
FlexDisplay: A Flexible Display Framework To
Conserve Smartphone Battery Power

Anshak Goel∗, Deeptorshi Mondal∗, Manavjeet Singh†, Sahil Goyal∗,
Navneet Agarwal∗, Jian Xu†, Mukulika Maity∗, Arani Bhattacharya∗

∗{anshak20283, deeptorshi20294, sahil20326, navneet18348, mukulika, arani}@iiitd.ac.in
†{manavsingh, jianxu1}@cs.stonybrook.edu

∗IIIT-Delhi, †Stony Brook University

Abstract—Despite significant improvements, smartphones are
still constrained by the limited capacity of their batteries. Modern
smartphones tend to use organic light-emitting diode (OLED) dis-
plays, whose energy consumption depends both on the brightness
and the color content. Since the display of smartphones is known
to consume a significant portion of this energy, a number of prior
systems have tried to reduce screen brightness, increase areas of
dark zones on the screen or use colors that consume less energy
to mitigate this problem. However, the amount of energy savings
using these techniques are still limited, as the underlying compute
required to render the content still consumes energy. In this work,
we provide a framework FlexDisplay that disables the display of a
limited portion of the app content, saves the underlying compute
needed to render the content as well as the touch sensors in
the corresponding display area. FlexDisplay supports disabling
of content across multiple apps. We demonstrate it on 15 apps
over different genres and show that the energy savings vary from
10%–47% of the total energy consumption of the smartphone,
depending on the app and the disabled content.

I. INTRODUCTION

The quality of smartphone hardware, such as compute ca-
pability of processors and size of display screen, has increased
significantly over the last decade. However, the capacity of bat-
teries has not increased at the same rate. Thus, smartphones are
still energy-constrained. A number of studies have shown that
high energy consumption has the strongest negative impact on
the quality of experience of users [1]. Thus, it is essential to
find additional ways of conserving battery energy.

A significant proportion of the power consumption comes
from the display of the smartphone. A number of prior studies
have proposed changing the content displayed on smartphone
screens. For example, [2] uses a dark mode that disables colors
from the screen. Focus [3] darkens a part of the screen that
is less important to the experience of users to save power.
Yet another set of works tend to either utilize colors that
consume less energy to display or reduce the brightness of the
screen [4]. As discussed by [2], the power savings obtained
using these techniques is relatively moderate (< 10% of the
total power). This is because these techniques target reducing
only the display power, which only forms a relatively small
portion of the total power in modern smartphones. The limited
savings is due to the fact that these techniques cannot reduce
the computation involved in rendering the content.

Our approach towards energy savings is motivated by a few
observations. First, today’s apps do not allow users to disable
parts of the user interface (UI) even if they are not needed. For
example, video conferencing apps like Google Meet and Skype
allow users to stop their own camera, but do not allow users to
stop rendering the video feeds of other users. Second, although
screen darkening does save some energy, it does not achieve its
full potential in terms of power saving as the content continues
to be rendered. Thus, the CPU and the GPU of the system-on-
chip continues to consume the same power as before. Thus, an
approach that combines disabling parts of the UI along with
the compute needed to render them on the screen is needed to
further save power.

In this work, we design a framework called FlexDisplay
that leverages these insights to enable selective rendering
of UI elements. The first challenge is to implement this
selective rendering design. This selective rendering is designed
to ensure that disabled components do not need to be processed
by the smartphone’s system-on-chip (SoC) CPU. One notable
aspect of FlexDisplay is its ability to provide end-users with
options to disable specific parts of the content based on their
preferences. For instance, users can choose to disable the
video playback window while keeping the audio active. This
allows users to customize their content viewing experience,
conserving power by displaying only the essential information
that is relevant to them.

A second challenge handled by FlexDisplay is that disabling
a part of the display creates a number of problems related
to usability. When a portion of the display is disabled, users
may inadvertently tap on the disabled area, triggering actions
that are not visible or expected. This can lead to confusion
and disrupts the user experience. To overcome this challenge,
FlexDisplay incorporates changes to the Linux kernel. Specifi-
cally, it modifies the kernel to ignore any touch inputs received
on the disabled portion of the screen. By disregarding touch
events within the disabled region, FlexDisplay prevents mis-
tapping by users and eliminates the possibility of unintended
actions being triggered. In addition to mitigating mis-tapping
issues, this approach also contributes to energy savings. By
ignoring touch inputs in disabled areas, FlexDisplay reduces
the unnecessary processing and power consumption associated
with handling unintended touches.



Touch-screen OLED Display

Touchscreen

driver
Hardware

Composer

Window Manager

Service

Apps FlexDisplay AppApp Layer

Framework

Kernel Layer

Hardware

Layer

Config

file

2

3

4

UI Element

Aliases

(Pre-runtime)
1

Fig. 1: Architecture of FlexDisplay in the context of the entire
Android software stack. The blocks in green are the ones that
FlexDisplay has added or modified.

By utilizing these techniques, FlexDisplay has the potential
to generalize power-saving techniques to a large number of
apps across various categories. This approach streamlines the
process, reduces the burden on app developers, and empow-
ers users to customize their power-saving settings according
to their specific needs and preferences. We evaluate the
power savings using FlexDisplay. Our evaluation includes apps
across a wide range of categories, such as news, shopping,
video streaming, video conferencing, camera, sport, social
networking, and podcast. We obtain a power saving of 10.11%
– 47.47% (median: 14.59%) of the total power consumption,
with the smallest and largest savings coming from the Wall
Street Journal (news category) app and Skype (video con-
ferencing category) respectively. This shows that FlexDisplay
drastically saves power and prolongs battery life.

II. OVERVIEW OF FLEXDISPLAY

FlexDisplay is designed in four major steps as shown in
Fig. 1. The first step involves associating the UI elements
visible to the user on the display with their corresponding class
names. This association helps in identifying and referencing
specific UI components. The second step entails obtaining user
feedback on their comfort level in disabling parts of the UI.
Users are given the option to specify which parts of the UI
they are comfortable with disabling. The outcome of these two
steps is the generation of a configuration file. In the third step,
the configuration file is utilized by the modified View System
to determine whether to render a particular UI component or
not. This decision is based on the user’s preferences outlined in
the configuration file. In the fourth step, the configuration file
is once again utilized, but this time to disable touch input on
the corresponding portions where rendering has been disabled.
This is achieved by modifying a kernel module responsible for
handling the touchscreen in the hardware.

To finish all these steps, FlexDisplay upgrades multiple
layers of mobile operating system (Fig. 1). That includes OS
Framework Layer, to include the modifications to the View
System within the Android Framework; Hardware Abstraction
Layer, to disable mis-tapping via changes to touchscreen driver
module. Finally, it makes additional changes to the application
layer, as FlexDisplay also offers an application app for users
to selectively choose which UI to disable.

III. IMPLEMENTATION OF FLEXDISPLAY

We now discuss in detail the implementation of each of the
four steps of FlexDisplay.
1. Building Naming Aliases of UI Elements: The first
challenge of FlexDisplay is to enable intuitive specification
of the UI elements that could be disabled. We achieve this by
identifying all the class files corresponding to the UI elements
by using a tool LayoutInspector [5], which is packaged with
Android Studio. The LayoutInspector provides an interface
where a single click on any UI element shows the correspond-
ing class. Note that this tool does not need access to the source
code, thus enabling its use on all apps on the play store.
2. Customizing UI for Partial Display: It is in general
not feasible for a user to directly modify the class methods,
because that requires significant programming background and
context. Thus, we have developed a FlexDisplay app that
empowers users with the ability to toggle the inclusion or
exclusion of images or videos for any app. This specialized
FlexDisplay app examines the configuration file and allows
users to easily enable or disable images and videos for each
individual app according to their preferences. By presenting
a user-friendly interface, the app simplifies the customization
process, offering a straightforward way for users to indicate
their desired settings.
3. Updating and Reading of Configuration: FlexDisplay
then stores the updated configuration in a common directory
on the local SD card of the device. The decision to store
the configuration file in a common directory rather than
individual app directories is primarily driven by Android’s
security restrictions. Android imposes limitations on accessing
app directories from third-party apps to ensure data privacy
and maintain the security of each app’s data. By storing the
configuration file in a common directory, the system creates a
bridge that facilitates the transfer of user configurations across
different apps. The next two components can then load it as a
special file within the privileged file system group, to identify
the UI elements and regions that need to be disabled.
4. Disable UI Rendering: After a user has completed the
UI customization, FlexDisplay would disable the dedicated UI
rendering for power saving. We add a separate thread to the
View class to read the config file once every second, and iden-
tify if rendering of any UI element needs to be disabled. The
View class stands for the basic unit for each UI element, such
as a button, a image, or a video frame, etc. Each View class
has function calls that are responsible for rendering the UI.
For example, invalidate, draw, and updateDisplayListIfDirty
functions. Consequently, these function calls are specifically
designed to handle the rendering of respective UI elements.

In order to disable UI rendering at the View level, we
introduce a new class named DisableView within the Android
framework. This DisableView class overrides the existing
versions of the invalidate(), draw(), and updateDisplayLis-
tIfDirty() function calls. The key difference is that the Dis-
ableView versions of these function calls include an additional
check to determine whether the user or developer has disabled



App Category Disabled Part(s) App Name Original
Power (W)

FlexDisplay
Power (W)

FlexDisplay
Saving (%)

Reuters 1.282 1.062 17.16
Wall Street Journal 1.68 1.51 10.12
Google News 1.45 1.294 10.76News Images in articles

InShorts 1.904 1.686 11.45
Zomato 1.816 1.576 13.22Shopping Preview images of products Ebay 1.588 1.386 12.72
Google Meet 4.65 2.48 46.67Video

Conferencing Video of other participants Skype 3.674 1.93 47.47
Youtube 1.494 1.276 14.59Video

Streaming
Parts of the screen

that streams or runs the video HotStar 1.82 1.562 14.18
Camera 4.37 3.014 31.03Camera Video preview OpenCamera 5.4 3.822 29.22

Sport Images of articles & videos of discussions Cricbuzz 1.318 1.172 11.08
Social Network Profile photo & Images shared Twitter 1.326 1.086 18.1
Podcast Album cover for songs Spotify 0.952 0.738 22.48

TABLE I: A list of apps, their categories, its display parts disabled, and power savings obtained using FlexDisplay.

UI rendering through the configuration file. If UI rendering
has been disabled, the DisableView class immediately returns
without proceeding to render the UI. On the other hand,
if UI rendering is not disabled, the View class calls the
original methods defined within it to render the UI elements
as usual. Since the View class is applicable to all UI elements,
introducing the DisableView class into the View class ensures
that this solution scales and applies to all UI elements across
all apps. Hence, the UI render can be automatically disabled
once the user completes the UI customization.
5. Disable UI touching interaction: Once the rendering of
a specific UI element is disabled, the UI element will no
longer be rendered or displayed on the screen. However, this
can result in the app having blank space, which may confuse
users if they accidentally click/scroll/tap on it and find it still
responsive. Therefore, it is necessary to disable the touch
interaction for those corresponding invisible UI elements. By
disabling the touch functionality, users will no longer be
able to interact with the empty space, thereby avoiding any
confusion or unintended actions.

Note that such changes in the device driver of kernel is
device-specific, i.e. it comes at the cost of portability. This
is because each device driver has its own way of handling
touch. In our implementation on the Google Nexus 6P phone,
we utilized the Synaptics touch module [6]. Although the part
of the code where we check the touching region is device-
specific, we expect the touch modules of other smartphones
to be very similar in nature as the information from the upper
layers come in the same form into all touchscreen drivers.

IV. EVALUATION

We first discuss the power savings using FlexDisplay. Table
1 shows a total of 15 apps across 7 different categories. We use
a Monsoon Power Monitor [7] to measure the power consump-
tion. Since power fluctuates over time, we run the app, take
the measurements for two minutes, and take the average over
these two minutes. Further, we take measurements in five such
iterations and report the mean power savings. We performed
all the experiments on a Google Nexus 6 smartphone. Its
display is of size 5.96 inches, 97.9 cm2, with resolution
of 1440 × 2560 pixels and 16 : 9 ratio. It has Qualcomm

APQ8084 Snapdragon 805 (28 nm) chipset with CPU as Quad-
core 2.7 GHz Krait 450 and GPU as Adreno 420.

The last three columns of Table 1 further shows the power
savings obtained on each app. We note that the amount of
power saved exceeds 10% in each of the apps. Note that this
power saving is based on comparison of the total power, even
though FlexDisplay optimizes only the display stack. Further-
more, the amount of power saved is especially high (exceeding
30%) for the camera and video conferencing apps, which
are most power-intensive. This is because playing videos
consume higher power. We conclude that FlexDisplay can
save significant amount of power, thus showing its potential
to prolong the battery lives of smartphones.

We also show the impact of disabling UI elements on a total
of three representative apps – Spotify, Youtube and Zomato.
Fig. 2 shows the screenshots with both FlexDisplay enabled
and disabled. We note that in both Spotify and Zomato, it is
still possible to access all the UI elements and interact as usual.
This indicates that for such cases, it is possible to still utilize
these apps with all its functionalities. For Youtube, only audio
is available, and video is disabled, but all the other controls
are available. This makes it ideal in case a user plans to utilize
it for listening to music.

V. RELATED WORK

A number of prior works try to save energy by optimizing
the display of smartphones. For example, [8] and [9] both vary
refresh rates on the display, depending on the content. The
rise of OLED displays allowed additional optimizations, as
darkening of pixels of them save significant amount of energy
[2]. For example, brightness dimming [10], [11] is available on
almost all modern smartphones to reduce energy consumption.
ULPM [12] extends it by allowing users to interact without
displaying any content on the smartphone display. Focus [3]
reduces the brightness based on the importance of different
content to users. FingerShadow [13] darkens pixels close to
the user’s fingers during their interaction as these pixels are not
perceived by the users. ShutPix [14] develops a library that can
reduce the density of pixels of some apps. FlexDisplay utilizes
similar strategies, but goes further than these studies by also
disabling the rendering to save significantly more energy.



Fig. 2: Effect of using FlexDisplay on the appearance of three apps – Spotify, Youtube and Zomato.

A few additional works also target the display content of
specific apps. For example, Flash [15] identifies the important
content when users scroll through web pages. Peo [16] opti-
mizes the brightness level of smartphone display based on the
video streamed to the user. LpGL [17] optimizes the brightness
levels for virtual reality content. Chameleon [4] designs a
color-adaptive web browser that changes the colors of the
rendered web pages to conserve energy. These optimization
techniques are orthogonal to that of FlexDisplay.

VI. CONCLUSION & FUTURE WORK

Low battery anxiety is a major cause for concern among
users of smartphones. A key reason behind battery wastage is
that apps tend to render content that is not necessary for many
users. In this work, we propose FlexDisplay to allow users to
selectively disable rendering parts of the user interface. Flex-
Display further avoids mis-taps of the users by ignoring the
user inputs in such disabled parts of the touchscreen. Flex-
Display functions by changing multiple layers of the Android
software stack, including the app layer, View system at the
framework layer and the kernel layer. Our preliminary results
show the significant power savings achieved. Our future work
would involve:
1) Reduction of Developer Effort: FlexDisplay requires

manual mapping of each individual UI element. We plan
to automate this process to minimize human involvement.

2) Evaluation of User Experience: While FlexDisplay’s
usage looks intuitive, we plan to perform systematic user
studies to evaluate its usability.

3) Quantification of Power Overhead: We have shown that
FlexDisplay saves significant power. However, it also intro-
duces the overhead of reading the configuration file from
the external storage frequently, which consumes additional
power. We plan to quantify the overhead of this step to
further our understanding of power savings.

We further plan to perform user studies and apply FlexDisplay
on additional smartphones to further understand its impact on
power consumption and user experience.

REFERENCES

[1] M. Hort, M. Kechagia, F. Sarro, and M. Harman, “A survey of
performance optimization for mobile applications,” IEEE Transactions
on Software Engineering, vol. 48, no. 8, pp. 2879–2904, 2022. doi:
10.1109/TSE.2021.3071193

[2] P. Dash and Y. C. Hu, “How much battery does dark mode save?
an accurate oled display power profiler for modern smartphones,” in
Proceedings of the 19th Annual International Conference on Mobile Sys-
tems, Applications, and Services, 2021. doi: 10.1145/3458864.3467682
p. 323–335.

[3] K. W. Tan, T. Okoshi, A. Misra, and R. K. Balan, “Focus: A usable and
effective approach to oled display power management,” in Proceedings
of the 2013 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing, 2013. doi: 10.1145/2493432.2493445 p. 573–582.

[4] M. Dong and L. Zhong, “Chameleon: A color-adaptive web browser for
mobile oled displays,” IEEE Transactions on Mobile Computing, vol. 11,
no. 5, pp. 724–738, 2012. doi: 10.1109/TMC.2012.40

[5] “Layout inspector,” accessed on May 24, 2023. [Online]. Available:
https://developer.android.com/studio/debug/layout-inspector

[6] “Synaptics dsx touchscreen driver,” accessed on May 24, 2023. [Online].
Available: https://github.com/synaptics-touch/synaptics-dsx-i2c

[7] “Monsoon power monitor,” accessed on May 24, 2023. [Online].
Available: https://www.msoon.com/high-voltage-power-monitor

[8] D. Kim, N. Jung, and H. Cha, “Content-centric display energy man-
agement for mobile devices,” in Proceedings of the 51st Annual Design
Automation Conference, 2014. doi: 10.1145/2593069.2593113 p. 1–6.

[9] M. Matei, “Samsung patents new energy-efficient display refresh rate
technology,” published on Jul 28, 2022; Accessed on Mar 8, 2023.

[10] D. Shin, Y. Kim, N. Chang, and M. Pedram, “Dynamic driver supply
voltage scaling for organic light emitting diode displays,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, no. 7, pp. 1017–1030, 2013. doi: 10.1109/TCAD.2013.2248193

[11] Z. Yan and C. W. Chen, “Rnb: Rate and brightness adapta-
tion for rate-distortion-energy tradeoff in http adaptive streaming
over mobile devices,” in Proceedings of the 22nd Annual Interna-
tional Conference on Mobile Computing and Networking, 2016. doi:
10.1145/2973750.2973780 p. 308–319.

[12] J. Xu, S. Zhu, A. Balasubramanian, X. Bi, and R. Shilkrot, “Ultra-
low-power mode for screenless mobile interaction,” in Proceedings
of the 31st Annual ACM Symposium on User Interface Software and
Technology, 2018. doi: 10.1145/3242587.3242614 p. 557–568.

[13] X. Chen, K. W. Nixon, H. Zhou, Y. Liu, and Y. Chen, “Fingershadow:
An oled power optimization based on smartphone touch interactions,” in
Proceedings of the 6th USENIX Conference on Power-Aware Computing
and Systems, 2014, p. 6.

[14] Z. Yan and C. W. Chen, “Too many pixels to perceive: Subpixel shutoff
for display energy reduction on oled smartphones,” in Proceedings
of the 25th ACM International Conference on Multimedia, 2017. doi:
10.1145/3123266.3123344 p. 717–725.

[15] H.-C. Chang, Y.-C. Yang, L.-Y. Yu, and C.-H. Lin, “Flash: Content-
based power-saving design for scrolling operations in browser appli-
cations on mobile oled devices,” in 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), 2019. doi:
10.1109/ISLPED.2019.8824875 pp. 1–6.

[16] C. Qian, D. Liu, and H. Jiang, “Harmonizing energy efficiency
and qoe for brightness scaling-based mobile video streaming,” in
2022 IEEE/ACM 30th International Symposium on Quality of Service
(IWQoS), 2022. doi: 10.1109/IWQoS54832.2022.9812899 pp. 1–10.

[17] J. Choi, H. Park, J. Paek, R. K. Balan, and J. Ko, “Lpgl: Low-power
graphics library for mobile ar headsets,” in Proceedings of the 17th
Annual International Conference on Mobile Systems, Applications, and
Services, 2019. doi: 10.1145/3307334.3326097 p. 155–167.

https://doi.org/10.1109/TSE.2021.3071193
https://doi.org/10.1109/TSE.2021.3071193
https://doi.org/10.1145/3458864.3467682
https://doi.org/10.1145/2493432.2493445
https://doi.org/10.1109/TMC.2012.40
https://developer.android.com/studio/debug/layout-inspector
https://github.com/synaptics-touch/synaptics-dsx-i2c
https://www.msoon.com/high-voltage-power-monitor
https://doi.org/10.1145/2593069.2593113
https://doi.org/10.1109/TCAD.2013.2248193
https://doi.org/10.1145/2973750.2973780
https://doi.org/10.1145/2973750.2973780
https://doi.org/10.1145/3242587.3242614
https://doi.org/10.1145/3123266.3123344
https://doi.org/10.1145/3123266.3123344
https://doi.org/10.1109/ISLPED.2019.8824875
https://doi.org/10.1109/ISLPED.2019.8824875
https://doi.org/10.1109/IWQoS54832.2022.9812899
https://doi.org/10.1145/3307334.3326097

	Introduction
	Overview of FlexDisplay
	Implementation of FlexDisplay
	Evaluation
	Related Work
	Conclusion & Future Work
	References

