this demand in data is the rise in the cost of spectrum
paid by telecom operators to acquire licenses. Since this cost has to be raised
by the telecom operators from consumers, this indirectly leads to an increase
in cost of communication. Figure 1.2 shows the cost of spectrum from the
year 2008 to 2016. Note that the cost of spectrum is measured in $ / MHz
Pop, which refers to the cost in USD to get a license for 1 MHz of bandwidth
per unit population. We �nd that the cost of spectrum license has increased
from 0.18$/MHz Pop in 2009 to 0.54$/MHz Pop in 2016. This is a rise
of three times in the last eight years. This rise, if not checked, can lead to
increase in communication cost for consumers.

1.1.2 Presence of Low-Powered Connected Devices

A second challenge associated with the rising popularity of Internet of Things
(IoT) is that many of the devices have low-power processors. They are also
constrained by amount of energy available, due to them being dependent on
batteries or some form of energy-harvesting. Users demand faster response
times for their applications and longer battery lives. Thus, it is essential to
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�nd ways of reducing application execution times and energy consumption
to satisfy requirements of users.

1.2 Resource Management in EmergingWireless

Network Applications

The increase in amount of data and connected devices has made it essential to
better manage network resources. Network resources such as spectrum and
availability of compute power are �nite resources and need to be intelligently
managed.

1.2.1 Spectrum Patrolling

The increase in cost of spectrum has made it essential for it to be properly
monitored and guarded against unauthorized users. Although statistics on
unauthorized spectrum use are not publicly available, anecdotal evidence
suggests that such unauthorized use is becoming increasingly common [105,
39]. Interference can also occur due to RF leakage from cable plants and
connectors [76]. These incidents can all lead to complaints about quality-of-
service from customers of telecommunication service providers.

Current strategies to protect spectrum used by the regulatory agencies
and telecommunication service providers rely on wardriving using specialized
equipments. This su�ers from high equipment and human labor cost. To
mitigate this problem, a number of recent studies propose deploying cheap
(but less accurate) software-de�ned radios available in the market to monitor
spectrum [24]. Such deployment can be readily done by crowdsourcing, where
users may be given some incentives (�nancial or otherwise) to deploy sensors.
These studies show that by deploying a large number of such cheap sensors,
it is possible to accurate detect or localize the presence of such unauthorized
transmissions.

However, running a large number of deployed sensors also has some
operational cost. Apart from the cost of incentives, it also requires us to
account for the cost of backhaul to send the data and energy to run the
sensors. For crowdsourced spectrum monitoring to be used in practice, it is
essential to reduce the cost of monitoring spectrum. Such operational cost
can be reduced using two major techniques � intelligent selection of sensors
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to select the ones that are most relevant, and improving the energy e�ciency
of spectrum sensors.

Our Contributions: Our �rst contribution is related to crowdsourced
deployment of spectrum sensors to detect illegal transmitters and monitor
usage. We propose algorithms to select the most relevant sensors and then
show a technique of combining the individual sensors into a global decision.
We also show that our global decision is optimal, i.e. given the individual
local decisions, our algorithm provides the most accurate possible global
decision. We show using both mathematical techniques and experiments
through actual deployment of sensors that our system detects and/or localizes
transmitters more accurately and has less cost than traditional techniques.

Our second proposed technique of reducing cost is to use FPGA-based
spectrum sensors. Since the computation done by spectrum sensors is repetitive,
utilizing FPGA's can signi�cantly reduce both energy consumption and latency
of computation. We benchmark the performance of our designed FPGA-
based spectrum sensors, and show that it has an order of magnitude improvement
compared to sensors based on smartphones and Raspberry Pi's.

1.2.2 Computation O�oading

Recently, the number and type of smart devices available in the market
has increased manifold. A key e�ect of this increase is that more complex
applications are being run on devices with limited compute capability or
batteries with limited energy. One technique that is frequently used to speed
up execution of applications or conserve energy is to o�oad some of their
more compute-intensive components for execution on more powerful devices.
For example, a smartwatch can o�oad to the user's own smartphone, whereas
a smartphone can utilize to a cloud server.

However, o�oading raises a number of major challenges. The �rst challenge
is to decide which components of applications are su�ciently demanding to
be o�oaded. A second challenge is to deal with the uncertainty that is
inherent in the wireless networks used by these devices.

Our Contributions: Our work has three major contributions. Our
�rst contribution is to benchmark the performance of di�erent applications
through o�oading to both edge and cloud. We study the performance gains
obtained for di�erent applications using cloud or edge device. We show that
even edge devices such as desktops with relatively less powerful processors
can signi�cantly reduce latency.
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Our second contribution deals with decide which components of applications
to o�oad. Conventional techniques model the application as DAG and then
partition it using either an optimization solver or a heuristic. In contrast,
we propose an algorithm to identify the optimal execution position (local
or remote server) of each application component, while consuming much
lower resources. We show that this can be done in polynomial time, thus
signi�cantly reducing the overhead of partitioning the graph.

Our third contribution deals with o�oading over a lossy network. A key
challenge of o�oading is that execution of latency-sensitive applications can
miss their deadlines, leading to overall degradation in Quality of Experience
(QoE). In our work, we model the number of retransmissions using a Binomial
distribution, and then propose a heuristic that provides a soft guarantee of
satisfying deadline constraints. We then show using trace-driven simulation
that our technique provides mean lower execution time than conventional
techniques.

1.3 Organization of this Thesis

We now explain the problem statements of each individual chapter of this
thesis and our contributions.

• Chapter 2: We look at the problem of crowdsourced spectrummonitoring
to detect illegal transmitters. An individual sensor reports its local
decision about whether a transmitter is present in its vicinity. Our
objective is to choose an optimal subset of sensors and their con�gurations
to maximize the overall detection performance subject to given resource
(cost) limitations. We present the challenges of this problem in crowdsourced
settings and present a set of methods to address them. The proposed
methods use data-driven approaches to model individual sensors and
develops mechanisms for sensor selection and fusion while accounting
for their correlated nature. We present performance results using examples
of commodity-based spectrum sensors and show signi�cant improvements
relative to baseline approaches. A part of this work has been published
in IEEE Transactions on Cognitive Communications and Networking [8]
and in the proceedings of IEEE INFOCOM held in 2018 [22].

• Chapter 3: In this chapter, we design greedy approximation algorithms
for the optimization problem of selecting a given number of sensors
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in order to maximize an appropriately de�ned objective function of
localization accuracy. The obvious greedy algorithm delivers a constant-
factor approximation only for the special case of two hypotheses (potential
locations). For the general case of multiple hypotheses, we design a
greedy algorithm based on an appropriate auxiliary objective function�
and show that it delivers a provably approximate solution for the
general case. We develop techniques to signi�cantly reduce the time
complexity of the designed algorithms, by incorporating certain observations
and reasonable assumptions. We evaluate our techniques over multiple
simulation platforms, including an indoor as well as an outdoor testbed,
and demonstrate the e�ectiveness of our designed techniques�our techniques
easily outperform prior and other approaches by up to 50-60% in large-
scale simulations.

• Chapter 4: We demonstrate a di�erent technique of sensor selection,
where the process of sensor selection and localization are done simultaneously.
Such online selection of sensors can signi�cantly reduce both latency
and energy consumption than o�ine selection. We discuss an online
selection algorithm, and show that it provides more accuracy than
baseline techniques, while running faster than o�ine techniques.

• Chapter 5: In this chapter, we demonstrate that typical crowdsourced
implementation using a low-cost software radio connected to a Raspberry
Pi or a smartphone as host is not energy-e�cient and incurs signi�cant
latencies. We propose use of �eld-programmable gate array (FPGA) to
improve both metrics for the signal detection task. Our benchmarking
shows signi�cant improvements with FPGA platforms relative to using
a Raspberry Pi or smartphone, upto a factor of 73 in terms of latency
and a factor of 29 in terms of energy usage. A part of this work has
been published in the proceedings of IEEE International Symposium
on Dynamic Spectrum Access Networks (DySPAN) held in 2018 [9].

• Chapter 6: We note that o�oading decisions in mobile cloud computing
and edge computing are in�uenced by several parameters, like varying
degrees of application parallelism, variable network conditions, trade-
o� between energy saved and time to completion of an application, and
even user-de�ned objectives. In order to investigate the impact of these
variable parameters on o�oading decision, we present a detailed model
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of the o�oading problem incorporating these parameters. Implementations
of o�oading mechanisms in MCC frameworks often rely on only a few
of the parameters to reduce system complexity. Using simulation, we
analyze in�uence of the variable parameters on the o�oading decision
problem, and highlight the complex interactions among the parameters.
A part of this work has been published in the proceedings of Second
International Workshop on Adaptive Resource Management and Scheduling
for Cloud Computing held in 2015 [5].

• Chapter 7: Traditional o�oading uses cloud data centers which has
a high network latency. To mitigate the problem of network latency,
recently o�oading to computing resources lying within the user's premises,
such as network routers, tablets or laptop has been proposed. In this
paper, we determine the devices whose processors have su�cient power
to act as servers for computation o�oading. We perform trace-driven
simulation of SPECjvm2008 benchmarks to study the performance
using di�erent hardware. Our simulation shows that o�oading to
current state-of-the-art processors of user devices can improve performance
of mobile applications. We �nd that o�oading to user's own laptop
reduces �nish time of benchmark applications by 10%, compared to
o�oading to a commercial cloud server. A part of this work has
been published in the proceedings of Third International Workshop on
Adaptive Resource Management and Scheduling for Cloud Computing
held in 2016 [10].

• Chapter 8: Quality of o�oading decisions depend on network conditions
and hence many o�oading solutions assume that MAC layer retransmissions
will tackle transient frame errors. This can lead to suboptimal solutions,
as well as, degrade service level guarantee of reducing �nish time compared
to execution without o�oading. In this work, we propose an error-
aware solution that uses run-time channel conditions to adapt the
o�oading decisions. We guarantee that given a failure rate bound (ε),
o�oading decisions will achieve application execution in less time than
that of local execution with a probability of (1-ε) while operating in
networks with unpredictable error characteristics. Simulation results
show that at channel error rate of 20%, our heuristic provides 90%
guarantee of better performance than on-device computation and reduces
the mean �nish time by 18% compared to execution without any o�oading.
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A part of this work has been published in the proceedings of IEEE
Global Communications Conference held in 2016 [7].

• Chapter 9: Computation o�oading frameworks partition an application's
execution between a cloud server and a low-powered mobile device to
minimize its completion time. An important component of an o�oading
framework is the partitioning algorithm that decides which tasks to
execute on mobile device or cloud server. The partitioning algorithm
schedules tasks of a mobile application for execution either on mobile
device or cloud server to minimize the application �nish time. Most
o�oading frameworks partition parallel applications devices using an
optimization solver which takes a lot of time. We show that by allowing
duplicate execution of selected tasks on both the mobile device and
the remote cloud server, a polynomial algorithm exists to determine
a schedule that minimizes the completion time. We use simulation
on both random data and traces to show the savings in both �nish
time and scheduling time over existing approaches. Our trace-driven
simulation on benchmark applications shows that our algorithm reduces
the scheduling time by 8 times compared to a standard optimization
solver while guaranteeing minimum makespan. A part of this work has
been published in the proceedings of IEEE Consumer Communications
and Networking Conference held in 2017 [6].

• Chapter 10: We conclude in Chapter 10 with a brief discussion of our
contributions and scope of our future work.
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Part I

Low-Cost Spectrum Monitoring
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Chapter 2

Spectrum Patrolling with

Crowdsourced Spectrum Sensors

2.1 Introduction

With growing realization of mobile communication's impact on the nation's
economic prosperity, RF spectrum has emerged as an important natural
resource that is in limited supply [58]. While various spectrum sharing
models are being developed to improve spectrum usage, `spectrum patrolling'
to detect unauthorized spectrum use is emerging as a critical technology [36].
Such unauthorized uses can take many forms, such as lower-tier devices
accessing spectrum reserved for higher tier devices in a tired spectrum sharing
model [43], unauthorized devices accessing licensed spectra using software
radios, or various forms of denial of service attacks. Techniques must be
developed to detect such unauthorized accesses and large-scale spectrum
monitoring is one e�ective way to do this.

However, large-scale spectrummonitoring using lab-grade spectrum analyzers
is not scalable, given that such devices cost anywhere from several thousands
to tens of thousands of US$ depending on the exact capability and require
availability of AC power. Several recent chapters have proposed to address
this scalability issue by deploying low-cost, small form-factor, low-power
spectrum sensors in large numbers perhaps using a crowdsourcing paradigm [24,
124, 16].1 The overall monitoring performance achieved by a large number

1There is at least one commercially successful crowdsourced application of spectrum
sensing. FlightAware [40] deploys low-cost sensors via crowdsourcing to detect signals
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of such low-cost sensors can exceed that of a handful of lab-grade spectrum
analyzers while costing several orders of magnitude less [24]. Due to this
reason there is a growing body of literature in studying the performance
characteristics of commodity-based inexpensive sensors [23, 87, 16].

Although using inexpensive, commodity-grade sensors in large numbers
may provide a very encouraging cost-performance tradeo�, use of a crowdsourcing
paradigm brings in certain management problems. Spectrum patrolling must
involve signal detection. It is unlikely that all deployed sensors will be used
in speci�c detection tasks [24]. Only a subset will be typically be employed
ensuring that the required level of detection performance is achieved. This
conserves the backhaul bandwidth and also energy when the sensors are
battery operated (e.g., when mobile phones serve as spectrum sensors [23]).
In case of multiple sensing needs in the same geographical space (e.g., detecting
speci�c signals in multiple spectrum bands), sensors may need to be con�gured
to engage in one speci�c task as their processing powers may not be su�cient
for multiple concurrent signal detection tasks. The broad goal of this work
is to develop mechanisms to select the right set of sensors that optimizes the
performance of detection task for a given cost. There are two sub-problems
that arise: 1) modeling individual sensor performance and cost for given
con�gurations, 2) fusing data from multiple sensors and selecting the optimal
subset to maximize detection performance subject to cost limitations (or,
minimizing cost subject to a given detection performance). While these
problems are not entirely new in a general sense, the speci�c nature of
crowdsourced spectrum patrolling problem makes them challenging.
Challenge 1 � Modeling Individual Sensors: Fundamentally spectrum
sensors must perform a signal detection task in form of a binary hypothesis
testing (intruding transmitter present/absent). Detection performance is
usually characterized by standard metrics like the probability of detection
(Pd) or false alarm rate (Pfa). Assigning a speci�c sensor to a speci�c sensing
task and choosing speci�c con�gurations, requires accurate estimation of
its Pd and Pfa metrics and cost for such con�gurations. Modeling of the
cost depends on the scenario and can include, e.g., energy cost, backhaul
data cost or any form incentives to be paid to the owner of the sensor.
However, given the heterogeneity and diversity of spectrum sensors in a
crowdsensing paradigm estimating such metrics accurately is challenging.
Existing literature extensively uses so-called �rst principles modeling approach

from aircrafts �ying overhead.
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that could miss various forms of imperfections (e.g., clock skew, I/Q imbalance,
RF front end non-linearity) and noises common in commodity platforms.
Even when they are able to account for those, they require knowledge of
internal details of the sensor or separate calibration e�orts. These are either
not practical or do not scale well. More speci�cs of these issues will be
discussed in Section 2.2.

Instead of relying on �rst principles models, we use a data-driven (blackbox)
approach where models are created based on data from prolonged observation
of the sensor. This type of approach is getting traction in other communities
such as industrial process control where �rst-principles approaches are not
practical for largely similar reasons (see, e.g., [119]). We abstract out
the observable and easily quanti�able parameters of a sensor, its operating
environment or runtime con�guration. We use machine learning methods
that treats the internal sensor hardware information (otherwise inaccessible)
as hidden variables. This gives our methodology a direct and practical
advantage over involved analytical models. Second, such models get richer
with time and can easily accommodate new sensors without the need of
explicitly calibrating them, an otherwise impossible task.
Challenge 2 � Sensor Selection and Fusion: Once individual sensors
are modeled, we must select the subset of sensors (and their con�gurations if
they are con�gurable) to achieve the best cost-performance tradeo�, i.e.,
the best detection performance for a given total cost (or minimum cost
for a given desired performance). Here, the local sensor decisions (target
present/absent) are to be combined into a global `fused' decision. Thus, a
fusion rule is needed. While there is a very rich literature on sensor fusion
and developing optimal fusion rules much of techniques in literature assume
that sensor decisions are conditionally independent. This is not true for
spectrum sensors, where their decisions could be correlated depending on the
sensor locations. The reason is that sensors located in the same neighborhood
are likely to face the same fading environment, resulting in correlations in
their observations/decisions. The case for correlated observations have been
indeed studied (see, e.g., [64, 34, 113]). But these methods are either too
complex computationally to implement in practical systems and/or requires
prior knowledge of the correlation structure (e.g., in terms of higher-order
moments of the sensor observations under each hypothesis [64] or spatial
correlation coe�cient [15], etc). Also, these techniques do not help addressing
the sensor selection problem.

To handle this problem, we use a variant of sensor selection from machine
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Figure 2.1: Overview of the proposed technique. Performance models of
individual spectrum sensors are created �rst using a data-driven approach.
Then sensor selection using a feature selection based approach. Finally
individual sensor decisions are fused together to get a global decision. The
�gure indicates the di�erent steps along with the section numbers where they
are described.

learning literature called Maximum Relevance Minimum Redundancy (mRMR)
[92]. This technique �rst measures the value of each sensor by considering
both its probability of detection, and its correlation with the other sensors. It
uses an adaptive greedy selection where the value of each sensor is computed
at each step, and then the sensor with the highest value is taken. While
this does not guarantee an optimal subset, experiments on a large variety
of datasets have shown that it works well in practice. Our evaluation shows
that it works signi�cantly better than a baseline technique that does not take
correlation into account.

Contributions Figure 2.1 pictorially describes the overall approach with
pointers to various sections of the chapter. Overall, we make two sets
of contributions. First, we develop a systematic approach for data-driven
models of spectrum sensors engaged in signal detection (Section III). The
model takes the sensor's con�guration and SNR as input and estimates
detection performance and cost (we use energy to model cost in this work).
We precede this modeling approach by highlighting limitations of traditional
�rst-principles based analytical modeling approaches (Section II) and demonstrate
improved model performance using the proposed data-driven approach using
actual spectrum sensor hardware. Second, we develop a technique for the
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sensor selection and fusion problem taking into account the fact spectrum
sensors are not conditionally independent (Section IV). The proposed feature
selection based technique is suitable for crowdsourcing as it does not require
information that is hard to obtain or estimate. We show that the overall
detection performance improves signi�cantly relative to baseline techniques.

2.2 Modeling Detection Performance2

The spectrum sensor detects the absence or presence of an intruding transmitter's
signal. The corresponding hypotheses are denoted as H0 (absence) and H1

(presence) respectively. Raw sensed samples from the sensor are fed to the
corresponding detection algorithm on board of the sensor that computes a
sensing metric. The sensing metric is compared against a threshold (ST ) to
output a binary decision. This is the local decision of the sensor.

Performance Metrics Given H1, the rate at which the sensor detects the
transmitter is known as the probability of detection (Pd). Second, given H0,
the rate at which the sensor incorrectly �ags the presence of a transmitter is
known as the probability of false alarm (Pfa). Figure 2.2 demonstrates the
basic working principle. The sensing metric has two di�erent distributions
under hypotheses H0 and H1. Under H0, the distribution re�ects noise. Pd
and Pfa depends on the selection of ST . Varying ST varies both Pd and Pfa
between 0 and 1. This produces the receiver operating characteristics (ROC)
curve. Specifying Pfa (common case) also determines Pd as per the ROC
curve. However, the ROC curve itself would look di�erent if the distributions
of the sensing metric shown in Figure 2.2(a) change. This is possible when
the signal power from the transmitter changes (due to a di�erent location,
e.g.). More on this below.

Challenges Estimating an optimal value of ST is straightforward when the
distributions of the sensing metric for H0 or H1 (Figure 2.2(a)) are known or
can be accurately estimated. Unfortunately, this is not the case in practice.
The distributions depend on a variety of factors including the detection
algorithm, speci�cs of the sensor hardware, SNR or SINR at the sensor
location, number of sensed samples, FFT resolution and so on. Common
detection algorithms are energy-based, waveform or feature-based, autocorrelation

2Sections 2.2 and 2.3 are based on work done by Ayon Chakraborty. It has been added
to make this chapter complete.
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Figure 2.2: Working principle of a detector. ST denotes the threshold of the
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Figure 2.3: Unpredictable clock skew makes frequency o�set calculation
harder resulting in poorer signal detection performance.

or cyclostationary-based. Existing analytical techniques [114, 33, 26] can help
model such algorithms to estimate an optimal ST . However, such models
typically result in signi�cant estimation errors [114, 33]. The reasons are
as follows. First, many of these models make idealistic assumptions about
the distribution of the signal or noise or the noise associated with sensor
hardware. For example, [13] shows that the performance of a sensor actually
depends on both the signal parameters and the amount of RF front-end non-
linearities of the sensors. Second, complex models do exist that take into
account such factors [13, 45], but it is seldom possible to parameterize them
correctly. This is due to the uncertainty in the hardware itself or inaccessible
components that makes reliable measurements impossible. Third, even when
such measurements are possible manual calibration of individual sensors does
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Figure 2.4: We demonstrate the e�ect of I/Q imbalance in deteriorating the
performance of simple waveform based detector algorithm used in detecting
an ATSC pilot tone.

not scale well, especially in the context of crowdsourcing.

We provide two sets of benchmarking experiments to highlight the challenges.
Clock-skew: As an example, we study the clock skew associated with the
local oscillator (LO) in the sensor. The frequency set in LO tunes the
sensor to the desired frequency. However, the LO-frequency drifts giving
rise to clock skew. To understand the nature of such drifts in commodity
sensor hardware, we use two di�erent spectrum sensors based on RTL-SDR
and USRPB210. These sensors are chosen due to their low-power, small
form factor nature [23]. They are both USB-powered and could be driven
by an embedded CPU board or even a smartphone. Three test signals
are used for detection. The �rst two are constant frequency tones in the
915MHz band and the pilot tone of an ATSC signal (DTV band). In
both cases we observe a non-trivial frequency drift that varies widely across
individual sensor instances. For the third, we use an LTE downlink signal
from a real network (AT&T) using these sensors and recorded the frequency
correction needed in order to decode the synchronization signals. The results
are summarized in Figure 2.3(a). In most cases RTL-SDR su�ers from a
appreciable clock skew which is less prevalent in more expensive hardware like
USRP. In Figure 2.3(b) we show the impact of such clock-skew in detecting
an ATSC signal. The ATSC signal has a pilot tone located at an o�set
of 310KHz that is expected by our waveform based detector algorithm.
We create two variations of the algorithm that expects the pilot tone (i)
exactly at the 310KHz o�set and (ii) ≈100KHz surrounding the expected
location that it scans. In a low SNR scenario, scanning provides almost a
50% improvement in Pd compared to the detector that expects the pilot at
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a �xed o�set demonstrating the impact of the clock skew problem.
I/Q imbalance: Apart from clock skew, I/Q imbalance and RF front-end
non linearities are other prominent issues. I/Q imbalance is introduced as a
result of mismatch between the in-phase (I) and quadrature (Q) signal paths
of the RF receive chain. For example, phase di�erence between the I and Q
components is not always exactly 900 which results in an amplitude and phase
o�set in an I/Q sample. Since we do not have direct control over the radio
circuitry we simulate I/Q imbalance by adding amplitude and phase o�sets
to real I/Q traces obtained for an ATSC signal using a RTL-SDR device.
For both cases, we use an o�set drawn from a zero-mean Gaussian with a
standard deviation as shown in Figure 2.4. We report the detection rate of
the ATSC signal using a waveform based detector that identi�es the ATSC
pilot signal. As the I/Q imbalance becomes more prominent it becomes
impossible to detect the signal. Although I/Q imbalance can be addressed
directly in the hardware [45] we expect crowdsourced spectrum sensors may
use inexpensive hardware unable to do such corrections.

As mentioned earlier, while such problems can be accounted for by applying
models that `corrects' for such errors, these models are based on the '�rst
principles' approach. These models can only be applied only after knowing
speci�c sensor-speci�c parameters (e.g., characteristics of frequency drift,
whether the algorithm scans, or nature of I/Q imbalance, etc). This information
may not be available in a crowdsourcing scenario given signi�cant possible
heterogeneity.

2.3 Data-Driven Performance Modeling

To address this problem of scalable modeling of heterogeneous sensors, we
borrow from the concept of data-driven soft sensors utilized in industrial
processes [119, 104]. Industrial processes �nd it impossible to use �rst
principles models for their physical and chemical processes. These models are
often idealized (e.g., assumes steady state behavior) or requires parameters
that are hard to obtain. Instead, data-driven soft sensors models are gaining
ground that takes an alternative blackbox approach where massive amount
of collected data is used to model and predict the industrial process behavior
in realistic conditions using statistical or machine learning techniques (see,
e.g., [119, 104]).

In the following we present our approach for the data-driven analysis
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Figure 2.5: Spectrum sensor data collection
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Figure 2.6: Analysis of estimation errors associated with analytical models
and its dependency on the sensor's operating environment or con�gurations.
Median estimation error in PD can be as high as 25%. Higher errors are
highly associated to low SNR operating environments.

using an example dataset. We �rst present our dataset, quantify the errors
associated with �rst-principles based analytical models and then present our
data-driven performance model of spectrum sensors.

2.3.1 Dataset

We collect spectrum sensor measurements in an outdoor setting within the
university campus. As shown in �gure 2.5(a), we setup a USRP B210 based
transmitter that transmits a constant tone in the 915MHz band and collect
sensing data (I/Q samples) using three RTL-SDR and two USRP B210
devices. We collect 1M samples at every location and our sensing area covers
approximately 1000 locations within a 190× 340 ft2 region (Figure 2.5(a)).
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The distribution (H1) of the received power is also shown in Figure 2.5(b).
We bias our data collection towards relatively lower SNR zones so as to
have more variations in detection performance. This also presents a more
challenging test case � detection is much easier when SNR is high. Using
the same set of sensors we also collect a noise dataset by turning o� the
transmitter. This data corresponds to the distribution for H0. Note that H0

is agnostic to the sensor's location.
For every location we employ three di�erent detection algorithms (energy,

feature and autocorrelation based) [23] both on the signal and the noise
dataset. We vary two key parameters of the algorithm that directly in�uences
Pd�Pfa as well as energy cost in the sensor [23]: (i) N , number of sensed
samples and (ii) NFFT , resolution of the FFT. N and NFFT are varied
from 32 (25) to 4096 (212) by repeated doubling with the constraint of N ≥
NFFT (36 con�gurations). We introduce heterogeneity in the resolution
of sensed samples by changing the number of bits per sample. We produce
additional data sets of 14, 12, 10 and 6 bit samples by ignoring least signi�cant
bits from the collected 16 bit samples. Note that this depends on the
resolution of the ADC in the sensor and heavily in�uences the dollar cost.

2.3.2 Limitations of Analytical Models

Before directly delving into the internals of the data driven model, we �rst
demonstrate the limitations of �rst-principles based analytical models using
our dataset. Due to space restriction we are not able to explain individual
variations of analytical models we use but will explain the general conclusions
and trends. Figure 2.6(a) shows two histograms of the sensing metric corresponding
to H0 and H1 obtained by using the energy-based detector algorithm (N
= 2048, NFFT = 1024). We use the analytical model for energy-based
detector to estimate the distributions for H0 and H1 for the same location.
Figure 2.6(a) visually shows the di�erence between ground truth and estimated
distributions. In Figure 2.6(b) we present the estimation errors for di�erent
values of PFA. Note that the median error can be as high as 25% that in
many cases. We observe that the errors are particularly higher in low SNR
scenarios. We also show (Figure 2.6(c)) the correlation of such errors to the
sensing con�gurations. Unlike other factors, the number of ADC-bits does
not show a very high degree of correlation. This may be because we attempt
to detect a simple tone at a constant power in this study.
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2.3.3 Data-Driven Performance Model

Given the relatively poor performance of parametric models, we make use
of `training data' collected from spectrum sensors to take a non-parametric
data-driven approach. Essentially, the task of the model is to determine
an optimal sensing threshold, SoptT that maximizes Pd for a given Pfa. For
training the model we use feature vectors of the form V: <Algorithm, N, NFFT,
B, SNR, PtargetFA >. P target

FA is the allowable false alarm rate. Algorithm refers to
the signal detection algorithm the sensor runs that uses N, B-bit samples and
involves an NFFT-bin FFT. We use energy, waveform and autocorrelation
based detection algorithms. SNR refers to the signal-to-noise ratio of the
intended signal at the sensor's location. Every Vi is mapped to a corresponding
SoptiT in the training examples. Note that we do not explicitly take into
account internal hardware details unlike the involved analytical models [12,
44]. We explore o�-the-shelf machine learning techniques to learn the estimator
for SoptT . Out of several popular techniques we tried out, the Support Vector
Regressors (SVR) works best in our case. We have also explored deep-
learning methodologies [119] using convolutional neural networks (CNN),
however the amount of training data required to get reasonable estimation
performance is signi�cant. This makes CNN impractical in our case and we
adopt SVR for creating the performance model.
Validation: We validate the performance of our data-driven model in Figure 2.7.
Given con�guration of the sensor and the SNR it operates in, our model
predicts the optimal threshold SoptT that maximizes Pd for a �xed PFA. We

use the sensor traces and the model predicted ŜoptT to compute P̂D for a given

PFA. The relative error of P̂D with respect to Pd is reported. We show
estimation error in Pd for Pfa equal to 0.1%, 1% and 10% respectively. The
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data-driven models are indicated byMODPFA in Figure 2.7. We also present
the estimation errors of the analytical models (ANAPFA) for the same set of
data points (low/moderate SNRs). In all cases after our model is moderately
trained we reduce our estimation error by a signi�cant margin with respect to
the analytical models. For instance, MOD10 outperforms ANA10 by ≈ 12%
for a training set of size 20%. With more training samples the estimation
error of our model becomes negligible and we see a clear improvement over
analytical performance models.

2.4 Sensor Selection and Fusion

The approach described in the previous section gives us the power to estimate
the detection performance of an individual sensor deployed in the wild without
explicitly calibrating it. In this section we use such models to optimize
the (network-wide or global) detection rate. This is done by selecting an
optimal set of sensors (and their con�gurations such as number of ADC
bits, number of samples or FFT bins etc.) and fusing their local decisions
into a network-wide (global) decision. This needs a simultaneous solution of
sensor selection and sensor fusion problems. As discussed in Section 2.1, a
wide body of literature exists that propose mathematical techniques to fuse
sensor decisions to optimize certain detection performance metrics (typically
Bayes risk). In a widely used method proposed by Chair and Varshney [20]
that we will also use, an optimal fusion rule is developed to minimize the
sum of false alarm and missed detection rates, but speci�cally for case when
the sensors are conditionally independent.

As explained in Section 2.1, the conditional independence assumption
does not hold for spectrum sensors and existing techniques to account for
correlated sensor observations are hard to apply for case of crowdsourced
spectrum sensors either due to complexity or unavailable parameters. We
develop an alternative feature selection based approach below that we will
demonstrate to perform well in practice.

2.4.1 Sensor Selection

To optimize performance under the constraint of a cost budget, we need
to select a set of sensors S that collectively o�ers the best network-wide
detection performance. Let PD(S) denote the probability that the set of
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sensors S detect an intruder. We denote the selection of a sensor by setting
the decision variable zi = 1, otherwise we set zi = 0. Let Ci denote the
cost of utilizing sensor Si. Our objective is to maximize the probability of
detection while keeping the cost within a �xed budget B:

Maximize PD(S) subject to:
∑
Si∈S

ziCi ≤ B. (2.1)

Sensor Ranking: Solving this optimization is a known NP-Hard problem,
since the sensors are correlated. This is mainly because quantifying the
e�ect of the correlations on performance of the set of sensors is di�cult. To
solve this optimization problem, we utilize a variant of a commonly used
feature selection technique from the machine learning literature, known as
Maximum Relevance Minimum Redundancy (mRMR) [92]. In this technique,
the sensors are ranked based on their contribution to PD(S). However, a
measurement of the contribution of a single sensor needs to take into account
two distinct factors:

• Relevance: A sensor is more relevant if its data is more frequently
used to detect an intruder. Based on the feature selection literature, we
measure the relevance of a sensor by looking at the mutual information
metric of the sensor readings and the presence of intruder. Let Xi be a
random variable denoting the local decision given by sensor Si. Also,
let U be a random variable denoting if an intruder is actually present.
Both Xi and U are binary random variables. Then, the relevance of Si
is measured by the mutual information between Xi and U , I(Xi, U):

I(Xi, U) =
∑

xi∈{0,1}

∑
u∈{0,1}

P (Xi = xi, U = u)log
P (xi, u)

P (Xi = xi)P (U = u)

(2.2)
The value of I(Xi, U) is 1 if Xi and U are perfectly correlated, and
0 if they are completely independent. Thus, I(Xi, U) is a measure of
how relevant the sensor Si is in detecting the presence of the intruder
(denoted by U).

• Redundancy: Assuming we already have selected a set of sensors, we
need a way to measure if adding a new sensor adds any new information.
A common approach of measuring the redundancy of a sensor Sk with
respect to a subset T ⊆ S is to measure the amount of information
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Figure 2.8: (a) Pd for di�erent con�gurations of the sensor under low and
high SNR. (b) Sensor cost model. N is number of samples, NFFT is number
of FFT bins.

given by the new sensor about the output of the subset:

R(Sk,T) =
1

|T|
∑
Si∈T

I(Xi, Xk) (2.3)

If two sensors Si and Sk are spatially close to each other, then the mutual
information among these two sensors will be high. In this case, selecting both
the sensors leads to high redundancy of one sensor with a subset containing
the other. Thus, the value of adding a sensor to a subset reduces if they have
a high redundancy.

To account for both relevance and redundancy, the actual value (denoted
by V (Sk,T)) of adding a sensor Sk is the di�erence between the mutual
information and redundancy. Mathematically, we write this as:

V (Sk,T) = I(Xk, U)−R(Sk,T). (2.4)

Sensor selection schemes: For each pair of sensor Si ∈ S and subset of the
sensor set T ⊆ S, we now have a �xed value V (Si,T). We also have a �xed
cost Ci for each sensor Si ∈ S. This is a feature selection problem with linear
cost constraints, which is in general NP-hard. We �rst look at solving it in
the simple case where sensors are homogeneous in terms of con�gurations,
and followed by heterogeneous con�gurations.

23



Homogeneous Sensors (HOMS):We assume all sensors are identical and
have the same con�guration. Hence their costs are equal and we assume unit
cost for every sensor, i.e., Ci = 1. In this case we �rst iterate across all
the sensors and select the sensor with the highest Vi. We add this sensor to
the subset T. In the next iteration, we recompute the values of Vi for all
the remaining sensors, and again select the maximum. In this way, we keep
selecting sensors until we reach the budget for the number of sensors allowed.

Heterogeneous Sensors (HETS): In this case the sensors have heterogeneous
con�gurations that are precon�gured for every sensor and cannot be changed.
Accordingly, the sensor's cost Ci is a function of its con�guration as demonstrated
in Figure 2.8(b). Depending on the sensor's con�guration, Ci can vary
anywhere from the minimum cost value to 1. In this case, we pick the sensor
having the highest value-to-cost ratio Vi/Ci, and add it to the subset T.
We recompute the values of Vi/Ci again, and keep picking the sensor with
the highest value and adding it to T until again we exceed the budget. We
summarize this algorithm in Algorithm 1.

Algorithm 1 HETS: Heterogeneous Sensor Selection.

1: Input: Value of sensors V , cost of sensors C, cost budget B
2: Output: Optimal selection A

3:4: R = 0 /* R stores the cost of sensors selected so far. */
5: T← φ
6: while R < B do
7: j ← arg maxNi=1 Vi/Ci
8: T← T ∪ {Sj}
9: R← R + Cj
10: Vj ← 0

return T

Recon�gurable Sensors (RES): Here, the sensor can adopt a speci�c
con�guration from a pool of available con�gurations. Here the task is not
only to select the sensors but also determine the con�guration of the sensor
that it should adopt. We again compute the value-to-cost ratios Vi/Ci for
each con�guration, and select the one that provides the highest. However, in
the next iteration, we repeat the procedure after excluding the sensor that
has already been selected in the previous step. We repeat this procedure
until no sensor can be selected within the budgeted cost.
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Time Complexity: To understand the time complexity of our technique, we
note that selecting a single sensor requires iterating over all the sensors to
compute each sensor's relevance. This requires O(|S|) time. It also requires
iterating over all the selected sensors. Since the number of selected sensors is
always less than the budget B, this requires B time. Thus, a single selection
requires O(|S| × B) time. This needs to run B times to �ll the budget, and
so the total time complexity of our technique is O(|S| ×B2).

2.4.2 Sensor Fusion

We now have a selection of sensors and their con�gurations. We use the
Chair-Varshney optimal sensor fusion rule [20] that fuses the local decisions
of the individual sensors into a global (fused) decision to minimize the error
rate. However, Chair-Varshney sensor fusion rule assumes that the sensor
decisions are conditionally independent. This is not true in practice in our
case, since the intruder can arrive at any location within the area, which
a�ect the sensor local decisions.

To resolve this limitation, we apply this fusion rule repeatedly for each
possible location of the intruder. We note that for a particular location of the
intruder, the sensor local decisions are conditionally independent. Formally,
assume that Ui,L=j is the local decision (1 or 0) of the sensor Si, if the
intruder signal is detected or not detected (respectively) by this sensor given
the intruder is at location j. Using [20], we compute the fused decision UL=j

of the sensors given this location of the intruder as:

UL=j =
∑

PDi,L=j>PFAi

[Ui log
PDi,L=j

PFAi
+ (1− Ui) log

1− PDi,L=j

1− PFAi
] (2.5)

The summation above is for all selected sensors. PDi,L=j is the probability of
detection of sensor Si for intruder location j. UL=j > 0 indicates presence of
the intruder (at location j), otherwise it is considered absent. Note that we
only consider sensors with probability of detection higher than the probability
of false alarm from a particular location L, since only those sensors are
close enough to give meaningful information. To estimate the presence of
an intruder anywhere, we �rst compute the values of UL=j for all possible
locations j. We conclude that there is an intruder anywhere only if at least
one of these UL=j's is positive. Otherwise, we conclude that no intruder is
present.
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Figure 2.9: Transmitter prior map of the area obtained from a satellite image.

2.5 Evaluation

We simulate a 1000m×1000m grid where we randomly deploy 100 spectrum
sensors. The sensors can choose among 36 di�erent con�gurations. Each
con�guration corresponds to the tuple (N, NFFT), N being the number of
I/Q samples and NFFT, the resolution of the FFT in the sensor's detection
algorithm. N, NFFT ∈ {25, 26, · · · , 212} such that N ≥ NFFT. For each
sensor, we set Pfa = 1% (or 0.01) and obtain the Pd from our data-driven
performance model (MOD10). The sensors have a cost model as mentioned
in Figure 2.8. Next, we simulate an intruder in the grid. The intruder
is represented by a wireless transmitter with a transmit power of 10 dB.
We use the log-normal model to compute RSS at all the sensor locations.
We make the intruder's prior map realistic to account for di�erent factors
such as terrain information or proximity to residential or navigable areas.
We create the prior map directly from a snapshot of Google map's satellite
imagery data. To remove intricate details (e.g., buildings, texture) in the
image, we apply Gaussian blur, a well known image �ltering technique. Next
we resize the image to a dimension of 100×100 to emulate our grid. We
make the prior probability of the transmitter to be present in a certain cell
< i, j > proportional to the pixel intensity at < i, j >. Figure 2.9 shows our
prior map. For all simulations we sample the intruder's location 10K times
from the prior map that we use to obtain weights for our sensor selection
algorithms. Every time the intruder appears the selected sensors attempt to
determine its presence with their respective values of PD. The fused decision
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Figure 2.10: Comparison of performance for the three proposed schemes
with MIG, CAR and Random baseline heuristics. For each data point,
we show the mean value and the standard deviation. We do not show
the standard deviation of Random scheme for clarity since it has a higher
standard deviation.

is compared to the ground truth. We compute the detection rate for the
given instance of selected sensor by simulating the intruder 1000 times. We
also compute the false alarm rate by simulating another 1000 cases where no
intruder is present.

2.5.1 Performance of Sensor Selection Algorithm

We compare the performance of our sensor selection algorithms with two
baseline algorithms. As baseline, we �rst run a random selection algorithm
where we pick the sensors randomly with uniform probability. We then run
a greedy algorithm where we pick the best sensors (the ones with highest
relevance) without accounting for their correlation. We refer this algorithm as
mutual information basedGreedy (MIG). When the sensors are homogeneous,
MIG selects the sensors for which the prior probabilities are the highest. For
other cases, MIG selects sensors in decreasing order of their Vi/Ci ratios.
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Finally, we also run the sensor selection algorithm proposed in [22], which
�rst segments the entire grid into clusters, and then uses ranking of sensors
across each cluster. We refer this technique as Clustering and Ranking
(CAR).

Observation Figure 2.10 shows the performance in terms of Pd and Pfa
obtained by the sensors selected by our algorithms compared to baseline
heuristics across di�erent cost budgets. We show both the mean performance
and the standard deviation at each of the data points. For HOMS, we
consider the number of sensors as the cost, i.e., Ci = 1. However for HETS
and RES, the cost Ci ∈ [mincost, 1]. We note that our algorithms perform
signi�cantly better compared to MIG, CAR as well as Random schemes,
especially at medium values of the budget. For all cases, till a budget of 1,
our algorithms perform similar to the MIG scheme. This is because both of
them select sensors only from the cluster with high prior probability. When
we increase the budget above 2, the MIG method keeps selecting from the
same cluster, since it does not consider the e�ect of correlation. For instance,
at a budget of 5, 3 and 4, HOMS, HETS and RES outperform MIG scheme
by 91%, 10% and 15% respectively. Note that our algorithm also performs
much better than random selection in each of the cases. The lower gain
in the case of HETS can be explained by observing that a larger number
of lower cost sensors provides higher probability of detection than a fewer
number of expensive sensors. For less expensive sensor con�gurations, the
amount of correlation is also lower, since their individual PD's fall more
sharply with a reduction in power. Thus, our algorithms, because of its
technique of removing redundancy, improves performance the most when the
budget constraint requires intelligent selection of sensors.

We also note that the increase in the values of Pd also leads to increase
in Pfa. However, this increase in the value of Pfa is relatively small, as it
is always less than 0.1 in case of HOMS and RES, and less than 0.2 in case
of HETS. Our algorithm also provides either lower or equal values of Pfa
compared to each of the baseline techniques.

2.5.2 Performance of Our Fusion Rule

We compare the performance of the Chair Varshney fusion rule with a baseline
technique. To compare, we run the same simulation and selection process as
HETS, but run both Chair Varshney fusion rule and a baseline technique.
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Figure 2.11: Performance of Chair-Varshney Fusion rule (our method)
compared to a baseline k out of N rule.

Our baseline technique concludes that there is an intruder if a total of k out
of |S| sensors give output 1, where the best value of k is chosen by simulation.

Observation Figure 2.11 shows the probability of detection using Chair
Varshney and the baseline technique. We �nd that Chair Varshney performs
better in all the cases, with the performance rising with increase in number
of sensors. Thus, Chair Varshney technique is 91.2% accurate when just 8
sensors are present, whereas using k sensors just gives 65.8% accuracy. This
is because Chair Varshney is able to consider the individual performance
of each of the sensors, whereas the baseline technique always considers all
sensors as equivalent. The contributions of the individual sensors need to
be considered for good detection performance. This further con�rms our
claim that the Chair-Varshney rule is optimal. This also shows that having
information about probability of detection of individual sensors is important
for accurate sensor fusion. Thus, our data-driven technique of evaluating
sensors behavior is necessary to improve the accuracy of detection.

2.6 Related Work

Shared spectrum architectures need to enforce suitable policies to control
spectrum access among secondaries [90, 61]. Second, with the advent of
cheaper radio hardware the licensed spectrum is prone to unauthorized use [39].
This makes the problem of spectrum patrolling important. Dutta and Chiang
[36] introduce the concept of crowdsourced enforcement of spectrum policies.
Vaze and Murthy [115] also localize transmitters using binary sensors similar
to our study. However, unlike our work, they do not consider the e�ect of
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correlation among sensors and do not consider the cost of utilizing sensors.
Performance of low cost spectrum sensors: The authors in [36] assume
complete knowledge about the performance of crowdsourced sensors which
is not practical. [36] also assumes the sensors to be homogeneous which is
generally not true in a crowdsourced environment. Spectrum monitoring
using cheap crowdsourced sensors is not new [24, 87, 16] but they do not
provide any insights regarding performance or reliability of sensing. We
also show that analytical techniques [111] that model the sensor's detection
performance are often simplistic and error prone. [45, 13] builds upon the
analytical techniques providing corrections for hardware related aspects like
I/Q imbalance, RF front-end non-linearities etc. Inspired by [104, 119], we
use a data-driven approach to create performance models of heterogeneous
spectrum sensors.
Sensor Selection and Fusion: A good amount of literature exists that
study the problem of selecting sensors and combining the decisions of multiple
sensors. Joshi and Boyd [63] show a method of selecting sensors using convex
optimization, and empirically show that their results are usually close to
optimal. Shamaiah et al. [103] propose a greedy selection of sensors that is
close to optimal. Unlike our work, these studies consider sensors that follow
normal distribution. To select sensors in the presence of intruders, we utilize a
feature selection technique commonly used in the machine learning literature.
This technique, known as maximum relevance minimum redundancy (MRMR)
[92], is widely used to select relevant features when the features are correlated.

Combining the data of multiple sensors is a well-known problem in sensor
networks. We utilize the rule provided by Chair and Varshney [20] which
optimizes the overall performance when the individual sensor outputs are
conditionally independent of one another. Di�erent techniques of fusing
multiple sensor decisions are presented in [1]. Some studies have also looked
at the problem of distributed spectrum monitoring. Ghasemi and Sousa
[43] propose using collaborative sensing across multiple sensors to better
monitor spectrum. Dasari et al. [32] showed that detection of intermittent
transmitters can be signi�cantly improved by fusing the decisions of multiple
sensors. Our work builds upon these studies to focus on detecting the
presence of spectrum intruder.
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2.7 Conclusion

In this work we address the problem of spectrum patrolling using crowsourced
heterogeneous sensors. To the best of our knowledge this is the �rst work
that models the performance of a spectrum sensor in a data-driven way.
Our model provides signi�cant improvement over state-of-the-art `whitebox'
models. Next we address the problem of sensor selection and fusion of
heterogeneous sensors deployed over a region of interest to improve intrusion
detection performance within a cost budget. We investigate di�erent scenarios
of homogeneous, heterogeneous and recon�gurable sensors. Our sensor selection
algorithms perform signi�cantly better than reasonable baseline heuristics.
We highlight challenges of the patrolling problem in a cost-e�ective fashion
using crowdsourced sensors and develop mechanisms to address them.
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Chapter 3

Selection of Sensors for E�cient

Transmitter Localization

3.1 Introduction

Wireless transmitter localization via analysis of the received signal from
multiple receivers or sensors is an important problem. While the problem has
been widely explored, the problem exposes new challenges in many emerging
applications due to the constraints of the application. In this work, we
are speci�cally interested in a distributed monitoring system where a set of
distributed RF sensors are tasked to detect and localize transmitters. These
transmitters could be of various type. For example, in certain spectrum
allocation scenarios, unknown primary transmitters need to be detected/localized.
Or, in spectrum patrolling scenarios, unauthorized transmitters need to be
detected/localized [22]. Recent work has explored new approaches for such
monitoring where the RF sensors are crowdsourced, perhaps using various
low-cost spectrum sensing platforms [66, 87]. The crowdsourcing makes
densely deployed, �ne grain spectrum sensing practical by creating suitable
incentive mechanisms [24, 66].

Crowdsourcing makes the sensing cost-conscious. The cost here could be
incentivization cost, cost of power, backhaul bandwidth on the part of the
spectrum owner or the opportunity cost � being low-cost platform, the sensors
may be able to only sense smaller spectrum bands at a time. Thus, involving
only a small number of sensors or sensors with low overall cost budget (for
a suitable cost model) for su�ciently accurate localization performance is
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critical. Prior works [66] that discuss sensor selection in this context only
presents heuristics without any performance guarantees.

We do not use geometric approaches which rely on hard-to-model mapping
of received power to distance. Instead, we use a hypothesis-driven, Bayesian
approach for localization [19]. We focus on the optimization problem of
selecting a certain number of sensors from among the deployed sensors such
that an appropriately de�ned objective of localization accuracy is maximized.
This optimization problem can also be used to solve the dual problem of
selecting a minimum number of sensors (or sensors with the minimum total
cost budget) to ensure at least a given localization accuracy. We adopt
the framework of a hypothesis-driven localization approach wherein each
hypothesis represents a con�guration (location, power, etc.) of the potential
transmitters and then the localization is equivalent to determining the most-
likely prevailing hypothesis. See Figure 3.1. The hypothesis-driven framework
does not require an assumption of a propagation model, and works for arbitrary
signal propagation characteristics. The framework does, however, require
prior training to build joint probability distributions of observation vectors
for each hypothesis.

Our Contributions. In the above hypothesis-based framework, we develop
an overall approach that enables selection of sensors that are most relevant
to localize transmitters. In particular, we develop algorithms that aim to
maximize localization accuracy for a given budget of number of sensors to be
used for localization. More speci�cally, we make the following contributions
in the paper.

1. We design a greedy algorithm (GA) that selects sensors iteratively to
maximize the objective function of localization accuracy, under the
constraint of number of sensors selected. We prove that GA yields a
constant-factor approximate solution for the special case of the problem
wherein there are only two hypotheses.

2. For the general case of more than two hypotheses, we design an alternate
greedy scheme (called AGA) based on maximizing an auxiliary objective
function. We prove that AGA delivers a solution that has (i) an
auxiliary objective value within a constant factor of the optimal auxiliary
objective value, as well as (ii) a localization error within a certain factor
of the optimal localization error.

3. We optimize the time complexity of our developed algorithms by a
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Figure 3.1: Hypothesis-driven localization. The �gure shows the simple case
of localizing a single transmitter with �xed power; thus, there is a hypothesis
created for each potential location. Observations from deployed sensors
are analyzed to determine the most likely prevailing hypothesis (and thus,
location).

substantial factor, based on certain observations and reasonable assumptions.
In addition, we generalize our techniques to more practical and useful
settings.

4. We evaluate the performance of the developed algorithms over multiple
evaluation platforms: (1) large-scale simulation using synthetically generated
data using established signal propagation models, and (2) publicly
available experimental data trace collected over an indoor WiFi network
with 44 sensors, and (3) our own data collection using 18 outdoor
software radio sensors in the 915MHz band with a custom transmitter.
Results show that our techniques outperform other state-of-the-art
algorithm [66] substantially (up to a factor of 50-60%).

3.2 Background and Motivation

Problem Setting. The overall setting of the transmitter localization problem
is as follows. Consider a geographic area, with a number of spectrum sensors
deployed or available (if attached to mobile devices) at known locations. At
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any instant, one or more transmitters are allowed to transmit signals (on
a common frequency). Each deployed/available spectrum sensor senses and
processes the aggregate received signal, and reports appropriate metric (i.e.,
total received power or signal strength) to a central server which estimates
the location of the transmitter(s) using the maximum-likelihood hypothesis
algorithm as described below. The overall objective of our paper is to develop
techniques to select an optimal subset of sensors in order to accurately localize
any present transmitters. Though our developed techniques naturally extend
to the case of multiple transmitters, for simplicity, we implicitly assume at
most a single transmitter present at any instant. We consider the extension
to multiple transmitters in �3.3.5. We start with de�ning basic notations
used throughout the paper.

Hypotheses, Observations, and Inputs. We discretize the given space
into locations l1, l2, . . . .,, and transmit power of a potential transmitter is
similarly discretized into levels p1, p2, . . .. We represent potential �con�gurations�
of the possible transmitter by hypothesesH0, H1, . . . , Hm, where each hypothesis
Hi represents a con�guration (li, pi) of location li and transmit power pi of a
potential transmitter (see Figure 3.1). We use the convention that hypothesis
H0 corresponds to no transmitter being present. Localizing any potential
transmitter is thus equivalent to determining the prevailing hypothesis. To
do this, we use observations for a set of deployed sensors. We denote the
observation vector of a subset of sensors T by xT (we usually drop the
subscript T, as it is clear from the context).

Inputs. For a given set of sensors deployed over an area, we assume the
following available inputs, obtained via a priori training, data gathering
and/or analysis:

• Prior probabilities of the hypotheses, i.e. P (Hi), for each hypothesis
Hi.

• Joint probability distribution (JPD) of sensors' observations for each
hypothesis. More formally, for each hypothesisHj, we assume P (xS|Hj)
to be known for each observation xS for the entire set S of deployed
sensor. Note that this also gives us the JPD's of each subset T ⊆ S.

Maximum a Posteriori Localization (MAP) Algorithm. We use Bayes
rule to compute the likelihood probability of each hypothesis, from a given
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observation vector xT for a subset of sensors T:

P (Hi|xT) =
P (xT|Hi)P (Hi)∑m
j=0 P (xT|Hj)P (Hj)

(3.1)

We select the hypothesis that has the highest probability, for given observations
of a set of sensors. That is, the MAP Algorithm returns the hypotheses based
on the following equation:

arg
m

max
i=0

P (Hi|xT) (3.2)

The above MAP algorithm to determine the prevailing hypothesis is known to
be optimal [35], i.e., it yields minimum probability of (misclassi�cation) error.
The above hypothesis-based approach to localization works for arbitrary
signal propagation characteristics, and in particular, obviates the need to
assume a propagation model. However, it does incur a one-time training cost
to obtain the JPDs, which can be optimized via independent techniques [93].

Selection of Sensors for Localization. As mentioned above, in a typical
setting, spectrum sensors may be deployed at pre-determined locations or
available at certain locations (if part of mobile devices) to sense unauthorized
signals and thus localize any unauthorized transmitters. Two immediate
problems of interest in this context are: where to deploy given a number of
sensors, and once deployed/available, which subset of sensors to select for
localization. The latter problem of selection of sensors is motivated by the
fact that, in most realistic settings, the sensors (or their mobile devices) are
not tethered to AC power outlets and hence have limited energy resources.
Moreover, spectrum sensors also incur cost in transmitting sensing data to the
fusion/cloud center [88]. Thus, it is critical to optimize resources and costs
incurred in localization of unauthorized transmitters, e.g., via the selection
of an optimal set of sensors. Note that the sensor-selection problem can also
be used to e�ectively deploy a given number of sensor, by assuming sensors
available at all potential locations.

3.3 Optimal Sensor Selection for Intruder Localization

In this section, we address the problem of sensor selection for transmitter
localization; informally, the problem is to select an optimal set of B sensors
such that the overall probability of error of localizing a transmitter is minimized,
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given appropriate JPDs as discussed in the previous section. We start with
formulating the problem in the following subsection. In following subsection,
we present a greedy algorithm for it and prove that it is guaranteed to deliver
an approximation solution for the special case of two hypotheses. However,
as shown, the greedy algorithm can perform arbitrarily bad for the general
case of multiple hypotheses. Thus, we then modify our algorithm to use an
�auxiliary� objective function and show that the modi�ed algorithm delivers
an approximation solution for the general case of multiple hypotheses albeit
with a slightly worse approximation ratio. Finally, we discuss optimizing the
computation complexity of the designed algorithms, certain extensions and
other issues.

3.3.1 LSS Problem Formulation

We start with formally de�ning the optimization objective (probability of
error or misclassi�cation) for a given subset of sensors. Then, we formally
de�ne the sensor selection problem, hereto referred to as Localization Sensor
Selection (LSS) problem. Throughout this section, we use hypotheses H0 to
represent the hypotheses with no transmitters present, and Hi to represent
the hypotheses wherein a transmitter is present in ith con�guration.

Probability of Error (Perr(T)). Recall that, for a given observation vector,
the MAP localization algorithm outputs the hypothesis that has the most
likelihood among the given hypotheses. Thus, MAP can also be looked upon
as a classi�cation technique. Given a subset of sensors T, we de�ne the
probability of error or misclassi�cation as the probability of the MAP algorithm
outputting a hypothesis di�erent from the actual ground truth (i.e., prevailing
hypothesis). The expected or overall probability of error is an expectation
of the probability of error over all possible prevailing hypotheses and/or
observation vectors xT from T. Our techniques generalize to the notion
of distance-based localization error, as discussed in �3.3.5.

Formally, let MAP(x) be the output of the MAP algorithm on observation
vector x from a given subset of sensorsT. Let δMAP(x)6=i be the binary predicate
that denotes whether MAP algorithm outputs the hypothesis Hi or not; here,
δp is the indicator function which is 1 if the predicate p is true and 0 otherwise.
Given Hi as the ground truth and x as the observation vector, the probability
of error Perr(T|Hi,x) can be written as:

Perr(T|Hi,x) = δMAP(x)6=i. (3.3)
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If the observation vector x is not given, then the expected probability of error
for a given ground truth Hi is just an expectation over the random variable
x. That is, Perr(T|Hi) can be written as:

Perr(T|Hi) =
∑
x

δMAP(x)6=iP (x|Hi) = Ex|Hi [δMAP(x)6=i]

Since expectation of an indicator random variable is its probability, we can
simplify the above equation as:

Perr(T|Hi) = P (MAP(x) 6= i|Hi) (3.4)

Above, the probability is over the random variable x. Now, if the ground
truth hypothesis is also not given, we can compute an expectation over all
possible hypotheses. Thus, the (overall) probability of error for a given set of
sensors T is given by:

Perr(T) =
∑
i

P (MAP(x) 6= i|Hi)P (Hi) (3.5)

Localization Accuracy Function, Oacc(T). To facilitate a greedy approximation
solution, we formulate our sensor selection as a maximization problem�and
thus, de�ne a corresponding maximization objective. In particular, we de�ne
the localization accuracy Oacc(T) as 1−Perr(T). Based on the above equation
Eqn. 3.5, we get the expression for Oacc(T) as:

Oacc(T) = 1− Perr(T) =
∑
i

P (MAP(x) = i|Hi)P (Hi) (3.6)

Localization Sensor Selection (LSS) Problem. Consider a geographic
area with a set of sensors S deployed. Given a set of hypotheses and JPD's,
as de�ned in previous section, the OSS problem is to select a subset T ⊆ S of
sensors with minimum probability of error Perr(T) (or maximum localization
accuracy Oacc(T)), under the constraint that |T| is at most a given budget
B. The above formulation implicitly assumes a uniform cost for each sensor;
we generalize our techniques to handle non-uniform sensor costs (see �3.3.5).

It is easy to show that the above LSS problem is NP-hard, via reduction
from the well-known maximum-coverage problem. Thus, we develop approximation
algorithms below; in particular, our focus is on developing greedy approximation
algorithms. The key challenge lies in showing that the objective function
satis�es certain desired properties that ensure the approximability of the
algorithm.
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Figure 3.2: Distribution of the received power from a transmitter at an RTL-
SDR sensor, and the Gaussian �t (green line) of the observed distribution.

3.3.2 Greedy Algorithm (GA)

In this subsection, we analyze a simple greedy approach and show that
it delivers a constant-factor approximate solution for the special case of
two hypotheses and Gaussian JPD's. In the next subsection, we present a
modi�ed greedy algorithm for the general case of more than two hypotheses.

Greedy Algorithm (GA): A straightforward algorithm for the LSS problem
is a greedy approach wherein we iteratively select a single sensor at each
stage. At each stage, we select the sensor that improves the localization
accuracy Oacc(T) the most. The algorithm iterates until the given budget B
is reached. We call this algorithm Greedy Algorithm (GA); see Algorithm 2
for the pseudo-code.

Constant-Factor Approximation for 2 Hypotheses. We observe that
when the spectrum sensors are deployed outdoors, the joint probability distribution
(JPD) of the observation vectors is approximately Gaussian. See Figure 3.2,
which shows the distribution obtained by a single RTL-SDR [99] based spectrum
sensor and a USRP-based transmitter. This assumption of Gaussian JPDs
allows us to derive close-form expressions for the objective functions, at least
for the case of 2 hypotheses, and thus prove a performance guarantee of 63%.
The result is stated in Theorem 1 below.

Theorem 1. For the special case of two hypotheses and Gaussian JPDs, GA
gives a subset T of sensors whose localization accuracy is at least 63% of the
optimal.

We defer the proof of the above theorem to Appendix A.1, but the
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performance guarantee of the greedy approach holds because the localization
accuracy function Oacc() can be shown to be "monotone" and "submodular"
for the above special case. The function Oacc() being monotone signi�es that
for a given T and a sensor s /∈ T, Oacc(T ∪ {s}) ≥ Oacc(T). Intuitively, the
monotone property means that adding a sensor to a set of already selected
sensors can never decrease the localization accuracy. Also, Oacc() being
submodular signi�es that for any subsets T1 and T2 such that T1 ⊆ T2,
we can show that for any sensor s /∈ T1,Oacc(T1 ∪ {s}) − Oacc(T1) ≥
Oacc(T2 ∪ {s})−Oacc(T2). Intuitively, the submodular property means that
the �bene�t� of adding a sensor s decreases over GA's iterations, i.e., as the
selected set of sensor grows (from T1 to T2, here). It is well known that if an
objective function is both monotone and submodular, then a greedy approach
that iteratively maximizes the objective function will return a constant-factor
approximate solution [85].

Algorithm 2 Greedy Algorithm (GA).
INPUT: Set of available sensors S, budget B, objective Oacc

OUTPUT: Subset of sensors T

1: T← φ
2: while |T| ≤ B do

3: L← Oacc(T)
4: max ← 0
5: for all s ∈ S \T do

6: M = Oacc(T ∪ {s})− L
7: if M > max then

8: max ←M
9: r ← s
10: T← T ∪ {r}

11: return T

Performance of GA for more than two Hypotheses. For the case of
more than two hypotheses, GA no longer provides a constant-factor approximation.
In fact, we show in Appendix A.2 via a counter-example that the Oacc() is not
submodular for more than 2 hypotheses, even if the given JPDs are Gaussian.
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3.3.3 Auxiliary Greedy Algorithm (AGA)

In the section, we design an approximation algorithm for the general case of
multiple hypotheses based on an auxiliary objective function. To do so, we
�rst analyze the proof of Theorem 1 and see why it doesn't generalize if the
number of hypotheses is greater than 2. This insight helps in de�ning an
�auxiliary� objective function that is the key to designing the approximation
algorithm for the general case.

Auxiliary Function. Let us consider a special case of MAP algorithm, viz.,
MAPij which compares the likelihood of only two hypothesis Hi and Hj and
returns the one with a higher likelihood. It is easy to formulate the objective
function Oacc in terms of MAPij too. From Equation 3.6, we easily get:

Oacc(T) =
m∑
i=0

P (
⋂
j 6=i

MAPij(x) = i|Hi)P (Hi) (3.7)

Oacc(T) =
m∑
i=0

[1− P (
⋃
j 6=i

MAPij(x) = j|Hi)]P (Hi) (3.8)

Above, x represents the observation vector for the set of sensors T. For the
case of two hypothesis, the above expression is just

∑1
i=0[1 − P (MAPij(x) =

j|Hi)]P (Hi) where j is 1 if i is 0 and vice-versa; Theorem 1 essential shows
that the term P (MAPij(x) = i|Hi) is submodular. However, for the case of
multiple hypothesis, computing the probability for a union of events involves
product (and sum) of appropriate probability terms. Note that product of
submodular functions need not be submodular, while sum of submodular
functions is submodular. Thus, we approximate the above Oacc () expression
as follows, so that it is a sum of submodular terms. In e�ect, in de�ning the
auxiliary objective Oaux(), we estimate the probability of union of events in
the above equation by just taking a summation of the probability of events,
i.e., we ignore the other terms involving subsets of events. Formally, we de�ne
the auxiliary objective Oaux() for a set of sensors T as:

Oaux(T) = 1−
m∑
i=0

∑
j 6=i

P (MAPij(x) = j|Hi)P (Hi) (3.9)

The above auxiliary objection function is submodular if the JPDs are Gaussian,
as it is a sum of submodular functions (P (MAPij(x) = i|Hi) is submodular,

41



as per Theorem 1's proof). Note that, for a competitive algorithm for the
original LSS problem, we also need to show that maximizing Oaux () also
somewhat maximizes the original objective function Oacc ().

Auxiliary Greedy Algorithm (AGA).We nowmodify our Greedy Algorithm
(Algorithm 2) to iteratively maximize the auxiliary objective Oaux () instead
of the original objective Oacc (). We call this algorithm as Auxiliary Greedy
Algorithm (AGA). From the submodularity of the Oaux () for Gaussian JPDs,
it is easy to see that AGA delivers a solution T s.t. Oaux (T) is within 63%
of the optimal Oaux () possible. The following lemma states that maximizing
Oaux also maximizes Oacc. See Appendix A.3 for a proof.

Lemma 1. Let T be a subset of sensors already selected by AGA at some
iteration. We claim that Oaux(T) ≤ Oacc(T) ≤ 1− 1

k
(1−Oaux(T)), where k is

a value less than m that decreases as T grows (i.e., over AGA's iterations).

We empirically evaluate the value of k de�ned above in �3.4. The above
lemma easily yields the below result.

Theorem 2. For Gaussian JPDs, AGA delivers a subset T of sensors such
that

Perr(T) ≤ 0.37 + 0.63kPerr(OPT),

where k is as de�ned in the above Lemma and OPT is the optimal solution.

3.3.4 Optimizing AGA's Computation Cost

In a straightforward implementation of AGA (akin to Algorithm 2 for GA),
Oaux function is computed (using Eqn. (3.9)) Bn number of times where n
is the total number of sensors. Eqn. (3.9) requires m2 computations of the
expectation P (MAPij(x) = j|Hi), which, for Gaussian distributions, e�ectively
requires computing the Eqn. A.1 and thus takes O(B2) time as it involves
matrix multiplication of the observation vector of dimension B with the
covariance matrix of dimension B × B. Thus, the overall time complexity
of a straightforward implementation of AGA is O(m2nB3). As mentioned
before, the number of hypotheses m can be large due to the large number of
potential transmitter locations and power values; however, we can reduce the
time complexity to O(Bn) as discussed below, based on some observations
and optimizations.
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Reducing Number of Comparisons. Consider a sensor s whose bene�t
is to be computed in the for loop of Algorithm 2. Below, we show that
e�ectively we only need to consider a constant number of (Hi, Hj) pairs in
Eqn. (3.9) when computing s's bene�t, and thus removing them2 factor from
the time complexity. We implicitly assume a single transmitter in the below
discussion, and later extend our argument to multiple transmitters. Let
us use R to denote the maximum transmission �range� of the transmitter;
formally, R is such that, beyond R, the probability distribution of the signal
received from the transmitter is similar to the signal received when there is no
transmitter present. We stipulate that any observation xs at s, P (xs|Hi1) =
P (xs|Hi2) for any two hypotheses Hi1 and Hi2 whose corresponding locations
li1 and li2 are more than R distance away from s. The implication of the above
observation is that, for a given sensor s, we can group all the hypotheses Hi

with corresponding location li more than R distance away from s into one
single �super� hypothesis Hs. Then, if the total number of hypotheses with
corresponding locations within a distance of R from s is say GR, then the
total number of comparisons between pairs of hypotheses in Eqn. (3.9) is
e�ectively only (GR + 2)2, involving GR hypotheses, H0, and Hs. The above
brings down the overall time complexity of AGA to O(G2

RnB
3). Note that

GR is essentially equal to the number of grid locations within a circle of
radius R times the total number of power levels, and thus, can be considered
as constant (does not vary across problem instances)�which reduces AGA's
time complexity to O(nB3).

Independent Sensor Observations. If we assume that the observations
across sensors are conditionally independent, the JPDs can be instead represented
by independent probability distributions at each sensor location. In this case,
the covariance matrix is purely diagonal, which allows us to �incrementally�
compute the bene�t of a sensor from one AGA iteration to another and thus
reduce AGA's time complexity by an additional factor of B2�and thus to
O(nB). See Appendix A.4 for details.

3.3.5 Generalizations

Weighted (Distance-Based) Objective Function. The probability of
error Perr function penalizes uniformly for each misclassi�cation. However,
in general, it would be useful to assign di�erent penalties or weights for
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di�erent misclassi�cations. E.g., Eqn (3.9) should be generalized to:

Oaux(T) = 1−
m∑
i=0

∑
j 6=i

wijP (MAPij(x) = j|Hi)P (Hi)

Above, wij is the weight function. We note that our techniques and proofs of
performance guarantees generalize easily to the above generalized function,
irrespective of the weight function. In particular, weight wij can be the
Euclidean distance between the locations li and lj corresponding to the
hypotheses Hi and Hj. For the general case of multiple transmitters, where
Hi and Hj may represent con�guration of multiple transmitters, a minimum-
cost matching based objective can be used to de�ne the weight wij; if the
number of transmitters in Hi and Hj are di�erent, then an appropriately
penalty for misses or false-alarms can be added to the weight.

Non-Uniform Sensor Cost. Another generalization of interest is to allow
non-uniform cost for sensors, e.g., to prefer sensors with more (remaining)
battery resources. Here, each sensor s may have a di�erent cost c(s), and
the LSS problem constraint becomes: total cost of the selected set of sensors
must be less than a given cost budget. For this version of the LSS problem,
our algorithms need to be slightly modi�ed in that we should pick the
sensor that o�ers the highest improvement in the objective function per unit
cost. To ensure a theoretical performance guarantee, we also need to use
the �knapsack trick,� i.e., to pick better of the two solutions: one returned
by the modi�ed algorithm, and the other the best one-sensor solution [67].
It can be shown the overall algorithm still o�ers a theoretical performance
guarantee for submodular functions, but the performance ratio is reduced by
a multiplicative factor of 2. The above model is useful when designing a �load-
balanced� strategy to maximize network lifetime of a system�therein, the
sensor-selection algorithm must be run periodically based on the remaining
battery resources.

Multiple Transmitters. Till now, we have implicitly assumed that a single
transmitter was present. Our techniques naturally generalize to the case of
multiple transmitters, if we represent each combination of con�gurations of
present transmitters by a separate hypothesis. Since the MAP, GA, and AGA
algorithms are formulated in terms of hypotheses, they generalize naturally
to localization of multiple transmitters. However, the key challenge arises due
to the large number of hypotheses�exponential in the number of potential
transmitters� and thus, the high time complexity of AGA. Fortunately, the
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techniques discussed in previous subsection can be extended for the case of
multiple transmitters as follows.

The key observation is that, for a given hypothesis Hi, the probability
distribution of observations at a sensor s depends only on the con�guration
of transmitters in Hi that within a distance of R of s. I.e., for any observation
xs at a sensor s, P (xs|Hi1) = P (xs|Hi2) for any two hypotheses Hi1 and Hi2

that have the same con�guration (locations and powers) for transmitters that
are within a distance of R of s. The implication of the above observation(s)
is that, for a given s, we can group the given hypotheses into equivalence
classes based on the con�guration of transmitters close of s, and to compute
the bene�t of a sensor s with AGA's iteration, we only need to compare pairs
of equivalence classes (rather than the original hypotheses). The number of
such equivalence classes is easily seen to be equal to GT

R where GR is the
number of locations (grid cells) within R times the number of power levels,
and T is the maximum number of transmitters possible/allowed within a
range R of s (or any location). Thus, computation of bene�t of s requires
consideration of G2T

R pairs of equivalence classes. If we assume T to be a
small constant, then the overall time complexity of AGA reduces to O(nB3)
as before, and to O(nB) if we assume independence of sensor observations.

3.4 Evaluation

In this section, we evaluate the performance of our algorithms developed in
the previous sections. We start with a description of the evaluation platforms
used in our experiments.

3.4.1 Implementation

Implementation Technique. To evaluate whether AGA runs su�ciently
fast to be feasibly used, we implement two distinct versions of AGA using
python. The �rst version, called AGA-Basic, does not utilize the optimizations
discussed in Section 3.3.4. The second version, called AGA-OPT, includes
these optimizations. Each version utilizes multiple cores of a CPU using
joblib library [62] to compute the gain of each available sensor in parallel.
It also uses the numpy library to vectorize operations wherever possible to
make execution as fast as possible. We run three di�erent instances of AGA
� with 100, 1600 and 4096 hypotheses. Each of these instances have 100
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Figure 3.3: Execution time of AGA both with and without the optimizations
on a (i) CPU and on a (ii) GPU.

available sensors and a budget of 20. We execute this on a Core i9-7900X
CPU having a frequency of 3.30GHz and 20 cores.

Implementation on CPU. Figure 3.3(i) shows the execution time of these
three instances. We note that for small instances, the execution time is
relatively small. For example, for 100 hypotheses, AGA-basic only takes 13s
to execute. However, this rises to 28 minutes for 1600 hypotheses and to
over 10 hours for 4096 hypotheses. We also �nd that for small instances,
the optimizations do not lead to much improvement due to the overhead of
maintaining the data structures. However, there is a large improvement for
4096 hypotheses, where we get an execution time of 150 minutes using the
optimized version.

Implementation on GPU.Although execution on CPU's using our optimizations
is feasible, we further note that the bulk of execution time is spent on matrix
operations. This suggests that execution on a GPU can lead to much better
utilization of data-level parallelism, and further speed up execution. To
evaluate this, we optimize the computation of the gain of the sensors using
numba library [74] to execute it on a GPU. We utilize an nVidia GTX 1080
GPU having 2560 cores with a processor clock of 1.733 GHz. We then note
the execution time for each of the three instances of both AGA-Basic and
AGA-OPT.

Figure 3.3(ii) shows the execution times on a GPU.We note that execution
is much faster on a GPU than on a CPU. For example, AGA-OPT now runs
in only 8s, 10s and 57s for 100, 1600 and 4096 hypotheses respectively. This
shows that AGA can run very fast on a system with GPU, with a speedup
of up to 155 times on the large instances.
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3.4.2 Evaluation Platforms

We use the following three evaluation platforms with varying �delity of
signal propagation characteristics, to demonstrate the performance of our
techniques.

• Simulation based on synthetic data. To demonstrate the scalability of our
techniques and the sensitivity of our algorithms to changes in settings,
we consider a large geographic area of 4km by 4km, with signal path-loss
values generated using the SPLAT! application for the Longley-Rice [25].
We use the noise in the sensor measurements (measured independently) to
generate the required JPDs. We assume observations to be conditionally
independent, thus representing the JPDs as set of probability distributions,
one for each sensor and intruder con�guration pair. Unless otherwise
stated, for this large-scale platform, we use 100m x 100m grid cells giving
1600 potential locations, randomly deploy a transmitter at the height of
30m at a random power between 27-33 dBm which corresponds to roughly
250-750m of transmission range. We randomly deploy 100 spectrum sensors
in the area.

• Indoor Data. We use publicly available data [91], which deploys transmitters
and receivers at 44 locations at an indoor building of an area of 14m×14m.
Here, we use 1m x 1m grid cells, thus giving us a total of 196 potential
locations and hypotheses. The transmitters transmit at a frequency of
2.4GHz.

• Outdoor Testbed. Finally, to evaluate our techniques in a more practical
outdoor setting, we deploy our own testbed in a parking area of dimension
10m × 10m. Each grid cell has size of 1m x 1m. We place a total of 18
sensors on the ground. The sensors consist of single-board computers such
as Raspberry Pi's and Odroid-C2's connected to an RTL-SDR dongle. The
RTL-SDRs use dipole antennas. We collect raw Inphase-Quadrature (I/Q)
samples from the RTL-SDRs [99], while transmitting data using a USRP-
based transmitter from each grid cell at a height of 1.5m. We perform
FFT on the I/Q samples with a bin size of 256 samples to get the signal
power values, and then utilize the mean and standard deviation of the
power reported for each of the sensors.

Metrics We evaluate the performance of a localization strategy in terms of
two key metrics: (i) Localization accuracy, i.e., Oacc(T), and (ii) Localization
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Figure 3.4: Comparison of various techniques for (i) Localization accuracy
(Oacc ()), and (ii) Localization error, for varying available budget (number of
sensors).

error, which weights the misclassi�cation error by the Euclidean distance
between the actual and the predicted location (�3.3.5).

Compared Algorithms. We implement both of our designed algorithms,
AGA and GA. We also implement two other techniques for comparison
purposes. The �rst technique, called Coverage, is the selection heuristic
from the recent work [66], which essentially tries to maximize the �coverage�
of the sensors in a greedy manner.1 We also implement a Random algorithm
which selects the required sensors randomly. We implement these algorithms
in python, with extensive use of numpy library for vectorized operations.
To ensure that our results are statistically signi�cant, we run each of the
algorithms 100 times; the range of values is plotted in each of the �gures.

3.4.3 Simulation Based on Synthetic Data

Varying Budget. Figure 3.4 shows the performance of our techniques
for budgets varying from 1 to 20 sensors. We observe that AGA and GA
easily outperform other two algorithms in terms of both metrics, with AGA
outperforming even GA quite signi�cantly. For example, AGA outperform
Coverage by up to 39% and 56% for localization accuracy and error respectively,
while outperforming GA by 15% and 50% for the two metrics respectively.

Varying Number of Hypotheses. We now show the performance of our
algorithms in terms of localization accuracy, for varying number of hypotheses.

1Their approach Metropolis performs worse than their greedy approach in open
areas [66], and hence, not compared.
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Figure 3.6: Comparison for varying
number of available sensors, with a
�xed budget of 10 sensors.

In Figure 3.5, we plot three di�erent cases: (i) the default con�guration of
100m by 100m grid cells, (ii) a larger area of 6km by 6km with 100m by 100m
grid cells giving 3600 potential locations, and �nally (iii) a con�guration with
default 4km by 4km area, but smaller 62.5m by 62.5m grid cells. First, we
observe that AGA continues to outperform other techniques signi�cantly
across di�erent cases, with the performance gap between AGA and others
increasing with increase in number of hypotheses. Also, as expected, with
increase in area and thus number of hypotheses, the accuracy of each of the
algorithms falls, but deterioration in AGA's accuracy is much less compared
to other techniques.

Varying Sensor Density, and Non-Uniform Sensor Costs. Figure 3.6
shows the accuracy of localization for varying sensor density (i.e., number
of available sensors) with a �xed budget of 10 sensors. We observe that
AGA continues to outperform other techniques, with localization accuracy of
AGA signi�cantly improving with increase in number of sensors. Surprisingly,
however, the performance of other techniques reduces slightly with increase in
number of sensors, across these speci�c set of experiments. We also evaluate
performance of techniques under the setting of sensors with non-uniform
cost. See Figure 3.7. We observe that AGA continues to outperform the
other techniques in both metrics.

Empirical Evaluation of k Value. We now evaluate the k value as de�ned
in Lemma 1. In particular, the performance guarantee of AGA depends on
the value of k, with better performance guarantee for lower k (ideally, k
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Figure 3.7: Comparison of various techniques, for sensors with non-uniform
cost.
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Figure 3.9: Comparison with
an optimal algorithm, for small
instances of the problem.

should be equal to 1). Figure 3.8 shows the value of k for varying budget.
We observe that for a very low budget, the value of k is very large, but it
reduces rapidly with increase in budget. In particular, for budgets of 10 and
15 sensors, the value of k is 1.78 and 1.19 respectively. This shows that
AGA's performance guarantee as per Theorem 2 reaches its near-best for a
moderately small budget.

Comparison with Optimal in Small Instances. To con�rm AGA's
performance with respect to optimal, we consider small instances of the
problem and compare AGA with an optimal algorithm (exhaustive search).
See Figure 3.9. We observe that AGA and optimal perform near-identically,
with the optimal algorithm yielding at most 0.7% higher localization accuracy
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Figure 3.10: Performance over public indoor data.
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Figure 3.11: Performance over outdoor testbed data.

than AGA.

3.4.4 Evaluation in Indoor and Outdoor Testbeds

Indoor Data. We now evaluate our techniques over a publicly available
data-trace taken in an indoor environment, as described in the previous
subsection. See Figure 3.10. We again observe similar performance trends
as in previous experiments, for both the performance metrics. The relatively
smaller performance gap between AGA and GA is likely due to smaller a
number of hypotheses.

Outdoor Testbed Figure 3.11 shows the performance of various algorithms
over our outdoor testbed described in the previous subsection. Observe that
AGA again performs the best among all techniques in both the metrics.
As in the indoor testbed, the performance gap between the AGA and GA
is less compared to the large-scale simulations due to a small number of
hypotheses. Note that because of the noise in the dataset, the localization
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accuracy reaches a maximum of only 75% even with all the 18 sensors.

3.5 Related Work

Sensor Selection for Transmitter Localization. A large number of
works have developed techniques for detecting and localizing transmitters
or intruders that emit radio signals [79, 123]. Note that the transmitter
localization problem is slightly di�erent from another well-studied problem
of indoor localization [122], wherein a user is localized based on signal received
from multiple transmitters; herein, the issue of selecting transmitters to
localize the user has no incentive, and hence not been addressed before.
To the best of our knowledge, none of these prior works on transmitter
localization either have addressed the optimization problem addressed in
the paper. The closest related works are [22] and [66] as discussed next.
The work [22] focuses on detection of unauthorized transmitters using low-
cost sensors in the context of shared spectrum systems; they consider the
problem of selection of sensors in this context, and propose a heuristic with
no performance guarantees. The key di�erence of our work from theirs is that
they focus on detection of transmitters, which is a much simpler problem than
localization of transmitters. In addition, [66] considers selection of sensors for
transmitter localization, but with a objective of maximizing the �coverage� of
the region by the sensors. They present heuristics without any performance
guarantees. Nevertheless, we implement their approach and compare with
our techniques (�3.4).

Sensor Selection in Sensor Networks. Sensor selection is a natural
problem to address in the context of wireless sensor networks deployed to
detect and/or localize an event or phenomenon (see [98] for a survey). Many
of these works have leverage the submodularity property to develop greedy
approximation algorithms. The closest work among these is that of [72] which
shows approximability of the greedy approach for the problem of minimizing
uncertainty in estimating a spatial phenomenon (e.g., temperature). However,
in general, the key di�erence of our work with these works is our desired
objective function (Oacc or Perr)�and thus, the making the proof of monotonicity
and/or submodularity of the objective function very di�erent. In our case,
we had to even circumvent the non-submodularity of the objective function
Oacc by considering an appropriate auxiliary objective function.

Online Selection of Sensors. An alternate formulation of our sensor
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selection problem could be to select sensors adaptively based on the observations
of previously selected sensors. This online problem is similar to the adaptive
stochastic optimization problem addressed in other contexts [118, 27, 71,
46]. However, in online selection, a sensor is selected based on analysis
(which will incur non-trivial latency) of observations of previous sensors. This
makes localization based on near-simulatenous sensor observations, required
to localize intermittent transmitters, infeasible. Also, note that online selection
needs to be done anew for each localization, which may be performed very
frequently (e.g., every second or fraction of a second) in many applications,
e.g., spectrum patrolling.

3.6 Conclusion

In this work, we have considered the hypothesis-driven approach for localization
of transmitters, and developed techniques to optimize the localization accuracy
under a constraint of limited resources. Developed techniques have been
shown to yield provably approximate solutions. Our work can be instrumental
in maximizing the network lifetime of a spectrummonitoring and/or patrolling
system. Our future work focusses on improving our theoretical performance
guarantee results, and developing similar sensor selection approximation algorithms
for other localization approaches that are not hypothesis-driven.
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Chapter 4

Online Selection of Sensors for

Transmitter Localization

4.1 Introduction

In the previous chapter, we focused on o�ine selection of sensors (a priori
selection), i.e. selection of sensors was done before beginning the process
of localization. In practice, it is reasonable for an iterative algorithm (that
selects sensors one at a time) to gather observations from already selected
sensors, and select remaining sensors based on the gathered observations.
Such an "online" algorithm should yield a higher detection accuracy than an
o�ine algorithm, for the same number of sensors or budget cost. This second
technique has the advantage of having much lower energy and backhaul
bandwidth, albeit at the cost of higher latency. This online sensor selection
problem is akin to the recently studied problem of active learning in machine
learning [27].

In this version, our algorithm picks a sensor for probing, and its output
is used to select the next sensors. This allows more accurate sensing while
keeping the cost of running the sensors low, since they are switched on only
intermittently. We use a greedy approach to select sensors based on an
information theoretic metric. This algorithm also guarantees a constant-
factor approximation of the optimal.

Policy: We encode the strategy of picking sensors in the form of a policy.
Formally, a policy π is a rule specifying which sensor to pick next for probing
based on the outputs of the sensors picked so far. For example, if we pick B
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number of sensors for probing, then on completion of all probes the policy
returns a sequence of the form: ψπ : {(sπ,1,x1), . . . , (sπ,B,xB)}. Since the
actual values returned by the sensor probe xk depends on noise, the sequence
is also stochastic in nature. Thus, we need a technique of quantifying policies
that give us more information about the transmitter.

Quantifying the information given by a policy: Given the hypotheses
set {H0, . . . , Hm}, let H denote the true hypothesis. We de�ne the entropy
H(H) of the distribution as:

H(H) = E[− log2(P (H = h))] = −
m∑
h=0

P (H = h) log2 P (H = h)

When a policy returns a sequence, the probabilities of each hypothesis change,
and thus the entropy also changes. Since the sequence is stochastic, we
compute the expected entropy and refer to it as the entropy of a policy.
Mathematically, the entropy of a policy is de�ned as:

H(H|π) = Eψπ [H(H|ψπ)] = −
m−1∑
h=0

P (H = h|ψπ) log2 P (H = h|ψπ)

We de�ne the mutual information I(π,H) between a policy π and H as the
change in entropy:

I(π,H) = H(H)−H(H|π) (4.1)

Note that a policy having higher mutual information is better, since it reduces
the entropy even more. The mutual information between π and H quanti�es
the amount of information given by the policy π about the ground truth
in the average case. We now utilize the notion of mutual information to
formally de�ne the online sensor selection problem.

Online Sensor Selection (NSS) Problem Formulation. Formally, we
de�ne online sensor selection (NSS) problem as follows. We de�ne an optimal
policy πOPT as one such that the mutual information between πOPT and H is
maximum. Then, our goal is to design an algorithm that generates πOPT for
any given prior distribution of H. We must also ensure that the length of the
sequence of a policy does not exceed the budget B. Formally, we represent
this as:

Maximize I(πOPT ,H) subject to |ψπ| ≤ B. (4.2)

We now show a technique of obtaining a policy to maximize the mutual
information.
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Algorithm 3 Online Greedy Algorithm (NGA) to select sensors.
INPUT: Set of available sensors S, budget B
OUTPUT: Subset of sensors T

1: T← φ
2: while |T| ≤ B do

3: L ← I(xT,H) =
∑

using Eq (4.1)

4: for all sk ∈ S \T do

5: Compute I(xT∪{sk},H)
6: if I(xT∪{sk},H) > L then

7: L← I(xT∪{sk},H)
8: s← sk
9: T← T ∪ {s}
10: Recompute P (Hi|xT) ∀i = 0, . . . ,m

11: return T

Online Greedy Algorithm (NGA): The optimization problem de�ned in
Eq (4.2) is NP-Hard [27]. We therefore use a greedy algorithm that probes
the sensor that increases the mutual information the most at each step. The
algorithm is shown in Algorithm 3. At each step, once the sensor is probed,
we recompute the probabilities of each P (H = h) and then picks the sensor
for probing that has the highest mutual information. We continue picking
sensors in this way until we reach the budget.

To show that NGA performs well, we �rst state a theorem from [27], and
then modify it to make it applicable to NGA.

Theorem 3 ([27]). The relationship between mutual information (denoted
by I) obtained using the greedy method and the optimal (denoted by IOPT ) is
given by:

I ≥ (IOPT − δ)
(
1− exp[− B′

Bγmax{log2(m+ 1), log2
1
δ
}

]), ∀0 < δ < 1, (4.3)

where B′ and B are the number of probes in the optimal and greedy algorithm
respectively. The other constant γ is de�ned as:

γ = min
i,j

7

Q((pj − pi)TΣ−1(pj − pi))
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In our case, since the number of hypotheses is �xed, and B = B′, we see
from Theorem 6 e�ectively gives us a bound that depends on γ. However, we
note that γ increases with an increase in the amount of noise in the sensor
outputs. Since samples drawn from the same sensor are independent of one
another, the value of γ reduces with an increase in the number of samples
drawn during a single probe. Thus, γ represents a tradeo� between the
accuracy of our algorithm and the latency of a single probe.

Time complexity. We now look at the time complexity of our algorithm.
We note that computing the entropy requires computation of the probability
of all m + 1 hypotheses. Applying the Bayes formula in Eq (3.1) requires
O(m|S|) time. Computing this for each hypothesis, therefore, requires m ×
O(m|S|) = O(m2|S|) time. Since we select the sensors over a total of B
number of iterations, this gives us a total time complexity of O(m2|S|B).

Heterogeneous Sensors. For heterogeneous sensors, we modify our algorithm
as follows. At each step, we select the sensor with the highest ratio of
mutual information and cost if it is within the budget. If we exceed the
budget, then we iterate over the sensors with the next highest ratio but with
lower cost. We continue this until we either select a sensor or no sensor
can be selected without exceeding the budget. While this algorithm for
heterogeneous sensors does not provide any performance guarantee, we show
using experiments (�4) that it works well in practice.

4.2 Evaluation

In this section, we �rst explain the evaluation setting and then compare the
performance of our algorithms.

4.2.1 Evaluation Setting

Dataset: We deploy a USRP-based transmitter and an RTL-SDR based
spectrum sensor [99] in a 50 × 50 m2 �eld. We move around both the
transmitter and the sensor in the �eld and collect data from over 150 pairs
of transmitter and sensor location. At each pair of transmitter and sensor
location, the sensor collects raw I/Q samples. We perform FFT over the
data collected, and compute the mean and standard deviation for each pair
of transmitter-sensor location. We assume that the distributions of samples
from di�erent sensors are conditionally independent.
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Experiment Setup: To de�ne the hypotheses, we build a grid of dimension
64×64. The center of each cell represents a possible location of a transmitter
or sensor. A transmitter can be located at any cell, so there are 4096 (64×64)
di�erent hypotheses, i.e. m = 4096. We randomly generate 1000 sensors
within the grid with uniform probability. When the parameters are not
available from the dataset directly, we interpolate to obtain the parameters
(mean and standard deviation) of the distribution as explained in [24].

Evaluation Metric: We use localization accuracy to evaluate the algorithms.
We use the metrics Oacc andOw respectively for the non-weighted and weighted
cases. For the online algorithms we use prediction accuracy. The accuracy
is calculated by doing a simulation of 100 tests, where in each test a subset
of sensors try to localize a transmitter randomly generated with uniform
probability. We then count the number of times the transmitter's location is
correctly classi�ed.

Evaluation Platform: We run the CPU-based algorithms on a machine
using dual processor motherboard, where both processors are Intel Xeon E5-
2640V4 with 10 cores and 20 threads [59]. Each core has a clock frequency
of 2.4 GHz. Our algorithms are all implemented in python 3.6. Wherever
possible, we use numpy to speed up the numerical computations and joblib
[62] to use multiple processors in parallel.

Sensor Cost: For homogeneous sensors, we use the number of sensors as
a metric of the cost. For heterogeneous sensors, we use the energy consumed
as an estimate of the cost of running a sensor. To compute this, we perform
multiple FFTs with di�erent bin sizes from the set {28, 29, . . . , 215}. We
obtain the energy cost of FFT computation by running it on each of these
con�gurations 1000 times on an Intel Core i5 processor, and use Intel RAPL
drivers [55] to obtain their energy consumption. We then normalize the costs
by taking the ratio of each energy value with the maximum and use the
normalized energy as the cost of utilizing the sensor.

4.2.2 Accuracy of Online Greedy Algorithm (NGA)

Baseline Algorithms: For online sensor selection, we also use two baselines.
The �rst baseline is random selection, as in OSS which does not update the
priors at each iteration. The second baseline, called nearest, selects a sensor
that is closest to the location having highest probability of transmitter being
present. Intuitively, a sensor close to a hypothesis with high probability
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Figure 4.1: Performance of our greedy online selection algorithms with 4096
hypotheses and 1000 sensors. For (a) and (b), we compare the accuracy of
prediction with baseline algorithms. For (c), we compare the value of mutual
information with accuracy of localization.

should be more likely to be selected. If the sensors are heterogeneous, we
also weigh the gain of choosing it with their cost.

Observation: Figure 4.1 shows the performance of our online sensor
selection, in terms of the accuracy of detection. We compare our algorithm
along with the two baselines. We observe that our online greedy algorithm
performs better than the baselines by a large margin except for the online
nearest in the heterogeneous case. For homogeneous sensors, our algorithm
accurately identi�es the transmitter location in 12 sensors, compared to 18
and over 80 for coverage-based and random respectively. For heterogeneous
sensors, our algorithm accurately identi�es the transmitter location at a
cost of 4.8, compared to 6.6 and over 21 for coverage-based and random
respectively. We also note that online greedy selection uses just one-third the
number of sensors compared to o�ine to achieve over 98 percent detection
accuracy.

Performance of Mutual Information as Objective: We now con�rm
that mutual information is an appropriate objective to maximize the accuracy
of classi�cation. Figure 4.1(c) shows a comparison of the mutual information
with the accuracy of detection. We note that an increase in accuracy closely
correlates to higher accuracy of classi�cation. This validates our claim that
maximizing mutual information leads to a high accuracy of detection.
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Figure 4.2: Execution time of both o�ine and online greedy algorithms for
di�erent numbers of hypotheses (m), number of sensors (S) and budget (B).

4.2.3 Scalability of NGA

We further study the scalability of our algorithms. Figure 4.2 shows the
execution time of our algorithms for di�erent parameters of the problems.
We show the execution time of both AGA and NGA. Note that for NGA, we
choose a lower budget value of 20, as compared to 40, because NGA requires
selection of fewer sensors than AGA to achieve similar levels of accuracy.
Note that we only utilize a single core to run NGA, since it is fast enough
that the overhead of parallelization leads to slower execution. We �nd that
the execution time of NGA for even thousands of sensors and hypotheses is
less than 15 minutes. Moreover, even on a single core implementation, it is
much faster than AGA. This is both because AGA has higher complexity
than NGA, and the budget required for NGA is usually lower. This shows
that both AGA and NGA scale well to large problem instances, and can be
used in practice.

4.3 Conclusion

In this chapter, we proposed a framework of online selection of sensors.
We showed how online sensor selection can signi�cantly reduce the cost of
spectrum patrolling by switching on the most relevant sensors. We also
compared the performance of our online algorithm with the o�ine algorithm
introduced in the previous chapter. We showed that our online algorithm
performs better than the baseline techniques.
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Chapter 5

Quantifying Energy and Latency

Improvements of FPGA-Based

Spectrum Sensors

5.1 Introduction

In the last two chapters, we discussed techniques of intelligent sensor selection
to reduce the cost of crowdsourced spectrum monitoring. An orthogonal
approach of reducing energy consumption is to reduce the cost of running
a single sensor. Current crowdsourced spectrum monitoring proposals (e.g.,
[17, 23]) utilize a single board computer such as Raspberry Pi or smartphone
connected to a software-de�ned radio like RTL-SDR [99] or LimeSDR [80].
These devices are often energy-constrained in nature, especially in the case
of outdoor deployments. Current state-of-the-art techniques can optimize
energy either by reducing the duty cycle or using only a subset of the available
sensors, both of which hurt accuracy of detection. Moreover, it is not possible
to reduce latency of detection without signi�cantly improving the compute
power of the processor used. Since Raspberry Pis and smartphones have
limited compute power, reducing latency requires using a more expensive
processor board. Thus, a spectrum sensor that can signi�cantly reduce
both energy consumption and latency can improve the overall performance
of spectrum monitoring.

In this work, we explore the use of �eld-programmable gate arrays (FPGAs)
in spectrum sensors. An FPGA is a digital chip based on programmable logic.
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Figure 5.1: An overview of our FPGA-based spectrum sensor.

FPGAs allow algorithms to be implemented directly in hardware, producing
signi�cant performance and energy improvements. At the same time, their
recon�gurability allows FPGAs to be adapted for use in di�ering conditions
or to solve new problems without manufacturing new hardware. FPGAs
can be viewed as a midway point between processor-based systems and the
use of application-speci�c integrated circuits (ASICs). ASICs exhibit even
higher e�ciency than FPGAs, and with a lower per-part cost. However,
the use of ASICs requires an expensive and time-consuming design and
manufacturing process. This combined with their in�exibility mean that,
although ASICs likely represent the best solution for a stable large-scale
deployment of spectrum sensors, FPGA-based sensors can be better suited
for the purpose of research.

We �rst observe that, when using a processor, computation of the power
spectral density (PSD) and detection algorithms consume around 40 % of
total energy cost, and incur 95 % of total latency. (Details of these experiments
are explained in Section 5.2.) Thus, we implement these components in
hardware on the FPGA to reduce energy and latency. By implementing
a �exible system that allows easy use of several di�erent FFT sizes and
detection algorithms, we have produced a framework that enables a systematic
evaluation of the real-world energy and latency costs of spectrum sensing on
FPGA and in software on smartphones and the Raspberry Pi.

Using this system, we perform a set of measurements to understand the
performance improvement and energy savings of our FPGA-based sensor.
We benchmark both energy-based and autocorrelation-based detection using
our FPGA. We �nd that the FPGA is able to achieve similar detection
performance with 73 times lower latency than using a smartphone or a
Raspberry Pi, while consuming up to 29 times less energy.

We summarize our contributions as follows:

• We demonstrate that computation speed is a performance bottleneck
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on existing Raspberry Pi and smartphone-based sensors.

• We implement an FPGA based spectrum sensing system.

• We run a set of benchmarks using multiple parameters and algorithms,
showing that the FPGA system has 73 times lower latency and 29 times
lower energy consumption compared to a Raspberry Pi based sensor.

The rest of this paper is organized as follows. In Section 5.2, we explain
the working of spectrum sensors and the motivation behind using an FPGA.
Section 5.3 presents the design of our FPGA sensor. In Section 5.4, we
describe the measurement results. Section 5.5 discusses related work, and we
conclude in Section 5.6.

5.2 Background & Motivation

In this section, we describe the working of a spectrum sensor and explain the
motivation behind using an FPGA.

5.2.1 Inside a Spectrum Sensor

We �rst explain the process of signal detection. The signal is captured by
the radio front-end (sensing unit) as complex numbers, representing discrete
amplitude and phase values, in terms of I and Q samples. A detection
algorithm directly operates on these samples to detect the presence of a
signal on an attached compute platform (compute unit). The Fast Fourier
transform (FFT) on the I/Q samples is a common operation used by many
such algorithms.

Many types of detection algorithms are possible. We will focus on two
common ones � energy-based and autocorrelation-based detection, also used
in prior benchmarking studies [23]. In energy-based detection, the power
of the signal within a given channel is compared with a threshold. If it
is greater than the threshold, then the sensor considers the signal to be
present. The fundamental computation here is an FFT on the I/Q samples
to compute the Power spectral density (PSD), followed by summing of the
squared magnitudes of each frequency bin in the FFT. The accuracy of
energy-based detection depends on the number of I/Q samples and the
number of frequency bins in the FFT. Increasing these parameters improves
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Figure 5.3: Our experimental testbed consisting of three di�erent types of
sensors.

the accuracy of detection by providing higher frequency resolution. However,
this also costs time and energy, resulting in a trade-o� between accuracy and
cost.

In autocorrelation-based detection, we leverage the fact that many signals
can have a periodic component and thus could be correlated over time, but
noise is always uncorrelated. In this technique, we calculate the correlation
of the signal with delayed copies of itself at speci�c periodic intervals. As the
signal is correlated, the same patterns should get repeated at some lags, and
thus a high degree of correlation should be found at these lags. In this way,
it is possible to detect very weak signals, even in cases where energy-based
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detection fails.

5.2.2 Motivation

We motivate the need for FPGA-based spectrum sensors using the following
observations:

1. High resource cost of computation: To understand the proportion
of energy consumed in computation, we plot the energy consumed by a
Raspberry Pi in its di�erent stages. We use a Monsoon Power Monitor
[83] to measure the energy consumed when performing 1024-point FFTs
on 100K samples of data. (Details of the experimental setup are described
in Section 5.4.) Figure 5.2 shows the energy consumed individually by:
(i) a Raspberry Pi if it is lying idle, (ii) by the sensing unit (SDR), and
(iii) by the compute unit (when it runs autocorrelation-based detection)
for the same amount of time taken by the compute unit. We obtain the
idle energy by measuring the energy consumed during the entire amount
of time taken to compute the power spectral density if no computation is
performed. We compute the energy consumed by the sensing unit and the
compute unit by subtracting the energy value obtained from the power
monitor by the idle energy. We note that the energy cost of the compute
unit is overall 37 % of the total cost. Thus, a signi�cant amount of energy
is spent on computation.

We now look at the compute latency. We measure the latency of di�erent
portions of the algorithm by printing the timestamps at di�erent stages
of our software. We plot the latency of sensing and computing incurred
while running an energy-based detector on 100K samples (Figure 5.2).
The compute latency includes the time to perform the FFT and to run
the detection algorithm. The sensing latency refers to the time to read
data from the SDR front-end and send it to the bu�er, assuming the SDR
is already on. We again �nd that around 95 % of the latency is caused
by the compute time. This demonstrates that faster computation can
signi�cantly speed up signal detection.

2. Repetitive execution: A second key observation is that the computations
performed (running the FFT and the signal detection algorithm) are
repetitive in nature. In other words, the same process is repeated many
times during execution. This represents an ideal situation for hardware
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acceleration, where a carefully-crafted hardware design can speed up the
speci�c �hot spots� of the algorithm.

5.3 Our FPGA-based Spectrum Sensor

This section presents the design of our FPGA-based spectrum sensor, as
shown in Figure 5.1. Our system is implemented using a Xilinx ZedBoard
FPGA development board connected to a Myriad-RF1 transceiver board [84].
The ZedBoard uses a Xilinx Zynq-7000 All Programmable SoC (XC7Z020-
CLG484-1); this chip combines a standard FPGA recon�gurable fabric with
an embedded ARM processor, which we are using only for debugging. The
Myriad-RF1 board includes a Lime Microsystems LMS6002D transceiver,
which covers a frequency range of 300 MHz to 3.8 GHz, and uses a 12-bit
ADC. The RF1 connects to the ZedBoard FPGA system via a Myriad-RF
Zipper board, which provides a convenient physical interface to the FPGA.

As shown in Figure 5.1, I/Q samples �ow out of the Myriad-RF1 (labeled
�SDR Board�) and into the FPGA. First, we designed logic to bu�er the raw
input data and synchronize it with the FPGA's internal clock rate. Then,
our system feeds the data into an FFT core. We create the FFT modules
using the Spiral FFT generator [81], a system that produces customized
hardware for FFTs, parameterized by the FFT size, data precision, and other
options. We used Spiral to produce di�erent con�gurations, optimized for
di�erent FFT sizes. The FFT core feeds its result (the frequency domain
representation of the input signal) into the signal detection unit.
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Figure 5.4: Comparison of latency of the compute unit of our FPGA,
Raspberry-Pi and smartphone based sensors.
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The signal detection unit can be pre-con�gured to run a detection algorithm
based on energy detection, waveform detection, or autocorrelation. For the
energy detection algorithm, we compute the energy over a speci�ed (and
con�gurable) range of the frequency spectrum. For the autocorrelation-based
algorithm, we designed the hardware module to compute the autocorrelation
in the frequency domain. Each of these algorithms outputs a stream of data
that denotes the probability that a signal of interest is present.

For convenience, we can store the stream of result data in RAM using a
Direct Memory Access (DMA) module or output it directly to pins. From
memory, the data is then sent out to a computer or other device using either
USB or UART ports.

5.4 Measuring Resource Usage

We focus on two distinct metrics of resource usage�(i) compute latency and
(ii) energy consumption. We perform separate experiments on our Raspberry
Pi, smartphone and FPGA-based sensors. Figure 5.3 shows photos of our
testbeds: a Raspberry Pi 3 (model B) [97], a Samsung Galaxy S4 smartphone
with an RTL-SDR based sensor, and the Xilinx ZedBoard FPGA with Myriad-
RF. The FPGA system is constructed as described in Section 5.3; for the
Raspberry Pi and smartphone, we have implemented the algorithms in C.

5.4.1 Computation Latency

We �rst compare the computation latency of the three types of sensors.
For our FPGA, the latency is the time incurred from the �rst I/Q sample
arriving in the FPGA board, to the output of the signal detection units.
Because the FPGA system uses our custom hardware design, its latency is
a deterministic value dependent only on the number of clock cycles required
by the computation hardware and the FPGA's internal clock frequency. For
the Raspberry Pi and smartphone implementations, we measure the average
latency by timing the C code operating on a �le of previously-stored I/Q
data.

Figure 5.4 shows the latency of all three sensors executing the energy-
based and autocorrelation-based detection algorithms. We �nd that the
FPGA results in signi�cant latency improvements� for energy-based detection,
FPGA has around 73× lower latency than the Raspberry Pi and 69× less
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Figure 5.5: Comparison of power and energy consumption of our FPGA,
Raspberry-Pi and smartphone based sensors.

than our smartphone. This is expected, since the FPGA is con�gured to use
specialized parallel computational structures that can execute the detection
algorithms more e�ciently than the general-purpose processors used in the
other systems. We also note that the latency increases by a similar absolute
value with an increase in the FFT bin size. However, as the number of
samples is constant, this increase in latency is not signi�cant because the
number of FFT computations reduces with an increase in the FFT bin size.

5.4.2 Energy Consumption

To measure the power and energy consumption of the Raspberry Pi and
smartphone, we use a Monsoon Power Monitor [83]. We subtract the power
consumption reported by the power monitor by the idle power to get the
power consumed in computation. For all systems, we �nd the energy and
power consumed by the system while running the energy-based detection
algorithm with FFT bin sizes ranging from 128 to 1024. For both smartphone
and Raspberry Pi, we avoid running other compute-intensive processes to
avoid interference. For the Raspberry Pi, we run the algorithms remotely
over a console by connecting it over a wired network.

Quantifying the exact power and energy consumption of the FPGA is non-
trivial. The ZedBoard FPGA system is a development board that contains a
variety of components (such as DRAM, �ash memory, and an ARM processor)
which are unused in our spectrum sensor. For this reason, physically measuring
the power of the entire development board does not give a realistic measure
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of the power consumed by the necessary components of the sensor. Instead,
to obtain the power consumption of only the FPGA (without considering
the unnecessary components of the development board) we use the FPGA
vendor's power simulation tool (part of Xilinx Vivado) to produce estimates
of the power consumed by the FPGA, which are labeled Zynq FPGA in our
results.

Lastly, we note that the ZedBoard's Zynq FPGA is greatly over-provisioned
for this application; our largest design uses < 20% of the chip's recon�gurable
logic and only two-thirds of its arithmetic units. To quantify the further
improvement available from using a smaller FPGA, we re-implemented the
exact same functionality (running at an identical speed) on a smaller and
lower-power Xilinx Spartan 7 FPGA (XC7S50FTGB196). Vivado's power
simulation tool shows that the same design on the Spartan 7 FPGA requires
approximately one half of the power as the Zynq FPGA. This design is labeled
Spartan FPGA in our results.

Figure 5.5(a) shows the power consumption of these systems. We observe
that the Zynq FPGA consumes about 8 times less power than the Raspberry
Pi. Moreover, the power consumption can be further reduced by another
50 % by using the smaller Spartan FPGA, whose size and logic capacity are
more appropriate for the application. Our results show that it is possible to
reduce power consumption using an FPGA, but a careful design of the logic
as well as the overall FPGA system and its board is necessary.

To measure the energy consumption, we run PSD on 100K samples with
the sensor sampling rate set at 2 million samples per second. We then
measure the energy consumed in computing the PSD of these 100K samples
by integrating the result given by the Monsoon Power Monitor over the entire
period. Figure 5.5(b) shows the energy consumption of the three sensors.
Note that because of the e�ect of pipelining, the energy consumption is not
necessarily equal to the product of power and latency. In general, we �nd a
similar trend as seen in power consumption. The energy consumption of the
Zynq FPGA and the Spartan FPGA are 14 and 29 times smaller respectively
than the Raspberry Pi at an FFT bin size of 256. This con�rms that a
carefully designed FPGA can lead to signi�cantly lower energy consumption.
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5.5 Related Work

As discussed in previous chapters, there has been a lot of interest in spectrum
monitoring using low-cost spectrum sensors. This includes our own work
Specsense discussed in Chapter 2, as well as other works such as Electrosense
[17] and Radiohound [69]. All of them utilize a large number of RTL-SDRs,
with each connected via USB to a Raspberry Pi. Snoopy [125] proposes
attaching a frequency converter to smartphones and utilizing individual smartphones
as a spectral analyzer. In [23] authors benchmark latency and resource usage
in similar Raspberry Pi and smartphone-based spectrum sensors.

The use of FPGAs for spectrum sensing is attractive due to FPGAs'
�exibility, power e�ciency, and computational abilities [109, 21]. However,
the relative di�culty of FPGA implementation poses a signi�cant barrier to
implementation and to understanding important tradeo�s. Prior work has
made a case for using FPGAs for spectrum sensing or related problems, but
these are limited in the scope of their hardware considerations. For example,
the FPGA system described by [14] considers only one algorithm (energy
detection) with a single FFT size. In contrast to these studies, we focus on
performing a systematic performance comparison of an FPGA-based sensor
with the more widely available smartphone and Raspberry Pi-based sensors.

5.6 Conclusion

In this work, we systematically compare the performance of spectrum sensors
for signal detection tasks, where the compute part of the sensors is based on
embedded platforms such as Raspberry Pi, smartphone, vs FPGAs. We �rst
made the observation that computation is the most energy-intensive process
in spectrum sensing. We then described our implementation of FPGA-based
sensor, which e�ciently runs the computation entirely in hardware. We then
compared its power consumption and latency with the Raspberry Pi-based
and smartphone-based sensors. Our measurements show that the FPGA-
based sensor consumes up to 29 times lower energy, and has around 73 times
lower latency than a Raspberry Pi-based sensor.
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Part II

E�cient Computation O�oading
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Chapter 6

Parametric Analysis of Mobile

Cloud Computing Frameworks

using Simulation Modeling

6.1 Introduction

Mobile Cloud Computing (MCC) presents the opportunity to utilize unlimited
resources of cloud based infrastructure to augment resource constrained mobile
devices. Prototype implementations of MCC frameworks have demonstrated
that o�oading computation can signi�cantly reduce energy consumed to
execute an application on a mobile device [31, 29]. The key principle in
MCC is to pro�le the energy footprint of individual tasks in an application,
and then utilize the information to o�oad execution of energy hungry tasks
to a cloud server to optimize energy usage on the mobile device. Task
partitioning and task o�oading decisions are constrained by several factors,
like communication energy to o�oad the program states to cloud, network
latency a�ecting application completion time, and tasks, involving sensors,
which must be executed natively on the device. There are implementations
that trade-o� among these constraints [70, 121]. However, practical operating
environment of a MCC framework is more complex due to several variable
parameters, like network conditions, runtime workload, and hardware characteristics.

The key challenge in designing practical MCC frameworks is to adapt to
changes in the operating environment. Variations in network conditions is
one of the hardest to cope with. It has been shown that dynamically adapting
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o�oading decision based on varying network bandwidth can improve performance
[75, 106]. Similarly, Zhang et al. showed the bene�ts of dynamically adapting
data transmission rate to the cloud in presence of stochastic wireless channel
errors [126]. Application workload is another source of variability to address
while making o�oading decisions. Exploiting dynamic execution patterns
of an application can lead to better o�oading decisions [41]. Barbera et
al. implemented a tightly coupled device-cloud operating system that can
overcome variations at di�erent levels [3]. Even the diversity in smartphone
hardware can lead to di�erent o�oading choices. For example, Lin et al.
proposed the use of coprocessors, like GPUs in handheld devices, to arrive
at better o�oading decisions than those shown before [77]. The recurring
theme in these works is that dynamic adaptation plays a crucial role in
making better o�oading decisions in MCC systems.

We observe that although system implementations have been e�ective in
delivering performance gains, there is still a lack of in depth understanding
of how individual parameters impact performance, as well as, in�uence each
other. Given the complexity of these parameters, it is di�cult to design
controlled experiments in real environments. Therefore, we propose a simulation
model that incorporates the parameters in a single model. This enables us
to understand the interactions among di�erent parameters that a�ect the
o�oading decision problem.

We summarize our contributions in this chapter as follows:

• We propose a formal model that incorporates di�erent parameters that
in�uence the task partitioning and task o�oading in MCC systems.

• We analyze how various parameters used in o�oading decision a�ect
the performance of MCC systems. We report how optimization objectives,
viz. energy consumed on a mobile device, and application execution
time, are a�ected by various parameters, like application and cloud
server features, degree of parallelism exploited and network characteristics.

The rest of this chapter is organized as follows. Section 6.2 discusses the
working of an MCC o�oading system. Section 6.3 explains the formulation.
Section 6.4 shows the experiments and the corresponding inferences drawn.
Section 6.5 concludes this chapter.
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6.2 System Model

In this section, we present the architecture of a mobile cloud computing
(MCC) system. The models of di�erent components of the system, such as
mobile application, communication network and the cloud system, are based
on this architecture.

Figure 6.1: Execution of Mobile Application using cloud server. One
component of the application is executed on the mobile device, while the
other component is executed on the cloud server. The o�oading decision
engine is typically executed on a separate server.

Fig. 6.1 shows the architecture of an MCC system. An o�oading decision
engine partitions an application into two parts: one that executes on the
mobile device, while the other is migrated to the cloud servers for execution.
Communication between the mobile device and the cloud server uses the
wireless interface on the mobile, which can be 3G, LTE or Wi-Fi enabled.
We assume that the application source code resides on both the mobile device
and the cloud server. Thus during execution only the program states need
to be migrated to the cloud.

We assume that mobile applications have multiple threads. We model
concurrent mobile applications using its call graph, which is a Directed
Acyclic Graph (DAG) representing task invocations within the application.
Each vertex in the DAG represents a task of the application, and each
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Figure 6.2: A general Directed Acyclic Graph (DAG) representing a mobile
application. Methods shaded gray are native, i.e. they must be executed on
the mobile device.

edge represents a dependency between two tasks. The set of tasks in the
application is denoted by the vertex set V, while the set of dependencies is
represented by the edge set E. Executing a task vi locally on the mobile
device incurs eloci energy and tloci time cost respectively. The application
needs to be completed within a time deadline D and an energy budget B.
Some tasks, called native tasks, depend on mobile sensors and must always
be executed on the mobile device.

Fig. 6.2 shows an application model where the application has three
threads of execution. Two new threads are spawned at v2. The threads join
at v7 and v9 respectively. Moreover, three of the methods, v1, v4 and v9 are
native, i.e. they must be executed on the mobile device. This DAG model is
general in nature, and can be used to model any mobile application.

The second component of an MCC o�oading framework is the wireless
network. Executing two tasks having dependency between them on di�erent
platforms (mobile or cloud) incurs a migration cost. Thus, if there exists an
edge (vi, vj) to denote a dependency between tasks ti and tj, then this incurs
a migration cost. This is represented by emigij and tmigij to represent migration
energy and time respectively. We assume that these costs do not vary once
execution of an application begins. This is a standard assumption used by
all MCC o�oading frameworks.

The third component of an MCC o�oading framework is the cloud system.
The cloud system has higher computing resources than the mobile device. We
represent the ratio of the computing speed of the cloud to that of the mobile
processor by F . Thus, the time cost of executing a task ti on the cloud
system is equal to tloci /F . Moreover, execution on the cloud system incurs
no computation energy cost on the mobile device.
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V Vertex set of the call graph
E Edge set of the call graph
vi A method in the call graph

(vi, vj) A call invocation of the task vj by vi
tloci Local time execution cost of each method vi
eloci Local energy execution cost of each method vi
emigij Energy migration cost of the call invocation (vi, vj)

tmigij Time migration cost of the call invocation (vi, vj)
F Speedup of the cloud compared to the mobile device
D Time deadline given to application
B Energy budget given to application

Table 6.1: Symbols introduced in Section 6.2

6.3 Task Partitioning and O�oading: Formal

Model

In this section, we formulate the o�oading decision problem of a Mobile
Cloud Computing (MCC) system for a mobile application. The task partitioning
and o�oading problem is NP-Complete for general concurrent applications
[116]. Thus, we develop an integer-linear programming (ILP) problem to
model this problem.

6.3.1 Problem Formulation

Let xi be a binary decision variable such that:

xi =

{
1 if task vi is executed locally

0 if task vi is executed on the cloud

Since there is a single decision variable to denote the location of execution
of each method, every method in the call graph has to be executed (by
choosing either xi = 0 or xi = 1).

Let the start time and execution duration of a task vi be sti and li
respectively. Then, the completion time of a task is sti + li. We know that
all tasks must be completed by the given deadline D. The time required for
completing a task locally and on the cloud are tloci and tloci /F respectively.
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xi Decision variable denoting execution location of vi
sti Start time of executing the task vi
li Time taken to execute the task vi
σij Decision variable denoting execution precedence
smij Start time of migration of the edge (vi, vj)
λ Scaling factor used in optimization function

Table 6.2: Variables introduced in Section 6.3

Let σij be a binary variable for all pair of tasks ti and tj such that:

σij =

{
1 if vi �nishes execution before starting vj

0 otherwise

The variable σij allows us to schedule the execution of tasks that have no
dependencies between them in parallel.

Precedence constraint: We know that for all edges (vi, vj) in the
graph, the task vj has to be executed only after vi has completed. This
precedence constraint is represented using the variable σij.

∀(vi, vj) ∈ E, σij = 1 (6.1)

The nature of the above precedence constraint is such that if task vi
is executed after task vj, then the opposite cannot be true. To enforce this
property of precedence, we ensure that if for any such pair of tasks, if σij = 1,
then σji = 0.

∀vi, vj ∈ V, σij + σji ≤ 1 (6.2)

Concurrency constraint: First, we consider the case of a single
processor on the mobile device. Thus, if the tasks vi and vj are scheduled by
the o�oading framework concurrently, i.e. σij = σji = 0, then at least one
of the tasks must be executed on the cloud. In other words if σij = σji = 0,
then at least one among xi and xj must be equal to 0. On the other hand,
if both the tasks are executed locally, i.e. xi = xj = 1, then the two tasks
must have some order between them.

∀vi, vj ∈ V, xi + xj ≤ 1 + σij + σji (6.3)

We have the following possible cases:
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1. Tasks vi and vj have some order between them, i.e. σij+σji = 1. Then,
both the tasks vi and vj may be executed either on the cloud or on the
mobile device, and so xi and xj remain unconstrained.

2. Tasks vi and vj do not have any order between them, i.e. they may or
may not be executed concurrently. If they are scheduled for concurrent
execution, then at least one among vi and vj must be executed on the
cloud. In this case it is possible to have xi = 0, xj = 0; xi = 0, xj = 1
or xi = 1, xj = 0. On the other hand, they may also be scheduled so
that execution of one method commences only after the other �nishes.
In this case, the two methods may be executed at any point, i.e. both
xi and xj can have any value, since σij + σji is set to 1.

Extending this for n processors, we note that if (n + 1) threads are
scheduled for parallel execution, then at least one of them must be scheduled
for execution on the cloud. To do so, we now pick all combinations of
(n+ 1) methods from the DAG. The constraint can then be mathematically
represented as:

∀vi, ..., vin+1 ∈ Vn+1,
n+1∑
k=1

xik ≤ 1 +
∑

(k,l)∈V2

σikil (6.4)

For each combination of (n + 1) methods, we ensure that if the number
of tasks being executed concurrently are higher than the number of processors
on the mobile device, then one or more of the tasks are scheduled for execution
on the cloud. In that case, LHS of Equation 6.4 has a value equal to n + 1.
Thus, the amount of concurrency too has to reduce suitably so that the RHS
increases in value. It is possible that executing the tasks sequentially gives a
lower objective value. Then, the LHS of Equation 6.4 has a lower value.

We note that Equation 6.3 is a special case of Equation 6.4 corresponding
to the case of a single mobile processor. This is because, by setting n = 1 in
Equation 6.4, we get:

∀vi1 , vi2 ∈ V× V, xi1 + xi2 ≤ 1 + σi1i2 + σi2i1 (6.5)

Setting i1 as i and i2 as j in Equation 6.5, we get Equation 6.3.
Execution Time constraint: Executing a method vi takes t

loc
i time if

done locally on the mobile device, and tloci /F on the cloud. Before commencing
execution, output from all tasks vj that immediately precede vi, i.e. all
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possible vj such that (j, i) ∈ E, have to be migrated to the location where vi
is executed. The time required for this migration must be considered along
with the actual execution time. Migrating a task requires the time needed
to bring all the data from its preceding tasks.

∀vi ∈ V, li = xit
loc
i + (1− xi)tloci /F +

∑
(j,i)∈E

|xi − xj|tmigij , (6.6)

where tmigij refers to the migration time between the edges (vi, vj). The
migration time depends only on the data transfer dij, which is �xed for a
particular edge. Since this formulation assumes constant bandwidth, the
time cost of migration tmigij is a constant.

The �rst two terms of the above constraint refers to the computation time
locally and on the cloud respectively, whereas the last term refers to the time
required to migrate the data dependency. If v2 is executed on the cloud, then
x2 = 1 and the constraint gives computation time as tloc2 /F . Depending on
where v1 was executed, migration cost might also have to be added to the
computation cost of v2 to get the total execution length of v2.

Deadline constraint: The �nal task v|V| has to complete execution
before the given deadline.

st|V| + l|V| ≤ D (6.7)

Energy budget constraint: The total energy consumption must not
exceed the energy budget.∑

i∈V

xie
loc
i +

∑
(i,j)∈E

|xi − xj|emigij ≤ B (6.8)

Start time constraint: If method vj is scheduled to execute after vi
(denoted by σij), then the start time vj is not less than the ending time of
task vi. Otherwise, we do not have any constraint on the start time of vj, stj.
In that case, we reduce the right hand side of the constraint to a negative
value to make stj unconstrained. To do so, we use the largest time value in
this formulation, which is the time deadline D.

∀vi, vj ∈ V, stj ≥ sti + li + (σij − 1)D (6.9)

Finally, there can be two di�erent objectives: minimizing energy consumption
and minimizing execution time. The �rst objective, minimizing energy consumption,
is:

Min
∑
i∈V

xie
loc
i +

∑
(i,j)∈E

|xi − xj|emigij (6.10)
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This optimization function includes both migration energy and cost of local
execution.

Similarly, the second objective, minimizing execution time can be written
as:

Min st|V| + l|V| (6.11)

Since the ending time already includes the time cost of migration, we do not
need to explicitly add this to the optimization function of time.

Any one objective among energy or time can be chosen by an o�oading
framework for optimization. However, it is also possible to optimize both of
them together by applying a suitable scaling factor (λ). The optimization
function is then represented as:

Min λ(st|V| + l|V|) + (1− λ)(
∑
i∈V

xie
loc
i +

∑
(i,j)∈E

|xi − xj|emigij ) (6.12)

6.3.2 Limitations of the Formulation

Our formulation has a few limitations. Firstly, it assumes that network
transmissions succeed eventually. Wireless networks are inherently lossy and
have a probability of failure. We assume that retransmissions at lower layers
of network stack hide much of the transmission failures. Hence, considering
the probability of failure in this formulation is not expected to a�ect the
results of our study.

Secondly, we assume that the energy and time costs of each task is �xed
on the mobile device. Thus, we ignore the e�ect of user input on the energy
and time costs. Since o�oading is mostly used for computation-intensive
tasks, user input does not signi�cantly a�ect execution costs.

6.4 Simulation Results

In this section, we study the sensitivity of the o�oading solutions to various
parameters through separate simulation experiments. These parameters include
both changes in the properties of the applications, and of the overall o�oading
system. These experiments demonstrate the impact of parameters on the
performance of the o�oading system.
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6.4.1 Simulation Settings

The simulation parameters and their values are shown in Table 6.3. Unless
explicitly mentioned, these are the parameter values used for the experiments.
The execution time for each method was chosen randomly with uniform
distribution between 100 ms and 500 ms. The limits were chosen based on the
range of values obtained from the trace log �les of real Android applications
[94]. Each experiment was repeated 20 times to ensure that any bias in the
values of a particular instance do not a�ect the overall result.

The energy consumption value for each method was chosen randomly
between 1 J and 20 J following uniform distribution. Most o�oading frameworks
utilize an energy model to determine at run-time the energy gain. If the
system is heterogeneous and utilizes frequency scaling, then there is no direct
correlation between execution time and energy consumption [18, 28]. Thus,
taking random values of both execution time and energy consumption for
each method is a reasonable assumption.

Parameter Range of Values

Local execution time of each method (tloci ) 100-500 ms
Local energy consumption of each method (eloci ) 1-20 J [18, 28]

Data transferred for migration (dij) 50 - 500 KB [121]

Energy for migration (emigij ) 0.007dij + 0.005tmigij + 5.9 J [30]

Bandwidth 1 Mbps [121]
Round-trip Time or propagation delay (RTT) 70 ms [121]
Speed of cloud compared to mobile device (F ) 10 [31]

Number of threads spawned from a particular method 0-2
Number of methods in each graph 20

Proportion of native methods in application call graph 30%
Number of experiments performed on each graph 20

Number of processors in mobile device 1

Table 6.3: Parameters used in simulation. These parameter values are used
for all experiments, unless otherwise stated.

The size of data to be migrated during o�oading is also required. To
obtain the size of heap objects that have to be migrated, we refer to the
work by Yang, Kwon, Cho, Yi, Kwon, Youn, and Paek [121]. The data
transfer size varies between 50 KB and 500 KB.

The energy consumption of the network interface is calculated based
on the energy model described by Balasubramanian, Balasubramanian, and

81



Venkataramani for a Wi-Fi interface [2]. In this energy model, the energy
cost of data transfer is obtained as 0.007× dij + 0.005tmigij + 5.9J , where dij
is the number of kilobytes transferred and tmigij is the total time required for
migration. This cost includes the energy required to activate the wireless
card, and connecting the device to the access point.

6.4.2 Performance Evaluation

We study the gains achieved by the use of MCC systems in terms of either
energy consumption or execution time. We measure the gain in energy
consumption by taking the ratio of energy consumption utilizing mobile cloud
to that of energy consumption using local execution of the application:

Gain in energy consumption =
Energy consumption using cloud system

Energy consumption without using cloud system

Similarly, the gain in execution time is given by:

Gain in execution time =
Execution time using cloud system

Execution time without using cloud system

We solve the model derived for concurrent applications in Section 6.3 in
these experiments. Based on the performance results, we can infer that the
formulation used to model MCC systems works correctly.

The experiments are performed multiple times on di�erent inputs to avoid
any statistical error. We generate 10 graphs where the connectivity of the
nodes, representing the function methods, is chosen randomly. Each graph
has 20 nodes. The values of input parameters for each node, such energy
consumed, and data transfer size for migration, are also varied randomly
within the range described in Table 6.3. The average gains in execution time
and energy consumption are then calculated based on the results derived
from the 10 experiments on the 10 application call graphs generated.

Fig. 6.3 and 6.4 show the gains observed in execution time and energy
consumption using our formulation. We note that the deviations observed
from the mean are relatively small (within a range of 0.2). This e�ectively
con�rms that the conclusions drawn from these results remain valid irrespective
of the graph layout.

We observe that as the scaling factor (λ) used during optimization (Equation
6.12) increases, there is a small increase in gain (around 5%) observed in
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Figure 6.3: Comparison of gain
observed in execution time for
ten di�erent random graphs with
increase in scaling factor (λ) along
with the observed deviation from
the mean.

Figure 6.4: Comparison of gain
observed in energy consumption
for ten di�erent random graphs
with increase in scaling factor (λ)
along with the observed deviation
from the mean.

execution time. However, this comes at the cost of an increase in energy
consumption. Thus, we conclude that execution time and energy consumption
are con�icting objectives in some cases. An attempt to reduce the execution
time might increase the energy consumption, and vice-versa.

The observation that execution time and energy consumption are con�icting
objectives is explained by noting that a method having low execution time
might consume a lot of energy. Thus, o�oading such a method might end
up increasing the execution time but reducing energy consumption. The
opposite case, i.e. increasing the energy consumption but reducing the
execution time due to o�oading is also possible.

6.4.3 Impact of Application Variables

We investigate the e�ects of variabilities in di�erent programs on the performance
of MCC systems. Variabilities in a program could be due to di�erence in the
number of native function calls, or the degree of parallelism in the code. Both
the factors can be re�ected in the graph representation of the program we
have shown earlier. We study the e�ect of both of these factors on execution
time and energy consumption.
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Figure 6.5: E�ect of increasing
the number of native method in
the application on execution time
and energy consumption. Scaling
factor in optimization is set to 0.5,
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Figure 6.6: E�ect of increasing
the maximum number of threads
that can be spawned by a
particular method. Scaling factor
in optimization is set to 0.5, i.e.
equal priority is assigned to time
and energy optimization.

E�ect of Native Methods: To study the impact of native methods,
we gradually increase the probability of a method being native in the random
graph. For each value of probability, we note the average gains in execution
time and energy consumption.

Fig. 6.5 shows the e�ect of percentage of native methods on performance.
We note that the increase in the percentage of native methods reduces the
gain in both energy consumption and execution time. Moreover, when all the
methods are native, the gains observed in both execution time and energy
consumed are equal to 1.

These observations can be explained by noting that increasing the number
of native methods forces more local execution of the application. This reduces
the advantages of using the cloud. In the extreme case, when all the methods
are native methods, then there is no gain in either energy consumption or
execution time. This is expected, since the application executes locally and
cannot take advantage of o�oading.

We also observe that when the number of native methods is low, the
reduction in performance with an increase in the number of native methods
is non-linear. Thus, a small increase in the number of native methods leads
to a very high drop in performance in terms of both execution time and

84



energy consumption. This observation could be important for application
developers trying to leverage the bene�ts of MCC.

This non-linear decrease in performance can be explained by observing
that when the number of native methods is low, it is possible for the method
that is spawning the threads itself to be migrated to the cloud. This avoids
separate migration of multiple threads and therefore, reduces the cost of
migration. Thus, very low number of native methods gives very high gains
in both execution time and energy consumption.

E�ect of Number of Threads spawned: To study the e�ect of
number of threads spawned, we increase the maximum outgoing degree of
each vertex. We have varied the maximum degree of each vertex from 1 to 8.
We report the average gains for both execution time and energy consumption.

Fig. 6.6 shows the e�ect of increasing the number of threads spawned
at each method of the application graph on performance. We observe that
increasing the number of threads has almost no e�ect on execution time.
However, the energy consumption involved increases with an increase in the
number of threads.

To explain these observations, we note that increasing the number of
threads increases both time and energy due to migration. However, the
time spent on migration is mitigated by better utilization of parallelism.
This e�ect does not apply to energy consumption, and so increases with an
increase in the number of threads.

6.4.4 Detailed Study of Model Parameters

In order to understand the e�ect of individual environment parameters, we
select a single representative graph using the layout shown in Fig. 6.2. This
DAG is general in nature, and does not make any additional assumptions. It
contains multiple threads with each of the threads spawned from the same
method, but joins at di�erent methods. Moreover, one of the threads also
contains a native method. This ensures that all the di�erent threads have
con�icting requirements and thus, the decision problem becomes harder to
solve.

E�ect of Scaling Factor (λ): To study how the scaling factor a�ects the
performance gains in this graph, we plot the energy and execution time for
di�erent values of the scaling factor. This result indicates how to balance the
the two objectives, energy consumption and execution time, in the optimization
objective function. Fig. 6.7 shows how varying the scaling factor a�ect both
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Figure 6.7: Comparison of gain in energy consumption and execution time
for di�erent scaling factor values (λ). Round-trip Time (RTT) is used to
measure cloud response time.

energy consumption and execution time.
We observe that as the scaling factor increases, the total gain in execution

time also increases. However, this comes at the cost of lower gains in energy
consumption. When the scaling factor λ is set to 1, i.e. the optimization
function considers only execution time, there is a speedup of 40% in execution
time. However, there is no improvement in energy consumption. The opposite
situation is observed when the scaling factor λ is set to 0. In this case the
optimization function considers only energy, and so there is an improvement
in energy consumption. This improvement in energy consumption comes at
the cost of increased execution time as compared to local execution by around
10%.

This observation once again shows that in this graph too, execution time
and energy consumption are con�icting objectives. Aggressively optimizing
the execution time increases the energy consumption, and vice-versa. We
have already explained the reasons behind this observation in Section 6.4.2.

We also observe that the gains in energy consumption and execution time
are similar in all the three sub-�gures. This means that the round-trip delay
time does not a�ect the performance at this bandwidth. This observation
can be explained by noting that at a bandwidth of 1 Mbps, most of the
time is spent in transmission. Thus, the propagation delay is comparatively
smaller, and hence does not a�ect performance.

Moreover, we also note that at a scaling factor of around 0.6, the gains in
energy consumption and execution time are almost equal. This shows that
irrespective of the cloud response time, a scaling factor equal to 0.6 balances
both energy consumption and execution time. We explain this by noting
that the con�icting requirements of time and energy are balanced when the
scaling factor is equal to 0.6.
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E�ect of Speed of Cloud (F ): We vary the speed of cloud (F) as
compared to the mobile device from 1 to 50. For each value of F , we �nd
the gain observed in execution time. We have studied the execution time for
two cases � for very high and moderate bandwidths. Since speed of cloud
does not have any e�ect on energy consumption, we have not included it in
this study. Thus, the scaling factor (λ) has been set to 1 to ensure that only
execution time is optimized by the system.

Fig. 6.8 shows the result of increasing the speed of cloud on execution
time. We �rst note that due to utilization of parallelism, even a cloud system
with very low speed gives an improvement of around 50% in execution time.
At a low bandwidth, any improvement in the speed of cloud has very little
e�ect on the total execution time. However, at high bandwidths, i.e. when
migration time is low, the gain in execution time saturates at a much higher
value of F = 50.

These observations can be explained by the fact that migration consumes
more time than actual execution in case of moderate bandwidth. This
explanation is further con�rmed by the fact that at high bandwidth, much
higher improvement in execution time is observed when the speed of cloud
is increased. Further investigations on the e�ect of network bandwidth have
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been discussed later in this section.
E�ect of Cloud Response Time: We now study the e�ect that propagation

and transmission delays have on the total execution time (Fig. 6.9). We
study how varying the cloud response time at three di�erent bandwidths (1
Mbps, 5 Mbps and 10 Mbps) a�ect the execution time. Since the energy
consumption remains same irrespective of the transmission and propagation
time, we do not consider it here.

Fig. 6.9 shows the e�ect of increase in the propagation delay on execution
time at the three di�erent bandwidths. We observe that, at a low bandwidth
of 1 Mbps, any increase in propagation delay has no e�ect on the execution
time. However, this does not hold true at high bandwidths. At bandwidth of
10 Mbps, for instance, an increase in the RTT from 2 ms to 100 ms reduces
the execution time by 20%.

This result can be explained by the fact that at high bandwidths, the
propagation delay is higher than the actual transmission time during migration.
However, at low bandwidths, the transmission time is much higher, and so
most of the time is taken up by transmission. Thus, increasing the value of
response time has no e�ect on execution time at low bandwidths, but has an
adverse e�ect at high bandwidths.

E�ect of Parallelism on Execution Time: We now investigate the
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gain on speedup with an increase in parallelism. Some o�oading frameworks
such as MAUI [31] do not exploit any parallelism in order to have a simpler
mathematical formulation. Our objective is to determine if utilizing parallelism
leads to any signi�cant improvement in overall execution time.

In our �rst experiment, we increase the parallelism that can be utilized
by the overall (mobile and cloud) system. For example, if the total number
of threads is equal to 1, this implies that at a particular point of time, a total
of 1 thread is executed (either locally at the mobile device or on the cloud).
For more than 1 threads, since the mobile device has a single processor, the
rest of the threads must execute on the cloud, if any parallelism is utilized.
Once again, we do not consider the energy consumption. This is because
according to our energy model, the energy consumption does not depend on
the amount of parallelism used.

Fig. 6.10 shows how increasing the number of threads a�ects the execution
time. Increasing the number of threads from 1 to 2 leads to an improvement
of 45% in execution time. However, increasing the number of threads from 2
to 3 only leads to an improvement of 2% in execution time. Further increase
in the number of threads leads to no improvement.

These observations can be explained by noting that our example graph
has three parallel threads. Hence increasing the number of threads to greater
than three has no e�ect on performance. Moreover, the third thread has a
native method which must be executed locally on the mobile device. Thus,
o�oading this thread may or may not lead to any improvement in execution
time. Hence the average gain observed when increasing the number of threads
from 2 to 3 is small. However, since two of the threads do not contain any
native methods, increasing the number of threads from 1 to 2 leads to a large
improvement in execution time.

An alternative way of exploiting parallelism is to increase the number
of processors in the mobile device itself. Once again, we study the increase
in execution time when the number of mobile processors is increased. The
result of our simulation is shown in Fig. 6.11. Our simulation result shows
that this has no e�ect on the execution time. We explain this by noting
that executing a thread on the cloud is usually faster as compared to local
execution. Thus, even if a mobile processor is idle, the o�oading framework
chooses to o�oad methods of a thread instead of scheduling it on the idle
processor for local execution. Hence, increasing the number of processors on
the mobile device shows no improvement in execution time.
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6.5 Conclusion

Mobile cloud computing presents a solution to augment resource constrained
mobile devices, where computationally intensive tasks can be partially o�oaded
to the cloud servers. Execution o�oading to cloud helps in conserving
computation energy on the mobile device, but consumes network energy
to communicate with the cloud. Hence o�oading decision must carefully
select tasks to o�oad to eventually save energy on the mobile device. The
task of o�oading becomes more challenging due to the practical operating
environment where there are multiple variable parameters. The e�ects of
these parameters must be considered while making the o�oading decisions.

In this work, we studied the impact of various parameters present in MCC
systems on energy consumption and execution time of mobile applications.
We presented a formal model of the o�oading decision problem that incorporates
various parameters that appear in real MCC execution environments. We
utilize this model to study the impact of these parameters on the performance
optimization objectives, like energy saved, and reduction in application execution
time.

90



Chapter 7

Computation O�oading from

Mobile Devices: Can Edge

Devices Perform Better Than the

Cloud?

7.1 Introduction

In the previous chapter, we looked at various application and network parameters
that a�ect the performance of o�oading. An interesting question in computation
o�oading is to decide which machines to use as server. Most o�oading
framework prototypes developed so far use an in-house desktop or server
machine. Currently, o�oading frameworks have two distinct choices of machines
that can be used as server. The �rst choice involves o�oading to commercially
available cloud servers and is known as mobile cloud computing. Prototype
implementations of o�oading utilize this technique. The second choice,
known as mobile edge computing, involves o�oading to other user edge
devices such as tablets, laptops or network routers.

Cloud servers and user edge devices have two major di�erences:

• Processors of cloud servers have faster processors. For example, running
the benchmark CoreMark [37] shows that a Google Cloud Platform [47]
processor is around 6 times faster than a mobile device.

• Latency of cloud servers is higher than edge devices. By performing a
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Figure 7.1: Working of a computation o�oading framework. The o�oading
framework may use either low-powered user edge devices, such as routers,
laptops and tablets, or commercially available cloud servers. These two cases
are known as mobile edge and mobile cloud computing respectively.

series of ping probes from our mobile device over Wi-Fi, we found that
Google Cloud Platform has an average latency of 87 ms, compared to
just 14 ms for a device within the same network.

One of the most important factors of user satisfaction is lower application
�nish time [54]. An o�oading framework partitions the mobile application
in a way that reduces its �nish time. While execution on a cloud is much
faster than on a mobile device, migrating data over the network between the
mobile device and the server consumes additional time. Thus, a partitioning
algorithm has to balance the trade-o� between more execution of tasks on
the server and ensuring less time spent on migrating data. The speed of the
server and the network latency, therefore, has a major impact on the way the
o�oading framework partitions the application.

Fig. 7.2 shows how the partition generated for a simple program changes
due to the type of server used. The application consists of three methods �
met(), gps() and net() respectively. The method gps() depends on the GPS,
and thus must be executed on the mobile device. When the application is
executed entirely on the mobile device, execution of the application takes
350 ms. When the o�oading framework can o�oad to an edge device, both
the methods met() and net() are o�oaded. This takes a total of 240 ms.
However, when it has access to a cloud server, the higher latency ensures
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Latency Processor Power
Edge Device 10 ms 2 times
Cloud Server 50 ms 10 times

(a) Parameters used for the example. Latency refers
to the latency of server from mobile device. Processor
power refers to speed of processor compared to mobile
device.

(b) (c) (d)

Figure 7.2: An example of how server device a�ects application partitioning.
Parameters used for this example are shown in Fig. 7.2a. Fig. 7.2b shows
execution of the application entirely on mobile device. Fig. 7.2c and Fig. 7.2d
show execution by o�oading to an edge device and cloud server respectively.

that executing met() on the mobile device is faster. Thus, only net() is
o�oaded. Using a cloud server, therefore, gives an application �nish time of
270 ms. In this way, the application partition changes depending on the type
of server used.

A key question here is if o�oading to user edge devices can provide faster
application �nish time compared to commercial cloud servers. Edge devices
have weaker processors than cloud servers, but also have lower latency. Whether
the lower latency of edge devices can compensate for the weaker processors
compared to cloud servers needs to be investigated. Such an investigation
needs to study the performance of o�oading using di�erent cloud servers
under realistic workloads.

In this work, we compare the performance of o�oading using cloud server
and to user edge devices. We study the impact of using di�erent servers
on application �nish time and application partition. We �rst develop a
system model that can be used to study both cases of o�oading. We collect
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traces of SPECjvm2008 [108] programs using aspect-oriented programming.
Aspect-oriented programming allows us to modify the bytecode of an existing
application at run-time to log details of methods executed. We then perform
trace-driven simulation to determine the application �nish time using cloud
server and edge devices of SPECjvm2008 benchmark programs. We �nd from
our trace-driven simulation that edge devices for general-purpose computing,
such as laptops, can perform better than cloud servers. Smaller edge devices,
like tablets and routers, can also reduce application �nish time, but gives
slower performance than cloud servers. Our work, therefore, shows that
o�oading to edge devices is an attractive option for smartphone users.

The rest of this chapter is organized as follows. Section 7.2 describes
related work. We develop our formal model of o�oading in Section 7.3.
Section 7.4 describes our techniques to generate traces of the workload and
measure the parameters required for simulation. We discuss our simulation
results in Section 7.5, and some of the limitations of our approach in Section
7.6. We conclude in Section 7.7.

7.2 Related Work

In this section, we �rst start with discussion of related o�oading frameworks.
We then explain studies that target managing latency of cloud servers. Finally,
we discuss related works on o�oading to edge devices.

The �rst computation o�oading frameworks from mobile devices, MAUI
[31], CloneCloud [29] and Odessa [96], used a single desktop or server machine
as remote server. These systems usually used a software-based middleware
to vary the network latency to simulate the latency of cloud servers. Other
o�oading frameworks, such as ThinkAir used a custom-made server with
many di�erent virtual machine (VM) con�gurations [70]. Barbera, Kosta,
Mei, and Stefa [4] performed a trace-based study of energy gains using
a commercial cloud service Amazon EC2. Another study used PlanetLab
servers to study the e�ect of latency on interactive smartphone applications
such as games [117]. These studies �rst identi�ed high latency of cloud servers
as a major problem in computation o�oading.

A second category of studies on o�oading suggested installation of computing
resources with ready access to energy in the vicinity of mobile devices [101].
Such computing resources are called cloudlets. Since cloudlets are closer to
mobile devices, they have much lower latency. However, utilizing cloudlets
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require installation of additional computing infrastructure. This has slowed
their adoption.

Another group of studies aim to reduce the latency of existing cloud
data centers. For example, QJUMP suggests using separate queues for
latency-sensitive applications that utilize the cloud server [52]. Silo provides
guarantees of network latency by utilizing network calculus [60]. Finally, a
recent proposal suggests inferring the latency requirements of an application
by studying its request patterns [82],

Finally, a few recent studies have suggested utilization of edge devices in
the context of Internet of Things (IoT). This is known as fog computing [11].
For example, mobile fog suggested utilizing of distributed network devices
such as routers closer to the mobile devices [57]. Garcia Lopez, Montresor,
Epema, Datta, Higashino, Iamnitchi, Barcellos, Felber, and Riviere [42]
proposed a more general type of o�oading, where application is o�oaded to
di�erent user devices. This is known as mobile edge computing. Our study
builds on these works by studying the feasibility of utilizing edge devices
using trace-driven simulation.

7.3 Task Partitioning Model

In this section, we �rst explain the way computation o�oading works. We
then utilize this technique to develop its formal mathematical model.

7.3.1 Preliminaries

A computation o�oading system consists of several processors pk both in
the mobile device and server. We represent the set of processors as P =
{p1, p2, ..., pm}. A subset of these processors M ⊂ P belong to the mobile
device.

A mobile application is represented using a Directed Acyclic Graph (DAG)
G = (V,E). A vertex vj in the vertex set V represents a method or a task in
the application. On a processor pk a task vj takes t

k
j time to execute. The

value of tkj depends on the task vj and the power of the processor pk. An
application begins and ends on the mobile device. Moreover, the execution of
a set of tasks U may be tied to some hardware such as camera or GPS present
only on the mobile device. Dependency from a task vi to vj is represented as
an edge (vi, vj). The set of dependencies is the edge set E of the DAG. For
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Figure 7.3: An example of a call graph representing a mobile application.
Methods shaded gray must be executed on the mobile device.

V Task set of application
E Dependency set of application
U Set of tasks that must be executed on mobile device
M Set of processors in mobile device
P Set of processors in mobile device and server system
vj A method in the call graph
pk A processor in the system (mobile device or servers)
tkj Execution time of a task vj on processor pk
m Number of processors in the system
n Number of tasks in the mobile application

(vi, vj) Data dependency from task vi to vj
rhkij Migration time of dependency (vi, vj) from ph to pk
xkj Decision variable denoting if vj is executed on processor pk
Tj Finish time of the task vj
Sj Start time of the task vj
Rij Migration time of the edge (vi, vj)
σij Decision variable denoting if vi is executed before vj

Table 7.1: Symbols and variables introduced in Section 7.3

each dependency (vi, vj), execution of task vj can begin only when vi �nishes.
Moreover, if vi and vj execute on di�erent machines, then program states
must be migrated. Let rhkij denote the time to migrate data from processor
ph to pk for (vi, vj). The value of r

hk
ij depend on the location of the processors

ph and pk as well as on the amount of data that needs to be migrated for
(vi, vj). We assume that execution time tkj and migration time rhkij are known
a priori by pro�ling the application. We note that prior pro�ling to get
execution and migration time is common in o�oading systems.
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7.3.2 Mathematical Model

The o�oading framework needs to decide the processor pk on which each
task vj executes. To denote this, let xkj be a binary decision variable such
that:

xkj =

{
1 if task vj is executed on processor pk

0 if task vj is not executed on processor pk

Let the start time and execution duration of a task vj be Sj and lj
respectively. Also, let the completion time of vj be Tj. Our aim is to reduce
the �nish time of mobile application. This is equal to the �nish time of the
last task vn of the application. Thus, our objective is to minimize the �nish
time Tn of the last task vn:

Min Tn (7.1)

The �nish time Tj of a task vj is equal to the sum of its start time Sj and
its execution time tkj on the processor pk. Mathematically,

∀vj ∈ V, Tj = Sj +
m∑
j=1

xkj t
k
j (7.2)

A task vj can start executing only if its predecessor tasks vi become
available. A predecessor task vi becomes available, when vi �nishes execution
and its data is migrated to the processor where vj is executed. Thus, starting
time Sj of vj is not less than the sum of �nish time Ti of vi and migration
time Rij.

∀(vi, vj) ∈ E, Sj ≥ Ti +Rij (7.3)

The migration time Rij of an edge (vi, vj) is the time needed to fetch
output of vi to execute vj. If an edge (vi, vj) is migrated from processor ph
to pk, this has a cost of rhkij . Here we assume that if ph and pk are same
processors, then rhkij = 0. We represent the migration cost mathematically
as:

∀(vi, vj) ∈ E, Rij =
∑

(vi,vj)∈E

m∑
h=1

m∑
k=1

xhijx
k
ijr

hk
ij (7.4)

The constraints that we have de�ned so far do not limit the amount of
parallelism. However, the number of processors available is limited. Thus,
the o�oading framework also needs to decide the sequence of execution of
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tasks. To denote this, let σij be a binary variable for all pair of tasks ti and
tj such that:

σij =

{
1 if vi �nishes execution before vj begins execution

0 otherwise

Thus, we can now rewrite Equation 7.3 as:

∀vi, vj ∈ V, Sj ≥ σij(Ti +Rij) (7.5)

For all edges (vi, vj) in the graph, the task vj has to be executed only
after vi has completed. This precedence constraint is represented using the
variable σij.

∀(vi, vj) ∈ E, σij = 1 (7.6)

Moreover, for any pair of tasks vi or vj, either vi must be executed before
vj or vice-versa. Mathematically, we represent this as:

∀vi, vj ∈ V, σij + σji ≤ 1 (7.7)

If the tasks vi and vj are scheduled by the o�oading framework concurrently,
i.e. σij = σji = 0, then they must execute on di�erent processors. Thus,
in this case, only one of the values among xki and xkj can be equal to 1.
Mathematically, we represent this constraint as:

∀vi, vj ∈ V,∀k = 1...m, xki + xkj ≤ 1 + σij + σji (7.8)

Finally, the tasks vj ∈ U can only be executed on the mobile device. In
other words, they can be executed on any one of the processors pk ∈ M.
Mathematically, we represent this as:

∀vj ∈ U,
∑
pk∈M

xkj = 1 (7.9)

All other tasks vj ∈ V−U, must be executed on any one processor from any
device, i.e.

∀vj ∈ V− U,
∑
pk∈P

xkj = 1 (7.10)

Equations 6.11 to 7.10 provide a formulation of an o�oading system with
multiple processors on di�erent devices. An optimization solver on solving
this simulation system gives the values of xki to denote the processors on which
each task is executed, and σij to denote the execution sequence of each task.
We now utilize this formal model to develop our simulation system.
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7.4 Methodology

In this section, we �rst describe our method of collecting traces of applications.
We then explain our technique of measuring di�erent parameters required for
simulation.

7.4.1 Generation of Call Graph

We use aspect-oriented programming to generate an annotated call graph.
Aspect-oriented programming (AOP) is a technique of adding additional code
to an existing program, without directly modifying its source code. The
additional code is called aspect. AOP can even work in cases where source
code is not available by modifying intermediate code of the application.

We utilize AspectJ, which is a common framework for aspect-oriented
programming in Java [68]. AspectJ can add additional code at run-time to
modify the behavior of an existing program. We treat the entry and exit
points of each method as possible migration points. For our purpose, we log
details of each method at their possible migration points.

To form a call graph from a program that is useful for our purpose, we
collect the following data for each method:

• Method name, including its formal parameters and return types

• Thread identi�er

• Execution time

• Amount of data that needs to be migrated

We obtain the method name by accessing the stack trace of the current
thread. Similarly, Java provides a method within Thread class to access the
thread identi�er of the current thread. To obtain the execution time, we
utilize Java's ThreadMXBean1 interface. Finally, to obtain the amount of
data, we serialize the objects of each argument and return types, write it to a
memory bu�er and then calculate its length. We then use a java agent at run-
time to obtain these data from the benchmark programs. We use the time
command on the benchmark programs to �nd out the overhead of utilizing
aspect-oriented programming. Our measurements showed an overhead of less
than 10% on the execution time of benchmark programs.

1http://docs.oracle.com/javase/7/docs/api
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7.4.2 Estimation of Simulation Parameters

A realistic estimate of performance using both cloud and edge devices requires
measurement of their processor performance and network latency. To compare
the performance of processors with di�erent instruction set architectures, we
use CoreMark benchmarks [37]. CoreMark is a set of common benchmark
programs, containing matrix multiplication, linked-list manipulation and Cyclic
Redundancy Check. One of its major advantages is that it is widely available
for execution on di�erent platforms, including desktops, servers and mobile
devices. It is a widely used technique of comparing processor performance
across platforms. The values obtained using these benchmarks is taken as a
representative of the overall processor performance. Table 7.2 shows a list of
platforms on which we perform our experiments.

Device Model Processor CoreMark value
Smartphone Samsung Galaxy S3 [100] Quad-core 1.4 GHz Cortex-A9 1786
Tablet Google Nexus 10 [86] Dual-core 1.7 GHz Cortex-A15 3850
Router ASUS onHub [89] Qualcomm IPQ8064 3500 2

Laptop Sony VAIO Notebook[107] AMD Dual-Core E-350 (1.6 GHz) 4960
Cloud Google Cloud Platform[47] n1-standard-8 10906

Table 7.2: A list of Coremark values per core in di�erent hardware devices.
Coremark values per core are taken as representative of the processing speed
of a single core.

We measure the network latency of user devices and cloud servers by
using ping probes. We use the ping utility to send 100 ping probes and then
take their average latency values. This is a standard technique widely used
in measuring the latency values. Our experiments showed an average latency
of 14 ms for user-controlled edge devices and 87 ms for our cloud server.

7.5 Trace-driven Simulation

We selected a set of SPECJVM08 benchmarks that are relevant to mobile
devices. The benchmarks we selected include common workload such as
encryption, data compression, Fast Fourier Transform and audio decoder.
We generate the traces of these benchmark programs using the technique
described in Section 7.3. We then implemented the mathematical model
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Figure 7.4: A comparison of �nish time of di�erent benchmark applications
by o�oading to cloud server, laptop, tablet, router and without utilizing
o�oading.

described in Section 7.3 as an Integer Linear Programming (ILP) problem in
Matlab.

Fig. 7.4 shows the application �nish time of benchmark applications using
both edge devices and cloud server. We note that all server systems (edge and
cloud) improve application �nish time. Moreover, the best performance for
each benchmark is obtained using a laptop, followed by cloud server, tablet
and router respectively. A cloud server reduces the average application �nish
time by 46% over local execution, compared to 52% for laptop, 43% for tablet
and 41% for router.

Our trace-driven simulation, therefore, shows that user-edge devices can
perform better than a cloud server if they have su�ciently powerful processors.
The slower processors of user-edge devices is compensated by the lower
latency to access these devices. Even a smaller edge-device like router improves
the performance of the benchmark applications signi�cantly.

2The coremark value of this device is an estimate based on the values of similar

101



5,000 10,000 15,000
100

200

300

400

500

600

Processor Speed (CoreMark)

A
p
p
li
ca
ti
on

F
in
is
h
T
im

e
(m

s) Latency = 10 ms
Latency = 30 ms
Latency = 50 ms
Latency = 70 ms
Latency = 90 ms

Figure 7.5: Impact of processor speed and latency on application �nish time.
Processor speed is measured using the CoreMark benchmark value.

To further study the e�ect of processor performance and network latency,
we vary the latency and processor power of the server in our simulation. We
then study the average application time across the ten benchmark programs.

Fig. 7.5 shows the impact of processor speed and network latency on
application �nish time. We note that at a latency of around 90ms, improving
the processor speed does not have much impact on the �nish time. At lower
latencies, the impact of more powerful processors is much greater. In each
case, we observe that the gains of increasing the processor speed diminish
after reaching a value of around 8000 Coremarks.

These observations show that the most signi�cant factor limiting performance
of mobile cloud systems is high network latency. Since cloud systems are
accessed over the Internet, the cloud server provider has only a limited
role in reducing latency. On the other hand, user-controlled edge devices,
despite having slower processors, have much lower latency. Moreover, due to
improvement in processor technology, the processor speeds of such devices is
continuously improving. Thus, o�oading to user-controlled edge devices is
likely to become more attractive for smartphone users in the near future.

processors.
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7.6 Discussion

Our trace-driven simulation makes two assumptions. We do not discuss the
consider the execution of other processes on edge devices. Execution of other
processes lead to time-sharing of processors and increase the response time of
smartphone requests. However, our simulation results show that even slower
edge devices signi�cantly reduce application �nish time. Secondly, we use
CoreMark benchmark as a measure of the processor performance. Although
CoreMark is a widely used processor benchmark, a proper study of processor
speed requires running a variety of workloads. Our trace-driven simulation
experiments assume that the processor performance remains approximately
similar for di�erent applications.

7.7 Conclusion

In this chapter, we compare the performance of o�oading from smartphone
to a cloud server and user-controlled edge devices such as laptops, tablets and
routers. We �rst formulate a mathematical model to represent the o�oading
problem. We then utilize aspect-oriented programming to obtain traces of
benchmark Java programs. We perform trace-driven simulation to determine
whether o�oading to edge devices can reduce application execution time.
Our simulation shows that o�oading to larger edge devices such as laptops
can provide better performance than a cloud server. Smaller edge devices
such as tablets or routers provides slower performance than a cloud server,
but can also signi�cantly speed up application execution. Thus, o�oading to
such devices is a promising technique of augmenting the processor resources
of smartphones.

As future work, we would like to study the impact of o�oading to user-
controlled edge devices on energy consumption. Smartphones can utilize
bluetooth to connect to user devices, which consumes much lower energy.
We would like to explore the impact of utilizing bluetooth for o�oading
smartphone applications.
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Chapter 8

Service Level Guarantee for

Mobile Application O�oading in

Presence of Wireless Channel

Errors

8.1 Introduction

Mobile computing platforms, from smart sensors to smartphones, are increasingly
used in personal and enterprise environments. However, these devices have
limited compute capacity. This limitation can be mitigated by o�oading
parts of a mobile application to execute on cloud servers, thereby reducing
application �nish time. A number of proposals [31, 29] for mobile cloud
computing have received prominence in literature. Among other factors,
o�oading decisions depend on network conditions. Since network conditions
in mobile environment vary widely, o�oading decisions based on pro�led
network parameters can lead to sub-optimal solutions.

Channel error rates are one of the hardest to model among network
parameters. Channel error is dependent on unpredictable external interference,
and mobility characteristics, like walking or driving. Measurement based
studies have shown channel error rates up to 30% under di�erent conditions
[53, 50]. Therefore, o�oading solutions depend on the MAC layer retransmission
mechanism to handle channel errors. Since the number of retransmissions can
depend on transient channel error states, this can undermine the bene�t of
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Figure 8.1: Execution time comparison under varying channel errors.

o�oading in saving energy and/or �nish time.
We illustrate with an example. We take a task graph with 100 tasks,

where a task, representing a method in the application execution, can be
o�oaded to the remote cloud server for faster execution. Given each task's
workload pro�le, and network parameters, an optimization solver (as in
MAUI [31]) computes the estimated time to �nish execution. Fig. 8.1 shows
a comparison of application �nish time using four schemes: Estimated is the
result of using an optimization solver with application and network pro�le as
input, local computes without any o�oading, actual is the result of o�oading
in practice due to channel errors, and an hypothetical solution (called oracle
in the �gure) assumes complete knowledge of channel errors. Compared to
local execution, where no task is o�oaded, an o�oading scheme performs
better. However, in practice, the channel error conditions can break the
assumption about network parameters. In presence of varying channel errors,
the actual result of o�oading may not be as computed by an optimization
solver. An oracle solution, with complete knowledge of channel errors, can
indeed perform better.

In this work, we pose the question, even in presence of unpredictable
channel errors, can we ensure service level guarantee to complete the application
execution faster than that of local execution on the device? We show that,
given a failure rate bound, the question can be modeled as a chance constrained
optimization problem [38]. We propose an error-aware run-time adaptive
heuristic that decides at each task o�oad point, the locally optimal choice
considering stochastic channel errors. We provide guarantee to minimize the
expected application �nish time. Our scheme ensures that an application
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completes execution faster than local execution, in presence of retransmissions
due to channel errors. We validate our solution using simulations and on
traces of benchmark applications.

We present relevant prior work in Section 8.2. Section 8.3 and Section
8.4 present the analytical model and the proposed heuristic. Evaluation is
presented in Section 8.5 followed by conclusion in Section 8.6.

8.2 Related Work

There are two di�erent categories of work in the context of o�oading over
wireless channels. One group of work assumes that the Medium Access
Control (MAC) layer handles channel errors successfully. The �rst o�oading
frameworks, MAUI [31] and CloneCloud [29], used this approach. They
estimated the channel bandwidth before solving the o�oading decision problem.
Another o�oading framework, ThinkAir [70] looks at history of migration
and assumes that the channel conditions remain similar to the past observations.
Some other works try to reduce the amount of data migration. [121] proposes
compiler-level optimizations to decide which data is actually used by the
cloud server. These o�oading frameworks do not consider the cost of transmission
failure.

Finally, a few studies have considered the e�ect of channel errors. [73]
shows how intelligent checkpointing of applications to ensure consistency
on the mobile device and the cloud server can save energy of o�oaded
applications. COSMOS [106] senses the response time to determine the
quality of connection, and uses this observation for the o�oading decision.
However, they do not consider retransmission of lost packets. In [127],
the authors consider retransmission, but the decision about the number
of retransmissions is not made at run-time. In Foreseer [120], the initial
partition obtained by running an optimization solver is modi�ed at run-time
based on the channel bandwidth. In contrast to the work above, our proposal
models the number of retransmissions due to channel errors and presents an
adaptive o�oading algorithm design.
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V Vertex set of the graph
E Edge set of the graph
vj A task in the application execution
vm Last task in the graph
(vi, vj) A dependency from the task vi to vj
M0 Mobile device
M1 Cloud server
tlj Execution time of task vj on machineMl

r Time to migrate a single frame
Um Time deadline given to application
ε Failure bound given to application
wij Number of frames needed to migrate (vi, vj)

xj
Variable indicating execution of vj onM0 or
M1

zij
Maximum number of retransmission
attempts of (vi, vj)

Yij
Number of retransmission attempts of frames
of (vi, vj)

Rij Total time to migrate (vi, vj)
Tj Finish time of vj
αk Failure bound on kth migration

αsk
Failure bound on sending packet of kth

migration

αrk
Failure bound on receiving packet of kth

migration

Table 8.1: Symbols introduced in Section 8.3

8.3 Models and Problem Formulation

We represent execution of a mobile application as a directed acyclic graph
(DAG) G = (V,E), where the vertex set V represents the set of m methods
or tasks, and the edge set E represents the dependencies among tasks. A task
can be executed either locally on the mobile device, M0, or on the remote
cloud server, M1. However, the �rst and last task, v1 and vm respectively,
must execute on the mobile device. If a task vj is executed on a platform,
M0 or M1, di�erent from that of any of its predecessor tasks, vi's, where
(vi, vj) ∈ E, then the task output states of vi must be transferred over the
network to vj's execution platform. Since the data transfer size will vary
across dependencies, therefore, the number of data fragments or frames at
the MAC layer will also vary.

The wireless channel is modeled as a stochastic process [95], where the
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probability of successful transmission of a frame is denoted by p. The value
of p depends on the time varying nature of the channel. However, we assume
that for a single data packet (i.e. for all the corresponding frames) the
channel state remains unchanged. Due to channel errors, if a frame is lost,
it is retransmitted. Let Yij be the total transmission attempts for all the
frames of a packet transferring data from vi to vj. If the time to transmit a
frame is r, then the time, Rij, for the packet transmission will therefore be,

Rij = rYij

Since Yij depends on the channel conditions, both Yij and Rij are stochastic
parameters.

The total time to execute an application depends on where each task is
executed (i.e. execution time) and the time for the network transfer (i.e.
migration time). Note that time to execute an application is same as the
�nish time, Tm, of the last task, vm. Tm depends on the time for network
transfers (Rij's), and is therefore also a stochastic parameter. Let Uj denote
the time taken to �nish vj if vj and all tasks preceding it are executed
locally. Our objective is to minimize the expected �nish time, Tm, under
a constraint that Tm exceeds the local execution time, Um only with a �xed
probability ε. The constraint guarantees a service level agreement (SLA)
that the application �nish time will exceed local execution time (Um) with
maximum probability ε while o�oading to cloud in unpredictable channel
conditions. We express this as a chance constrained optimization problem:

Min E[Tm]

subject to: P(Tm > Um) ≤ ε (8.1)

We now explain the nature of this optimization problem. Since there are
some tasks in the DAG that must be executed onM0, there may be multiple
send and receive migrations to the cloud server. We consider these migrations
in pairs. A send migration o�oads the data needed by an o�oaded method
from M0 to M1, while a receive migration sends data back from M1 to
M0. Corresponding to every send migration of a method, we can therefore
uniquely associate a receive migration of another method before the next send
migration is initiated. We leverage on this pairwise send-receive association
to build the foundation of our theory. In our work, for the sake of simplicity,
we use a migration to denote a send-receive association pair. Then, we de�ne
the event of failure of a single migration as �execution time greater than local
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execution time". We denote the failure for kth migration attempt as Fk, i.e.
Fk is true if (Tj > Uj) where vj is executed on mobile device. Since the
condition of the channel may change between migrations, it is possible that
after a single migration is completed, the channel condition degrades to allow
no further migrations. Thus, failure of a single migration may lead to failure
of the entire execution. We therefore, rewrite the chance constraint as:

P(
⋃
k

Fk) ≤ ε, (8.2)

where k varies over the number of migrations during the application's execution
from start to �nish. Using inclusion-exclusion principle [110], we rewrite this
as: ∑

k

P(Fk) ≤ ε (8.3)

A conservative way to satisfy Eqn 8.3 is by imposing a failure bound αk on
each migration:

P(Fk) ≤ αk, ∀k such that:
∑
k

αk ≤ ε (8.4)

As before, a single migration consists of two di�erent probabilistic events:
sending a packet to cloud and receiving it back to mobile device. Then, the
total time available for migration to satisfy deadline may be divided up into
three components: sending a packet, executing tasks on cloud and receiving
a packet. Since only sending and receiving are probabilistic events, we de�ne
F s
k and F r

k as failure while sending and receiving respectively. Here, F s
k

and F r
k are de�ned as events denoting failure to send and receive a packet

within an assigned time (to be detailed in the following) that guarantees SLA
satisfaction. As in Eqn 8.4, we bound the probability of failure while sending
and receiving by αsk and α

r
k respectively:

P(F s
k ) ≤ αsk and P(F r

k ) ≤ αrk such that: αsk + αrk = αk (8.5)

We need αsk and αrk that minimizes the overall application �nish time.
We now establish a bound on the number of transmission attempts for each
individual send or receive migration. Let zij be the maximum number of
transmission attempts for a send or receive migration between vi and vj.
The values of αsk and αrk determine the value of zij. We assume a single
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packet of (vi, vj) data contains wij frames. Thus, if migration (either send or
receive) is performed, the actual number of transmission attempts Yij must
satisfy:

wij ≤ Yij ≤ zij (8.6)

We need to �nd values of zij that minimize the overall execution time while
satisfying to satisfy SLA. Increasing zij reduces the failure rate. However,
this also increases the expected application �nish time.

8.4 Solution Approach

In this section, we design a heuristic that minimizes application �nish time.
We denote zsij and z

r
ij as the maximum number of transmission attempts for

send and receive migrations respectively. This requires allowing a maximum
zsij and z

r
ij transmission attempts while sending and receiving packets from

cloud server.
We explain our methodology on zsij. The computation of zrij is similar.

Sending a (vi, vj) packet succeeds only if all of its wij frames are successfully
transmitted. Let Qij be a random variable denoting the number of frames
successfully transmitted in a total of zsij transmission attempts. Then, failure
to send a dependency to the cloud server (F s

k ) occurs when less than wij
frames are transmitted successfully in zsij transmission attempts. We, therefore,
rewrite Eqn 8.5 as follows:

P(Qij < wij) ≤ αsk (8.7)

As discussed before in our channel model, the probability p of successful
transmission remains same while sending frames of a single packet. Thus,
we can treat Qij as a binomial random variable with the parameters zsij and
p, i.e. Qij ∼ Binomial(zsij, p). There is no closed form formula to �nd the
probability of success of at least wij trials in z

s
ij attempts [49]. We, therefore,

�nd an approximate value of zsij using Hoe�ding's inequality [56]. Hoe�ding's
inequality states that for a random variable, Qij ∼ Binomial(zsij, p), the
deviation from the mean t (where t < 0) is bounded by:

P(Qij − E[Qij] ≤ t) ≤ exp{−2t2/zsij} (8.8)
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Algorithm 4 Our channel error o�oading algorithm.
1: procedure Execute-Application(V, E, Um, ε, r)
2: x[1] ← 0
3: k ← 1
4: Execute �rst task v1 on mobile device
5: for all vj ∈ V ready for execution do
6: Get the probability of successful transmission p
7: αk = ε/2k

8: Calculate-Budget(V, E, Um, p, αk, r)
9: Y ← 0
10: for all (vi, vj) ∈ E do

11: Calculate number of frames wij for migration

12: zij = dp(wij−1)(4+
√
2)−ln(αk/2)

2p2 e
13: if x[i] = 0 & mobBudget[j] > cldBudget[j] +zijr then
14: migTime ← Ti - cldBudget[j]
15: x[j] ← 1
16: f ← 1
17: while f ≤ wij & x[j] = 1 do
18: maxAttempts ← migTime / rwij
19: Attempt migration of f th frame maxAttempt times
20: if migration of frame failed then
21: x[j] ← 0

22: Store number of frame transmission attempts in Yij
23: f ← f + 1

24: else if x[i] = 0 & mobBudget[j] ≤ cldBudget[j]+zijr then
25: x[j] ← 0
26: else if x[i] = 1 & mobBudget[j] +zijr > cldBudget[j] then
27: Attempt transmission of frames till successful migration
28: Store number of frame transmission attempts in Yij
29: x[j] ← 0
30: k = k + 1
31: else if x[i] = 1 & mobBudget[j] ≤ cldBudget[j] +zijr then
32: x[j] ← 1

33: Y ← max(Y , Yij)
34: h ← x[j]
35: Execute vj onMh

36: Tj ← Ti + rY + thj

37: procedure Calculate-Budget(V, E, Um, p, αk, r)
38: cldBudget[m] ←∞
39: mobBudget[m] ← Um − t0m
40: C ← {vm}
41: for all vj ∈ C do

42: for all (vi, vj) ∈ E do

43: Let wij be number of frames to migrate (vi, vj)

44: zij ← dp(wij−1)(4+
√
2)−ln(αk/2)

2p2 e
45: mobTime[j] ← max(mobBudget[j] - t0i ,cldBudget[j] - t

1
i - zijr)

46: cldTime[j] ← max(cldBudget[j] - t1i , mobBudget[j] - t
0
i - zijr)

47: mobBudget[i] ← min(mobBudget[i], mobTime[j])
48: cldBudget[i] ← min(cldBudget[i], cldTime[j])

49: C ← C ∪ vi
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We rewrite Eqn 8.7 as shown below to match Eqn 8.8.

P(Qij < wij) ≤ αsk
=⇒ P(Qij − zsijp < wij − zsijp) ≤ αsk

=⇒ P(Qij − E[Qij] < wij − zsijp) ≤ αsk

=⇒ P(Qij − E[Qij] ≤ wij − zsijp− 1) ≤ αsk

=⇒ exp{
−2(wij − zsijp− 1)

zsij
} ≤ αsk

(8.9)

Taking logarithm of both sides of Eqn 8.9, and solving for zsij gives us the
solution:

zsij ≥
4wijp− 4p− ln(αsk) +

√
(4wijp− 4p− ln(αsk))

2 + 8p2(wij − 1)2

4p2

(8.10)
zsij represents the minimum number of send attempts needed to satisfy the
SLA. Since increasing the number of transmission attempts also satisfy the
SLA, we can utilize the inequality

√
a+ b ≤

√
a+
√
b in the above expression

for zsij to get a higher bound on zsij as:

zsij ≥
8wijp− 8p− 2 ln(αsk) + 2

√
2p(wij − 1)

4p2
(8.11)

Eqn 8.11 expresses the SLA constraint for sending (Eqn 8.5) in terms of
number of transmission attempts zsij. z

s
ij being an integer, we write zsij as:

zsij = d8wijp− 8p− 2 ln(αsk) + 2
√

2p(wij − 1)

4p2
e

= dp(wij − 1)(4 +
√

2)− ln(αsk)

2p2
e (8.12)

As discussed earlier, the kth migration also involves receiving a packet
of (vi′ , vj′) from cloud server to mobile device. Solving the SLA constraint
involves �nding both zsij and z

r
i′j′ . Using the same method that we used for

zsij, we �nd the number of transmissions zri′j′ to receive a packet:

zri′j′ = dp(wi
′j′ − 1)(4 +

√
2)− ln(αrk)

2p2
e (8.13)
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So far, we have the values of zsij and z
r
i′j′ in terms of weight parameters

αsk and α
r
k respectively. We need to �nd values of αsk and α

r
k that minimize

total time to send and receive packets, i.e. network time. We note that the
time to send and receive a packet is equal to zsij × r and zri′j′ × r respectively.
Thus, total network time is given by zsij × r + zri′j′ × r. We di�erentiate this
with respect to αsk and set the derivative to 0 to obtain αsk = αrk = αk/2.
Therefore, we replace αsk and α

r
k in the expressions of z

s
ij and z

r
i′j′ respectively

by αk/2:

zsij = dp(wij − 1)(4 +
√

2)− ln(αk/2)

2p2
e (8.14)

zri′j′ = dp(wi
′j′ − 1)(4 +

√
2)− ln(αk/2)

2p2
e (8.15)

The above gives us the values of zsij and z
r
i′j′ needed to satisfy SLA in terms

of αk for the di�erent migrated edges.
We now need to assign values of αk for each migration. The values of

αk must be assigned in a way that satis�es Eqn 8.5. Moreover, the total
number of possible migrations are not known. A conservative strategy is to
choose higher values of αk for the early migrations, since saving time at the
beginning increases the time available for later migrations. Thus, we choose
αk as a geometric distribution, with a ratio of 1/2 as shown below:

αk =
ε

2k
(8.16)

Our heuristic now follows directly from this calculation. It takes as input
the set of tasks V, the set of tasks E, the time deadline Um, failure bound ε
and time to transmit a single frame r. It then executes each task either on
mobile device or cloud server. Whenever a task vj is ready for execution on
the mobile device (M0) or the cloud server (M1), we check whether executing
it on the same machine or migrating it saves time. The time required for
migration is obtained by sensing the channel condition at each step to �nd the
probability p of successful transmission and using it to calculate the number
of transmission attempts zsij and z

r
i′j′ . For simplicity, since zsij and z

r
i′j′ have

the same expressions, we refer to it as zij in our heuristic. If migration is
faster, then a packet of (vi, vj) is migrated. While migrating, sending of a
packet from mobile device to cloud server can be aborted before transmitting
all frames if the number of failures is high. However, this is not possible for
receiving a packet from cloud server to mobile device, since execution must
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�nish on mobile device. The exact algorithm is shown in detail in Algorithm
4.

We now analyze the time complexity of our method. The Procedure
CALCULATE-BUDGET iterates over all dependencies in the application.
Thus, it has a time complexity ofO(|E|). Procedure EXECUTE-APPLICATION
iterates over each task in the graph. For each task, it calls CALCULATE-
BUDGET once. Thus, the total complexity of computing the overall budget
is O(|V||E|) It also has an inner loop that iterates over each dependency of a
single task. Assuming the number of frames to be transmitted as constant,
this has a time complexity of O(|E|). Therefore, total time complexity of
using our algorithm is equal to O(|V||E|). Assuming a constant number of
parallel tasks, and since |V| = m, the time complexity is equal to O(m2).

8.5 Evaluation

In this section, we evaluate the performance of our algorithm using simulation
on both randomly generated graphs and benchmark programs.

8.5.1 Settings

We implement our heuristic at di�erent channel error rates and failure bounds.
To better understand the performance of our algorithm, we implement an
Integer Linear Programming (ILP) based solution which assumes that there
is no channel error. We also implement another ILP-based solution called
oracle which knows in advance the cases in which transmission attempts fail.
We have assumed in our simulation that the channel error rate varies around
the mean with uniform distribution. The simulation parameters are given in
Table 8.2.

8.5.2 Simulation Results

To study the performance of our heuristic, we �rst run the ILP-based solution,
oracle and our heuristic on a set of 10000 randomly generated graphs. We
then compare the failure rate, mean �nish time and energy consumption of
our heuristic with the ILP-based solution and the oracle.

Failure rate We compare the failure rates of the three implementations
to check whether our algorithm satis�es the failure bound. Fig. 8.2 shows
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Parameter Range of Values
Migration time of each packet (r) 50 ms
Server speed compared to mobile device 5 times
Processor power 1 J/s
Network power 0.5 J/s
Number of random graphs 10000
Failure bound 1%
Channel error rate 30%

Table 8.2: Parameters used for each simulation experiment. Unless mentioned

otherwise, these parameters are used in the experiments.
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Figure 8.2: Comparison of failure rate at di�erent levels of channel error (p̄)
using ILP and our heuristic at di�erent failure bounds (ε). Failure represents
a �nish time higher than local execution.

the failure rates under di�erent channel conditions compared to ILP based
solution. We omit the oracle implementation since it knows in advance the
cases of transmission failure and therefore, can never fail. We also do not
show channel error rate of 2%, since the number of failures at 2% is too
small. At channel error rates of 5%, 10% and 30%, the ILP gives a failure
rate of 0.03%, 4.5% and 28.1% respectively. The failure rates for our solution
are bounded within 10% even at 30% channel error, giving a service level
guarantee of 90%. The number of failures in our scheme never exceeds the
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Figure 8.3: Comparison of �nish time at di�erent levels of channel error (p̄)
using ILP and our heuristic at di�erent failure bounds (ε). Oracle solution
represents best possible �nish time for a given level of channel error.

de�ned failure bound ε.
These observations con�rm that since ILP runs a priori, its solution might

lead to worse than expected results while executing the application. Although
our heuristic does not guarantee an optimal solution, it can sense the channel
condition and decide accordingly whether to o�oad. This reduces the number
of failures compared to an ILP. Moreover, when the number of errors in
the wireless channel increases, our heuristic reduces the chances of failure
by o�oading tasks to the cloud. We con�rm this observation by noting in
Table 8.3 that the number of tasks executed on cloud server decreases with
a decrease in failure bound (ε).

We also note that in a few cases the number of failures decreases with
an increase in channel error. However, this decrease in failure at a higher
channel error rate is less than 0.2%, which may be explained by the uncertain
nature of the wireless network.

Finish Time We compare the �nish times of our heuristic with the ILP-
based and oracle solutions. Fig. 8.3 shows the mean �nish time of the
application samples under varying channel error rates. The heuristic has a
better average performance than global optimization solver for channel error
rate greater than 10%. When the channel error exceeds 20%, our heuristic
takes less time than the ILP solution in all cases, with a failure rate of 10%
giving a gain of 18%. Below 20% error, our heuristic provides a solution
within 5% of the ILP solution for all values of ε. At error rate of 50%, the
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ε
p̄

5 10 20 30 40 50

0.1 22 19 14 10 8 7
1 31 28 22 17 14 11
2 34 32 25 20 16 13
5 39 36 30 24 20 16
10 41 39 34 28 23 19

Table 8.3: Percentage of tasks executed on cloud server at di�erent channel
error rates (p̄) and failure bounds (ε).

ILP takes twice the �nish time of our heuristic.
We explain these observations by noting that an ILP obtains the best

possible solution when there is no channel error. Thus at lower levels of
channel error, it performs better, because channel error does not lower �nish
time signi�cantly. When the number of channel errors increases, our heuristic
performs better since it is able to adapt to the channel condition.

Energy Consumption We now investigate the e�ect of our heuristic on
energy consumption of the battery in the mobile device. Since a mobile
device runs on battery, reducing usage of battery energy is important for
mobile users. We assume that execution on mobile device consumes power of
1 J/s, while network transmission takes 0.5 J/s. Fig. 8.4 compares the energy
consumption of our heuristic with the ILP based solution. We note that
energy consumption follows the same trend as �nish time. This is because,
the power consumption of processor system is greater than the network card.
Thus, reducing the number of tasks that are executed on mobile device also
reduces its energy consumption.

8.5.3 Trace-driven Results

To further con�rm that our results are practical, we generate graphs from
execution traces of SPECjvm08 benchmarks. We utilized AspectJ framework
to generate traces of six SPEC benchmark programs: compress, scimark.monte-
carlo, crypto.aes, mpegaudio, scimark.�t.small and cypto.rsa. These benchmarks
were chosen based on the workloads that are most commonly run on mobile
devices. Of these benchmarks, the programs compress, scimark.monte-carlo
and crypto.aes are compute-intensive. The other programs mpegaudio, crypto.aes
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Figure 8.4: Comparison of energy consumption on mobile device at di�erent
levels of channel error (p̄) using ILP and our heuristic at di�erent failure
bounds (ε). We have obtained the energy consumption by assuming that
processor power = 1 J/s and network power = 0.5 J/s.
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Figure 8.5: Comparison of �nish time and failure rate of six di�erent
SPECjvm2008 benchmarks using execution on mobile device (local), oracle
solution, our heuristic and ILP. Each benchmark has been executed 100 times.

and crypto.rsa are input-intensive as they read data from a �le.
Fig. 8.5 show the �nish time and failure rate on each of these benchmark

programs. We note that in each case, the �nish time is lower than the ILP, but
higher than the oracle solution. This con�rms our �nding that our heuristic
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gives a better �nish time in the presence of channel errors. Moreover, for the
input-intensive applications, the ILP solution has a higher �nish time than
local execution. From the failure plot, we also note that the failure rate is
lower than 1% for each of the benchmark programs. This is much lower than
the ILP solution, where the failure rates are all higher than 10%.

These observations con�rm that our adaptive heuristic works on realistic
workloads. Moreover, input-intensive applications require higher number of
migrations, and thus lead to more failures using an ILP-based solution. Our
heuristic can reduce failure while executing input-intensive applications by
reducing the number of tasks executed on cloud server when the channel
error probability is high.

8.6 Conclusion

O�oading of mobile applications to cloud servers can augment the limited
compute capacity of their processors. However, the quality of o�oading
based execution depends on the network parameters, like channel error conditions.
Unbounded retransmissions to handle channel errors can lead to service
degradation as it may end up taking longer than local execution time to
complete the application. In this work, we propose an adaptive algorithm
that tracks the channel error, de�nes a stochastic model to capture channel
conditions, and uses it to adjust the number of retransmissions to deliver
a better service level guarantee in completing an application compared to
optimization solutions. The mean �nish time of an application is also comparable
to typical solutions. We show the e�cacy of our technique on both traces
and randomly generated application pro�les.

Our study has a few limitations. First, we assume that the channel error
during a single migration remains same. This may not hold true in a rapidly
varying channel. However, we have shown through simulation that a rapidly
varying channel a�ects �nish time only when the amount of channel variation
is high. Secondly, our algorithm does not guarantee the minimum possible
expected �nish time. We provide a heuristic that reduces the application
�nish time compared to local execution under di�erent channel conditions.
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Chapter 9

Scheduling with Task Duplication

for Application O�oading

9.1 Introduction

As explained in Chapters 5-8, o�oading frameworks model execution of a
mobile application as a task graph. A task graph consists of a set of vertices
representing the tasks in the application, and a set of edges representing
dependencies between tasks. Each task and dependency is annotated with
one or more cost representing time or energy. The o�oading framework
selects tasks for remote execution at application startup in order to reduce
time and/or energy. Thus, the algorithm used by the o�oading framework
to select tasks needs to be fast and has to generate a good schedule to ensure
quick startup and time and/or energy savings.

In this chapter, we propose utilizing scheduling using task duplication for
execution on mobile device and cloud server. Existing application o�oading
frameworks partition the task graph into two distinct components for execution
on mobile device and cloud server respectively. In this work, we show that
allowing a limited number of tasks to execute on both mobile device and cloud
server reduces the �nish time of application, or makespan. Moreover, unlike
graph partitioning, scheduling using duplication can be done in polynomial
time. Thus, our technique of task duplication leads us to an algorithm
that runs in polynomial time and reduces makespan compared to existing
scheduling techniques.

We illustrate the bene�t of task duplication with an example. Fig. 6.2

120



Figure 9.1: Work�ow of an o�oading framework. Execution of a mobile
application, represented as a task graph, is pro�led to determine the compute
workload of each task. The code partitioning algorithm uses the pro�le as
input to schedule a task locally or on remote server.

shows a task graph, where some tasks marked in gray must execute locally,
while others can be scheduled on the device or remote server. Time to execute
v1, v3, v6 locally is 10ms each, while v2, v4, v5 is 20ms each. Assuming that
the remote server is 5 times faster than the device, time to execute v2, v4, v5

on cloud is 4ms. The communication latency due to data transfer is 10ms
for each edge. With this setting, complete local execution without o�oading
takes 80ms, where v3 and v4 can be executed in parallel on a multi-core
mobile processor. Formulating the problem as an ILP, a solver schedules v1,
v3, v5, and v6 locally, and v2 and v4 remotely, giving a makespan of 78ms.
Now, if duplicate execution is allowed, then v2 can be executed both locally
and remotely, thereby saving the time to transfer data for the dependent
tasks v3 and v4, where v3 is scheduled locally and v4 on cloud. This leads to
a makespan of 70ms, showing the bene�t of task duplication.

The rest of the chapter is organized as follows. Section 9.2 develops
a formulation of the task scheduling problem. Section 9.3 presents the
polynomial task scheduling algorithm, ATOM. Sections 9.4 and 9.5 present
the evaluation of ATOM using simulation and real-world application traces
respectively. Related work is presented in Section 9.6. We conclude in Section
9.7.

121



O�oading
Framework

Optimization
Objective

Constraint
Parameter

Application Type
Solution
Technique

Type of
Solution

Scheduling
Time Complexity

MAUI [31] Energy Time Sequential ILP Optimal Exponential [O(2n)]
CloneCloud [29] Energy Time Concurrent ILP Optimal Exponential [O(2n)]
ThinkAir [70] Energy, Time Concurrent Heuristic No performance bound Polynomial [O(n)]

Hermes [65] Time Energy
Subset of
concurrent

Algorithm Near-optimal Polynomial [O(n4m2)]

Tango [48] Time Concurrent
Heuristic using
duplicate execution

No performance bound Constant

ATOM (Our Work) Time Concurrent
Dynamic Programming

Algorithm
Optimal Polynomial [O(m2n2)]

Table 9.1: Comparison of di�erent o�oading approaches. n and m represent
the number of tasks in the task graph and number of servers in the o�oading
system respectively.

9.2 Problem Formulation

A mobile cloud computing (MCC) system comprises of a mobile device
(denoted by M0) and multiple cloud servers (denoted by Mk, where 1 ≤
k ≤ m). We assume that each of these machines have unbounded number of
processors. Moreover, processors on each machine are homogeneous.

We represent execution of a mobile application as a directed acyclic
graph (DAG) G = (V,E), where the vertex set V represents the set of n
methods or tasks, and the edge set E represents the dependencies among
tasks. A task vj may be executed on one or more of the available machines
Mk(0 ≤ k ≤ m). However, the �rst task v1 and the last task vn must be
executed locally on mobile device M0. Execution of some other tasks may
also be tied to the mobile device, as they may depend on some hardware
such as camera, GPS, etc. Execution of vj on Mk takes tkj time. If for
a dependency (vi, vj), vj is executed on a di�erent machine Mk than vi's
machine Mh, then data associated with (vi, vj) must be migrated to Mk

before vj can begin execution. Migrating this data takes rhkij time. However,
migrating from a di�erent processor within the same machine is assumed to
take negligible time, i.e. rkkij = 0 ∀k = 0, ...m,∀(vi, vj) ∈ E. We assume
that both execution times tkj and migration times rhkij are obtained by prior
pro�ling of the application.

We de�ne makespan as the time T 0
n to �nish execution of the last task

vn on M0. We now de�ne the execution �nish time of each task vj. Let
T kj be the execution �nish time of vj onMk. Let S

k
j denote the time when

execution of vj onMk starts. Then, the �nish time of vj is the sum of start
time Skj and execution time tkj :

∀vj ∈ V,∀k = 0, . . . ,m, T kj = Skj + tkj (9.1)
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(a) A task graph representing a mobile
application. Tasks marked in gray must be
executed locally on the mobile device, while
the remaining tasks can be scheduled locally
or on remote servers.

v1 v2 v3 v4 v5 v6

Mobile device (t0j) 10 20 10 20 20 10

Cloud server (t1j) NA 4 NA 4 4 NA

(b) Execution times of each task.

Figure 9.2: A task graph along with its parameters. We assume a single
cloud server, with a communication time of 10ms between the mobile device
and cloud server for each edge.

V Vertex set of the graph
E Edge set of the graph
vj A task in the application execution graph
v1 First task in the application execution graph
vn Last task in the application execution graph
m Number of servers in the o�oading system
n Number of tasks in the task graph

(vi, vj) A dependency from the task vi to vj
M0 Mobile device
Mk A machine with multiple processors
tkj Execution time of task vj on machineMk

rhkij Time to migrate data of (vi, vj) fromMh toMk

xkj Decision variable indicating execution of vj onMk

T kj Finish time of vj onMk

Skj Start time of vj onMk

Dk
ij Data arrival time of (vi, vj) onMk

T 0
n Finish time of last task on mobile device, i.e. makespan

Table 9.2: Symbols introduced in Section 9.2
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To �nd the start time Skj of vj onMk, we note that vj can start when all its
predecessor vi's are available. Let D

k
ij denote the time when data associated

with (vi, vj) becomes available onMk. Since each machineMk has multiple
processors, a task can be executed as soon as its data is available. Thus, the
earliest start time is equal to the highest value of data arrival time:

∀vj ∈ V,∀k = 0, . . . ,m, Skj = max
(vi,vj)

Dk
ij (9.2)

For the �rst task v1, there are no predecessors. Moreover, it can be executed
only on the mobile device M0. Thus, for the �rst task, we say that start
time onM0 as 0, and all other machinesM1, ... as ∞:

S0
1 = 0,

∀k = 1, ...m, Sk1 =∞ (9.3)

The data arrival time of (vi, vj) is the sum of �nish time T kh of vi on any
Mh and migration time rhkij . However, since vi can execute on manyMh's,
and we are looking for the lowest possible data arrival time, we have:

∀(vi, vj) ∈ E,∀k = 0, . . . ,m, Dk
ij = min

h=0,...,m
(T hi + rhkij ) (9.4)

Eqns 9.1 to 9.4 give us a recurrence relation that computes the minimum
makespan. However, we note that a particular task vj is only executed on one
or moreMk's. Let x

k
j be a decision variable denoting whether vj is executed

onMk, i.e.

xkj =

{
1, if vj is executed onMk, and

0, if vj is not executed onMk.

Then, we rewrite Eqn 9.1 in terms of xkj as:

T kj =

{
Skj + tkj , if xkj = 1,

∞, if xkj = 0.

We need to design an algorithm to choose values of xkj 's that minimizes
makespan T 0

n . We utilize the recurrence relation to design a dynamic programming
algorithm.
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9.3 Our Proposed Algorithm

Our algorithm starts by assuming that each vj is executed on machinesMk's.
Thus, for each vj, the output of its predecessor vi is available on each Mk.
Before execution of vj onMk begins, we need to determine whichMh can
send the data associated with (vi, vj) the fastest. We store the fastest time
when data of (vi, vj) arrives atMk in D

k
ij and store the corresponding value

of h in a lookup table. When all the predecessors vi's have arrived at Mk,
execution of vj can start. This value of time, equal to the maximum value
of Dk

ij across all vi's, is stored in Skj . The time taken to �nish execution of
vj, T

k
j is the sum of start time Skj and execution time tkj . By calculating

recursively the �nish times of each task, we obtain the �nish time of the last
task, or makespan T n0 . Once the makespan is obtained, we use the lookup
table to determine the machinesMh from each output of each predecessor vi's
was used. This lets us get the execution machines of each task. The exact
algorithm is shown in detail in Algorithm 5. Table 9.3 shows the working of
the algorithm on our example task graph shown in Fig. 6.2.

Current
Task

Predecessor
Task

Data Arrival Time Start Time
Location of
Predecessor

Finish Time Data Arrival Time
Start Time of
Current Task

Location of
Predecessor

Finish Time

vj vi D0
ij S0

j Lookup0
ij T 0

j D1
ij S1

j Lookup1
ij T 1

j

v2 v1 10 10 Mobile 30 20 20 Mobile 24
v3 v3 min(30, 22 + 10) = 30 30 Mobile 40
v4 v2 min(30, 22 + 10) = 30 30 Mobile 50 min(30 + 10, 24) = 24 24 Cloud 28

v3 40 Mobile 40 + 10 = 50 Mobile
v5 v4 min(50, 28 + 10) = 38

40
Cloud

60
28

50
Cloud

54

v6 v5 min(60, 52 + 10) = 60 60 Mobile 70

Table 9.3: Table to minimize makespan of task graph shown in Fig. 9.2 used
by Algorithm 5

To analyze the time complexity of ATOM, we �rst analyze Procedure
CALCULATE-MAKESPAN. We note that the loop on Line 4 runs n − 1
times, once for each task in the DAG. The inner loop (on Line 5) runs once
for each predecessor task, i.e. the number of incoming edges in the DAG. Let
the number of such incoming edges to a task vi be di. The loops on Lines 6
and 7 iterate a total of m2 times. Within the innermost loop on Line 7, each
step requires constant (O(1)) time. Thus, total number of steps to run the
procedure is given by:

T1(n) =
n−1∑
i=1

di = O(m2|E|).

125



Algorithm 5 Algorithm ATOM to compute makespan and obtain execution
schedule of an application execution graph. It accepts a DAG G = (V,E)
representing a mobile application as input. It returns the makespan T 0

n and
decision variable xkj indicating whether vj should be executed onMk.

1: procedure Calculate-Makespan

2: T 0
1 ← t01

3: T 1
1 ←∞

4: for j = 2 to n do
5: for all predecessors vi of vj do
6: for all k = 0 to m do
7: for all h = 0 to m do
8: if T ki < T hi + rhkij then
9: Dk

ij ← T ki
10: Lookupkij ← k
11: else
12: Dk

ij ← T ki + rhkij
13: Lookupkij ← h

14: for all k = 0 to m do
15: Skj ← max(i,j)∈E{Dk

ij}
16: T kj ← Skj + tkj
17: if vj is tied to mobile AND k 6= 0 then
18: T kj ←∞

return T

Similarly, Procedure GET-SCHEDULE also has an outer loop running n− 1
times, and an inner loop for each predecessor. Each inner loop requires m
number of times. Thus, time complexity of Procedure GET-SCHEDULE,
T2(n) is also O(m|E|). Therefore, time complexity of our proposed algorithm
is given by:

T (n) = T1(n) + T2(n) = O(m2|E|) +O(m|E|) = O(m2|E|).

Since the number of dependencies is of the order of O(n2), this gives us a
time complexity of O(m2n2), where m and n are the number of servers and
number of tasks respectively.

We now explain how task duplication reduces makespan in our algorithm.
First, we note that a task is duplicated only when new threads are spawned.
When a new thread is spawned, one thread may be faster on the mobile
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device, while the other thread is faster on cloud server. In this case, executing
one or more tasks preceding the spawning of the thread on both mobile device
and cloud server may be faster. For example, in Fig. 9.2, a new thread is
spawned at v2. Thus, v2 has two outgoing edges connecting v3 and v4. If we
execute v2 only onM0 (mobile), then migrating (v2, v4) and then executing
v4 onM1 is slower than executing only v4 onM0. Thus, v4 also executes on
mobile device. If we execute v2 only on M1 (cloud server), then migrating
(v2, v3) back to M0 slows down execution of v3. On the other hand, if we
execute v2 on both M0 and M1, this allows execution of v3 to start much
faster, and also does not require migration of (v2, v3).

Another major advantage of allowing task duplication is that it results in
a polynomial algorithm. This is because allowing the same task to execute
on multiple machines Mk allows us to divide the entire scheduling of task
graphs into smaller scheduling problems. For example, in Fig. 9.2, it is
possible to separately schedule the tasks v1, v2, v3, v5, v6 in one step, and v1,
v2, v4, v5, v6 separately in another step. If any vj is scheduled on two di�erent
machines Mh and Mk, then it can be executed on both. Since scheduling
a linear sequence of tasks is polynomial, using task duplication reduces the
problem to a series of polynomial problems. Thus, the overall scheduling
problem also becomes polynomial when tasks duplication is allowed.

9.4 Simulation-based Evaluation

In this section, we compare ATOM with schedules generated by Integer
Linear Programming (ILP), Tango [48] and local execution. We implemented
the ILP (discussed in Section 9.2), Tango and ATOM on an Intel Xeon
(CPU: E5-2630) 6-core processor system in Java (openJDK 1.7) programming
language. We generated call graphs of di�erent sizes ranging from 10 to 100,
with each size of call graph having 100 random samples each. We study
di�erent performance parameters like makespan, scheduling time, energy
consumption and memory footprint of scheduling algorithms. We use Java
ThreadMXBean interface to measure scheduling time, the energy model
discussed in Section 9.2 to measure energy consumption and Java Instrumentation
to measure memory footprint [112].
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Figure 9.3: Comparison of makespan, scheduling time, energy consumption
and memory footprint of ATOM, ILP, Tango and local execution.

9.4.1 Performance Comparison

Makespan We compare the makespans of di�erent algorithms. Fig. 9.3(a)
shows the makespan for di�erent number of tasks in the application graph.
We note that ATOM provides the smallest makespan, followed by Tango, ILP
and local execution. This is because ATOM always provides the optimal
makespan, and thus its maskespan must be the smallest across di�erent
methods for any given application.

Scheduling Time Fig. 9.3(b) shows the scheduling time of ATOM and
ILP for di�erent number of tasks from 10 to 100. We omit Tango and local
execution here since these techniques do not need to run any scheduling
algorithm during startup. We note that for smaller applications with less
than 40 tasks, an ILP is faster. For larger applications, the scheduling time
of an ILP increases rapidly. This is because solving an ILP takes exponential
time, whereas ATOM is a polynomial algorithm.

Energy Consumption Fig. 9.3(c) shows the energy consumption using the
four di�erent methods. We note that an ILP consumes the least amount
of energy, followed by ATOM, local execution and Tango. This is because
ATOM uses task duplication to save time. However, this consumes additional
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Figure 9.4: Comparison of makespan of ATOM with an ILP formulation to
obtain the e�ect of task duplication. The ILP formulation does not use task
duplication.

energy on mobile device, since this requires both local execution and migration.
Thus, Tango consumes the highest energy, since it duplicates all tasks on both
mobile device and server.

Memory Footprint Fig. 9.3(d) shows the memory footprint of ATOM and
ILP. To account for the large di�erences in memory footprint, we plot it on a
logarithmic scale. We once again note that running ATOM consumes much
smaller memory than an ILP. This is because an ILP formulation requires
storing a large matrix as input. The space complexity of ATOM is linear
with additional memory only being used to store the start times, �nish times
and execution platforms of each task.

9.4.2 E�ect of Task Duplication

We now study the amount of task duplication performed by ATOM, and its
e�ect on the makespan. We note that unlike general DAGs, tree-structured
graphs do not require any task duplication to minimize makespan. Thus, we
generate random general DAGs for these experiments.

Makespan To understand the e�ect of task duplication on makespan, we
utilize the formulation described in Section 9.2. In the formulation described
in Section 9.2, we add an additional constraint to ensure that no task redundancy
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is used:

∀vj ∈ V,
m∑
k=0

xkj = 1 (9.5)

We then compare the makespan given by the ILP with ATOM.
Fig. 9.4(a) shows the di�erence in makespan using the ILP and ATOM

for di�erent number of tasks. We note that ATOM has a lower makespan
than the ILP in each case. Moreover, the di�erence in makespan increases
with an increase in the number of tasks. Thus, for 10 tasks, ATOM has 12%
lower makespan than the ILP. For 100 tasks, this increases to 25%.

This observation is explained by noting that task duplication reduces
makespan. The increase in time saving with an increase in size of DAG also
shows that task duplication saves more time for larger DAGs. This is because
larger graphs have more scope for exploitation of parallelism, which can be
better exploited with lower costs using task duplication.

Amount of task duplication Fig. 9.4(b) shows the amount of task duplication
performed by ATOM for di�erent amounts of available parallelism. We note
that when out-degree is equal to 1, the application is completely sequential.
Thus, no task duplication is used. The amount of task duplication reaches a
peak of around 10% when the maximum out-degree is 5. Further increase in
out-degree of tasks slightly reduces the amount of task duplication.

This observation con�rms that task duplication reduces makespan by
reducing communication cost of parallel execution. When there is more
concurrency in the application, more parallelism can be utilized by utilizing
more duplication. Thus, when more threads are spawned, the task amount
of duplication increases.

9.5 Trace-Based Evaluation

We perform trace-driven simulation on benchmark programs, and compare its
performance with other algorithms. To obtain traces from any available Java
program, we utilize aspect-oriented programming using AspectJ framework
[68]. AspectJ allows programmers to add additional code at the call points of
each method through bytecode-level modi�cations. We use AspectJ to obtain
the traces of each method call. We also serialized arguments of each method
and printed the size of arguments. This gives us the amount of data required
to migrate at any particular call point. Finally, we calculated the time taken
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Figure 9.5: Comparison of energy consumption of SPEC benchmarks using
ILP, ATOM, Tango and local execution.

to execute each method using Java's ThreadMXBean interface [112]. We use
these data to annotate the call graph. We identify the methods that require
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access to user input or output device (such as println method) as native.
We perform our experiments on nine selected SPEC JVM benchmarks

[108]. The nine benchmarks are selected because they mirror mobile workloads.
Thus, we use traces of SPEC JVM benchmarks to get results that are
representative of those on real workloads.

9.5.1 Makespan

To understand the e�ect on execution time, we obtain the makespan or
application �nish time using ILP, ATOM, Tango and local execution. We
use a constant bandwidth of 1 Mbps to run our traces, and a round-trip
time (RTT) of 50ms. Fig. 9.5(a) shows the e�ect of the four methods on
makespan. We note that ATOM reduces the makespan by 15% compared
to local execution, and 10% compared to Tango. Moreover, ATOM and ILP
gives us almost the same makespan in each case.

9.5.2 Scheduling Time

We now compare the scheduling time of ILP and ATOM in Fig. 9.5(b). We
note that the average scheduling time is less than 0.2s for ATOM. This is
much lower than an ILP, which requires an average of over 1s of scheduling
time. ATOM reduces the average scheduling time of applications by around
8 times.

9.6 Related Work

To systematically study the varieties of job scheduling problems, they are
classi�ed based on machine architecture (α), task model (β) and optimization
objective (γ) [51]. This classi�cation scheme is referred to as α|β|γ model,
based on the three parameters of classi�cation. We explain related scheduling
algorithms in the context of this scheme.

In our machine architecture, communication costs di�er based on the
execution platform of each processor. This is known as a cluster machine
model, and is denoted by P (a, b). Here a denotes the number of clusters,
and b represents the number of processors in each cluster. Thus, in our case,
a = 2 and b = ∞. Precedence constraints between tasks are denoted by
prec, and task duplication is denoted by dup. The objective is to reduce the
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makespan or schedule length of the last task on mobile device TmN . Thus, this
problem is denoted by P (2,∞)|prec, dup|makespan. Most previous studies
have proposed scheduling algorithms for machine models that are either
completely homogeneous or heterogeneous.

Existing Mobile Cloud Computing frameworks fall into two categories
based on their scheduling techniques. MAUI [31] and CloneCloud [29] utilize
an Integer-Linear Programming (ILP) solver to optimally schedule tasks in
exponential time. The alternative approach, used by ThinkAir [70], utilizes
heuristic to schedule tasks. This has a low time complexity, but does not
guarantee minimization of time or energy. Hermes [65] presents an approximation
scheme to minimize makespan within a given energy budget. Tango [48]
uses duplicate execution of all possible tasks on mobile device and server to
speed up applications. Our algorithm ATOM combines the advantages of
Tango and ILP by guaranteeing minimum makespan while having low time
complexity.

9.7 Conclusion

Mobile devices continue to be limited by their compute power. In this setting,
o�oading parts of the application to resource rich remote servers can enable
wide class of applications. Typically o�oading algorithms were designed as
optimization problems solved as Integer Linear Programs, or using heuristics,
thereby lacking performance guarantees, and may scale poorly. We show that
allowing duplicate execution of a few selected tasks leads to a polynomial
time scheduling algorithm that minimizes the total completion time of an
application. Our algorithm ATOM (Algorithm for Time Optimization on
Mobiles) determines a schedule to execute tasks of a concurrent application
with duplication such that makespan is minimized. Our simulation and trace-
driven experiments show that ATOM signi�cantly reduces makespan and
energy consumption while executing in polynomial time.
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Chapter 10

Conclusion

With the increase in the number of connected devices, it has become increasingly
important for emerging wireless applications to provide some performance
guarantee and have high scalability. A large number of such applications
depend on heuristics that may work well in limited circumstances, but may
not scale well or perform well in actual deployments. Thus, it is important for
the algorithms used in such applications to provide some type of performance
guarantees.

In this thesis, we proposed and analyzed algorithms to optimize two
distinct applications in wireless networks. In the �rst part of this thesis, we
speci�cally looked at the application of low-cost spectrum monitoring using
crowdsourced spectrum sensors. The �rst application deals with crowdsourced
spectrum monitoring to detect the source of illegal transmitters. We made
four distinct contributions. We �rst propose using a variant of Maximum
Relevance Minimum Redundance (MRMR) to select the most relevant spectrum
sensors. Although this technique does not give any performance bound with
the optimal, we show using experiments that it performs well in practice.
We also show a technique of combining the local decision of the individual
sensors to get the optimal global decision.

We next propose an algorithm called Auxiliary Greedy Algorithm (AGA)
that selects the sensors that should be run to maximize performance within
a given budget. Although �nding the optimal is NP-Hard, we provide a
performance bound of our algorithm with the optimal. This algorithm utilizes
the idea that a monotonous submodular objective set function can be approximately
maximized using a greedy algorithm.

Our next contribution is to propose selecting sensors using an algorithm
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called Online Greedy Algorithm (NGA). In contrast to the above techniques,
NGA selects the sensors for probing, and utilizes the results of the probe
to probe the subsequent sensors. We show that NGA can be much more
accurate than AGA, albeit at a cost of higher latency.

Our fourth contribution on spectrummonitoring is to improve the e�ciency
of individual sensors by utilizing FPGA-based spectrum sensors. FPGA-
based sensors substantially reduce the energy and latency cost of running the
sensors, leading to a reduction in overall running of a spectrum monitoring
system.

In the second part of this thesis, we deal with computation o�oading from
mobile devices to servers. Our �rst contribution is to thoroughly evaluate the
performance of such o�oading, in diverse network conditions and di�erent
server conditions and applications. We show that in many cases, smaller
devices closer to smartphones can provide lower latency than more powerful
servers hosted in data centers.

Our second contribution is to propose an algorithm that gives a probabilistic
guarantee of �nishing the execution of any given application within the
budgeted time. We show that our algorithm, apart from guarantees, also
provides on average faster execution time than a static optimization solver.

Our third contribution is to propose a dynamic programming based algorithm
to minimize the execution time of a given application. Conventional techniques
use an ILP solver that can take a long time to execute. In contrast, our
algorithm minimizes the execution time in polynomial time. We show that
our algorithm reduces application execution time, while also running in an
order of magnitude than other conventional schedulers.

10.1 Future Work

Our current work on spectrummonitoring focuses on cases where the transmitters
are static in nature. However, recently there have been cases of illegal
transmitters such as GPS spoofers installed in moving vehicles. E�cient
localization and identi�cation of moving transmitters remains a challenge.
We plan to extend our work to such moving transmitters to protect the
spectrum from such illegal users.

With the emergence of paradigms such as fog computing, there is a need
to consider additional Quality of Experience parameters such as cost, amount
of data transmitted, and reliability in case of failures. Currently our work
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focuses on optimizing application �nish time and energy consumption. For
future work, we plan to provide similar scalable performances guarantees for
these other Quality of Experience parameters.
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Appendix A

Proofs of Theorems in Chapter 3

A.1 Proof of Theorem 1

Let T be a given subset of sensors. For simplicity and without any loss of
generality, let use assume that (i) the JPD for H0 has a zero mean, and (ii)
the variance of the JPDs for both H0 and H1 is same (=Σ). T hus, the
JPD for H0 is N(0,Σ) and for H1 is N(p,Σ), where N(µ, σ) is a normal
distribution with mean µ and variance σ, p is the vector (one dimension for
each sensor in T) of means, and Σ is the covariance matrix. To prove the
theorem, we will show the following for a given set of sensors T:

1. Perr(T) = Q(1
2

√
pTΣ−1p), where pT is the transpose of the p vector

and Q() is the tail function.

2. Oacc(T) = 1− Perr(T) is montone and submodular.

The theorem follows easily from the above, as it is well known that greedy
algorithms for a monotone and submodular objective function yield a 63%
approximation [85].

Expression for Perr(T). We start with computing Perr(T|H0), i.e., the
probability that MAP picks H1 (i.e., P (H1|x) > P (H0|x)) when the prevailing
hypothesis in H0, based on an observation vector x from T. We easily get:

P (H1|x) =
1√

2πΣ|
exp[−1

2
(x− p)TΣ−1(x− p)]

P (H0|x) =
1√

2π|Σ|
exp[−1

2
xTΣ−1x]
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Now, the expression P (H1|x) > P (H0|x) is equivalent to P (H1|x)/P (H0|x) >
1 which simpli�es to:

xTΣ−1p >
1

2
pTΣ−1p. (A.1)

We are interested in computing the probability of above expression being
true, given H0. In essence, given H0, we want to compute:

Perr(T|H0) = P (xTΣ−1p >
1

2
pTΣ−1p)

= P (
xTΣ−1p√
pTΣ−1p

>
1

2

√
pTΣ−1p)

= Q(
1

2

√
pTΣ−1p),

where Q is the tail function of the standard Gaussian distribution. The

last equation follows, since in H0, the expression
xTΣ−1p√
pTΣ−1p

has a mean of 0

and a standard deviation of 1. Similarly, we can show that Perr(T|H1) =

Q(1
2

√
pTΣ−1p), since variance of the JPDs in H0 and H1 is same (Σ). Thus,

Perr(T) = Q(1
2

√
pTΣ−1p), and the localization accuracy Oacc(T) is:

Oacc(T) = 1− Perr(T) = 1−Q(
1

2

√
pTΣ−1p) (A.2)

Oacc () is Monotone and Submodular. First, we note that the value of
pTΣ−1p increases monotonically with �growth� (more dimensions) in p. Now,
since Q(z) is a monotonically decreasing function, we get Oacc(T) > Oacc(T∪
{s}). For submodularity, we note that Q(z) is continuous, di�erentiable,

with d2Q(z)
dz2

> 0,∀z > 0. Thus, the rate of reduction of Q(z) reduces with an
increase in z. Thus, Oacc is submodular.

A.2 Counter-Example to Show that Oacc is not

Submodular in General Case

We have the following expression of Oacc:

Oacc =
m∑
i=0

∏
j 6=i

[1− P (MAPij(x) 6= j|Hi)]P (Hi) (A.3)
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Note that since MAPij is the test among the two hypotheses:

Hi : N(pi,Σ) & Hj : N(pj,Σ) (A.4)

We �rst shift the means of both hypotheses so that the mean of Hi is set to
O. This does not a�ect the probability of misclassi�cation, since both the
means are equally shifted. Then, Hi and Hj have means of O and pj − pi
respectively. Now, using Lemma 2, we have the value of Oacc as:

Oacc =
m∑
i=0

P (Hi)
[∏
j 6=i

(1−Q(
1

2

√
(pj − pi)TΣ−1(pj − pi)))

]
(A.5)

For convenience, we denote Q(1
2

√
(pj − pi)TΣ−1(pj − pi)) by Qij. We now

show that Oacc is not submodular using a counter-example. Let there be
three hypothesis H0, H1 and H2 with prior probabilities P (Hi) each equal
to 0.33 and two sensors with the mean vectors [0, 0], [0.5, 0.5] and [1, 1]. Also
assume that Σ is an identity matrix.

We �rst observe that when no sensors are selected, we select one among
the three hypothesis at random, which will be correct only with an expected
probability of 0.33, i.e., Oacc({}) = 0.33. We note that since the two sensors
have identical distributions, we can select the �rst sensor arbitrarily. Now,
after selecting one sensor, and using the fact that each hypothesis has equal
prior, we get the following value of Oacc:

Oacc({s1}) = 0.33[(1−Q12)(1−Q01) + (1−Q12)(1−Q13)

+(1−Q01)(1−Q02)] = 0.3954

Thus, the gain G(s1, {}) = Oacc(sk)− Oacc({}) = 0.0654. Now, we compute
the gain of adding the second sensor. Selecting both sensors, we get the value
of Oacc as:

Oacc({s1, s2}) = 0.33[(1−Q(0.5))(1−Q(0.5)) + (1−Q(0.5))

(1−Q(1)) + (1−Q(1))(1−Q(1))] = 0.58923

Thus, the gain G(s2, {s1}) = Oacc({s1, s2})−Oacc({s1}) = 0.19. We observe
that the gain has gone up from 0.0654 to 0.19 on adding the sensor s1 to our
set. Thus, the objective Oacc is not submodular.
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A.3 Proof of Lemma 1

We prove the lemma in three parts.

Oaux(T) ≤ Oacc(T). This directly follows from an application of Boole's inequality [102]
which states that the probability of a union of events is never greater than
the sum of the probabilities of individual events. In particular, by Boole's
inequality, we have for all i:

P (
⋃
j 6=i

MAPij = j|Hi) ≤
∑
j 6=i

P (MAPij = j|Hi) (A.6)

Then, by multiplying each by P (Hi), summing over all i, subtracting each
side from 1, and noting that

∑
i P (Hi) = 1, we get Oaux(T) ≤ Oacc(T) using

Eq (3.8) and Eq (3.9).

Oacc(T) ≤ 1− 1
k
(1−Oaux(T)). To get this, we utilize the fact that the probability

of a union of events is more than the probability of each of the individual
events. Thus,

P (
⋃
j 6=i

MAPij(x) = j|Hi) ≥ max
j 6=i
{P (MAPij(x) = j|Hi)} ∀i.

We also have the below, as maximum is greater than mean:

max
j 6=i
{P (MAPij(x) = j|Hi)} ≥

1

m

∑
j 6=i

P (MAPij(x) = j|Hi) ∀i,

where 0 ≤ i ≤ m. Now, using Eq (3.8) and the above two equations, we get:

Oacc(T) ≤ 1− 1

m

m∑
i=0

∑
j 6=i

P (MAPij(x) = j|Hi)P (Hi)

= 1− 1

m
(1−Oaux(T)).

The lemma now follows from the following fact, whose proof we omit for
lack of space.

1−Oaux(T ′)

1−Oacc(T ′)
≤ 1−Oaux(T )

1−Oacc(T )
, for any T ′ ⊇ T
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A.4 Independent Sensor Observations

From Theorem 1's proof and notations therein, note that Eq (3.9) can be
written as:

Oaux(T) = 1−
∑
i

∑
j 6=i

Q((pj − pi)Σ
−1(pj − pi)

T )P (Hi), (A.7)

where Q(x) denotes the Marcum Q-function [78]. Now, suppose we wish to
compute Oaux(T ∪ {sk}) for a sensor sk whose observations have a mean of
pki for hypothesis Hi and a variance is σ2

k. Let us denote the argument of
Q() in Eq (3.9) by qij(T). Then, we have the following recurrence relation:

Oaux(T ∪ {sk}) = 1−
∑
i

∑
j 6=i

Q(qij(T ∪ {sk}))P (Hi)

= 1−
∑
i

∑
j 6=i

Q(qij(T) +
pki − pkj

σ2
k

)

We note that computing qij(T) directly using Eq (A.7) takes O(B2) time.
However, we can compute pij(T) incrementally by using the equation

qij(T ∪ {sk}) = qij(T) +
pki − pkj

σ2
k

in constant time. As computing the Q-function takes constant time, the
above reduced the time complexity by a factor of O(B2).

A.5 Proof of Theorem 2

Proof. Let T be AGA solution, and T' be any solution. We have:

Oaux(T) ≥ 0.63Oaux(T′)

(1−Oaux(T) ≤ 0.63(1−Oaux(T′)) + 0.37

(1−Oacc(T) ≤ 0.63k(1−Oacc(T
′) + 0.37

Perr(T) ≤ 0.63kPerr(T
′) + 0.37

We have used Lemma 1 in the third equation above. Let T' be the solution
with optimal Oacc () (and thus, optimal Perr), and the lemma follows.
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