
A Deadline-Aware Scheduler for 
Smart Factory using WiFi 6

Mohit Jain, Anis Misra, Andreas Wiese,
Syamantak Das, Arani Bhattacharya, Mukulika Maity

ACM MobiHoc 2024

Indraprastha Institute of 
Information Technology Delhi



Smart Factories are Considered to be 
Factories of the Future

2

Collects data from 
multiple sensors



Smart Factories are Considered to be 
Factories of the Future

2

Collects data from 
multiple sensors

CPU + Storage for
intelligent decisions



Smart Factories are Considered to be 
Factories of the Future

2

Collects data from 
multiple sensors

Requires reliable and real-time communication over wireless network
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intelligent decisions



WiFi 6/6E and 5G Offer the Best Potential to 
Enable Smart Factories
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Uses centralized structure, with prioritization 
and resource reservation for classes of traffic

Support for smart factories widely studied

Expensive; access to large compute power

5G

WiFi 6

Traditionally decentralized; unlicensed spectrum

WiFi 6 has introduced partially centralized 
control: a specific type of broadcast packet 
allows access point (AP) to centrally control

Low cost of setup and operation make WiFi 6 attractive for smaller factories



Requirement of Smart Factories
Specific properties that make this problem unique

4

Characterized by



Requirement of Smart Factories
Specific properties that make this problem unique

4

Packets have known fixed deadlines

Characterized by



Requirement of Smart Factories
Specific properties that make this problem unique

4

Packets have known fixed deadlines

!!! vs ! Some packets are highly critical, 
others are only good to deliver

Characterized by



Requirement of Smart Factories
Specific properties that make this problem unique

4

Packets have known fixed deadlines

!!! vs ! Some packets are highly critical, 
others are only good to deliver

Packets arrive periodically, in 
known fixed intervals distinct for 
each user

Characterized by



Requirement of Smart Factories
Specific properties that make this problem unique

4

Packets have known fixed deadlines

!!! vs ! Some packets are highly critical, 
others are only good to deliver

Packets arrive periodically, in 
known fixed intervals distinct for 
each user

These properties can be used to design intelligent scheduling of packets

Characterized by
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Packets have known fixed deadlines

!!! vs ! Some packets are highly critical, 
others are only good to deliver

Packets arrive periodically, in 
known fixed intervals distinct for 
user each 

Other examples include metal processing and bottle filling
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Frequency
Bandwidth is split 
into discrete RUs

Mapped to packets
from distinct users
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Time

Time

TxOP

TxOP

✘ 

Tx User 1

Tx User 2

Time

Time

Tx User 1

Tx User 2

Time

Time

✘ 

Parallel transmissions 
must finish within TxOP

Start of each transmission 
must be synchronized

1

2 3
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DPMSS: Deadline-aware Parallel Machines 
Scheduling with Synchronized Start

!!! vs !Have

Deadline Profit value Regeneration time

∑

Maximize

Map to

Tx Power

Frequency Time

Time intervalRU Tx

<RU, time interval>

Can be formally defined as an integer linear
programming problem, with decision 
variables being RUs and time intervals used
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Simple Approach of Scheduling based on 
Deadline Provides Poor Results
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Better strategies of scheduling are needed to avoid dropping of critical packets

Significant number of 
drops of critical 

packets observed

High number of 
packet losses

Represent trace of 
different factories



Content

• Introduction and Problem Formulation: Using WiFi 6 in Smart Factory

• Solution Approach

• Results

• Summary
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Obvious Solution: Group jobs/packets of similar 
deadlines and profits, and then choose the right 
RU/machine for each group

Can perform arbitrarily bad compared to optimal

!!! vs !Have

Deadline Profit value Regeneration time

∑

Maximize

Novel problem even in the context of scheduling due to synchronized start
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Feasible Solution:
(1) Disjoint time intervals
(2) A set of packets/jobs mapped to a set of RUs/machines for each time interval

Within an interval, no machine is assigned for than a job
Total bandwidth allocated within be within the budget
No job belongs to two time intervals

DPMSS is (strongly) NP-Hard
 Follows from single machine non-preemptive scheduling



Algorithmic Strategy: first for fixed RUs

12

Start from first interval, 
i.e. l = 1, t = 0

𝑙 ≤ 𝛿
&& 𝑡 ≤ 𝑇 − 𝑙

Compute machines and 
job mapping that give 

max profit w for interval



Algorithmic Strategy: first for fixed RUs

12

Requires finding optimal 
configuration of jobs with slots 

and machines;  requires 
maximum bipartite matching

Start from first interval, 
i.e. l = 1, t = 0

𝑙 ≤ 𝛿
&& 𝑡 ≤ 𝑇 − 𝑙

Compute machines and 
job mapping that give 

max profit w for interval



Algorithmic Strategy: first for fixed RUs

13

w’: profit of jobs selected 
in conflicting interval

Remove conflicting job; 
add current job & interval

Choose next interval

w’ > 2w



Algorithmic Strategy: first for fixed RUs

13

First increase starting time of interval; 
if reached, then go back to first starting 

time and then increase interval size

w’: profit of jobs selected 
in conflicting interval

Remove conflicting job; 
add current job & interval

Choose next interval

w’ > 2w



Algorithmic Strategy: first for fixed RUs

14

w’: profit of jobs selected 
in conflicting interval

Remove conflicting job; 
add current job & interval

Choose next interval

𝑙 ≤ 𝛿
&& 𝑡 ≤ 𝑇 − 𝑙

Compute machines and 
job mapping that give 

max profit w for interval

𝑙 ≤ 𝛿
&& 𝑡 ≤ 𝑇 − 𝑙w’ > 2w



Properties of our Algorithm

• Our algorithm is feasible
• No conflicting intervals are chosen

• Only admissible jobs are chosen

• Process of local search
• We look at smaller intervals first, and schedule as much as we can

• A larger interval is acceptable only if it provides twice as much profit

• DPMSS provides a 12-approximate solution

15
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Enumeration across four categories of packets:
• J1 – Jobs/Packets never chosen by DPMSS; chosen by optimal solution
• J2 – Jobs/Packets added initially but then discarded; also chosen by optimal solution
• J3 – Jobs/packets that are present in DPMSS; also chosen by optimal solution
• J4 – Jobs/Packets that are present in DPMSS; not chosen by optimal solution
• w(J*) = w(J1) + w(J2) + w(J3); w(Ja) = w(J3) + w(J4)

Idea of 12-Approximation
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Enumeration across four categories of packets:
• J1 – Jobs/Packets never chosen by DPMSS; chosen by optimal solution
• J2 – Jobs/Packets added initially but then discarded; also chosen by optimal solution
• J3 – Jobs/packets that are present in DPMSS; also chosen by optimal solution
• J4 – Jobs/Packets that are present in DPMSS; not chosen by optimal solution
• w(J*) = w(J1) + w(J2) + w(J3); w(Ja) = w(J3) + w(J4)

Lemma 1: w(J1) ≤ 5[w(J2) + w(J3) + w(J4)]
Obtained by enumerating all possible intervals

Lemma 2: w(J2) ≤ w(Ja)
Obtained by quantifying the highest possible profit that is lost by discarding

Theorem: DPMSSF provides a 12-approximate solution
w(J*) ≤ 12 w(Ja)

Idea of 12-Approximation



Generalizability to Heterogeneous RUs

• Adds a knapsack constraint to bipartite matching
• Best configuration can no longer be solved by bipartite matching

• Can be solved using a polynomial task-approximation scheme (PTAS)
• Leads to (12 + ε)-approximation for DPMSS

• In practice, we solve using exhaustive search
• Most cases solved within 300 ms and all cases within 1s on Raspberry Pi 3B 17

vs

Frequency Frequency

Tx Power Tx Power
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w’: profit of jobs selected 
in conflicting interval

w’ > 2w

Remove conflicting job; 
add current job & interval

Choose next interval

𝑙 ≤ 𝛿
&& 𝑡 ≤ 𝑇 − 𝑙

Compute machines and 
job mapping that give 

max profit w for interval

𝑙 ≤ 𝛿
&& 𝑡 ≤ 𝑇 − 𝑙

Loop repeated equal to total 
number of time intervals 

possible within time horizon [Number of 
jobs x Number 

of RUs]2+ε

Overall time complexity:
O(number of intervals x (number of jobs x number of RUs)2+ε)
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Results: Use Cases Taken from Variety of Sources
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Metal Processing SiteManagement of Factory Robots

Use cases cover a wide variety of 
deadlines, number of packets and profit
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• Implementation: In C++ with code borrowed from ns3 (open-sourced)

• Channel Model: Both good and bad channels are considered
• Using suitable modulation and coding scheme

• Time Horizon: 200ms
• Any packets not scheduled within 200ms are assumed dropped

• Leads to some loss of optimality; but we empirically observe it is very small

Simulation Settings



Results: Baselines
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Largest 
Profit-To-
Deadline 

Ratio First

Non-
starving 

version of 
LRF

Earliest 
Deadline 

First

Exhaustive search over RU configurations
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Scheduling of Packets in Industrial Robotic Control

Both total drops and critical packet drops are far lower than baselines
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Scheduling of Packets in Metal Processing

Both total drops and critical packet drops reduce to 0



Summary

• Smart factories require connectivity with specific requirements

• WiFi 6 can satisfy such requirements using specific techniques

• Scheduling packets in the above scenario is NP-Hard

• We propose a local-search based algorithm to schedule packets

• Our algorithm always provides profit greater 1/12 of the optimal
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