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Abstract—We address the problem of localizing an (illegal)
transmitter using a distributed set of sensors. Our focus is on
developing techniques that perform the transmitter localization
in an efficient manner, wherein the efficiency is defined in terms
of the number of sensors used to localize. Localization of illegal
transmitters is an important problem which arises in many
important applications, e.g., in patrolling of shared spectrum
systems for any unauthorized users. Localization of transmitters
is generally done based on observations from a deployed set of
sensors with limited resources, thus it is imperative to design
techniques that minimize the sensors’ energy resources.

In this paper, we design greedy approximation algorithms
for the optimization problem of selecting a given number of
sensors in order to maximize an appropriately defined objective
function of localization accuracy. The obvious greedy algorithm
delivers a constant-factor approximation only for the special case
of two hypotheses (potential locations). For the general case of
multiple hypotheses, we design a greedy algorithm based on
an appropriate auxiliary objective function—and show that it
delivers a provably approximate solution for the general case. We
develop techniques to significantly reduce the time complexity of
the designed algorithms, by incorporating certain observations
and reasonable assumptions. We evaluate our techniques over
multiple simulation platforms, including an indoor as well as
an outdoor testbed, and demonstrate the effectiveness of our
designed techniques—our techniques easily outperform prior and
other approaches by up to 50-60% in large-scale simulations.

I. INTRODUCTION

Wireless transmitter localization via analysis of the received
signal from multiple receivers or sensors is an important
problem. While the problem has been widely explored, the
problem exposes new challenges in many emerging applica-
tions due to the constraints of the application. In this work, we
are specifically interested in a distributed monitoring system
where a set of distributed RF sensors are tasked to detect and
localize transmitters. These transmitters could be of various
type. For example, in certain spectrum allocation scenarios,
unknown primary transmitters need to be detected/localized.
Or, in spectrum patrolling scenarios, unauthorized transmitters
need to be detected/localized [1]. Recent work has explored
new approaches for such monitoring where the RF sensors
are crowdsourced, perhaps using various low-cost spectrum
sensing platforms [2], [3]. The crowdsourcing deploys a large
number of sensors. Fine grained spectrum sensing is imple-
mented by creating suitable incentive mechanisms [4], [2].

Crowdsourcing makes the sensing cost-conscious. The cost
here could be incentivization cost, cost of power, backhaul
bandwidth on the part of the spectrum owner or the opportu-
nity cost – being low-cost platform, the sensors may be able to

only sense smaller spectrum bands at a time. Thus, involving
only a small number of sensors or sensors with low overall
cost budget (for a suitable cost model) for sufficiently accurate
localization performance is critical. Prior work [2] that discuss
sensor selection in this context only presents heuristics without
any performance guarantees.

We do not use geometric approaches which rely on hard-to-
model mapping of received power to distance. Instead, we use
a hypothesis-driven, Bayesian approach for localization [5].
We focus on the optimization problem of selecting a certain
number of sensors from among the deployed sensors such
that an appropriately defined objective of localization accuracy
is maximized. This optimization problem can also be used
to solve the dual problem of selecting a minimum number
of sensors (or sensors with the minimum total cost budget)
to ensure at least a given localization accuracy. We adopt
the framework of a hypothesis-driven localization approach
wherein each hypothesis represents a configuration (location,
power, etc.) of the potential transmitters and then the local-
ization is equivalent to determining the most-likely prevailing
hypothesis. See Figure 1. The hypothesis-driven framework
does not require an assumption of a propagation model,
and works for arbitrary signal propagation characteristics.
The framework does, however, require prior training to build
joint probability distributions of observation vectors for each
hypothesis.

Our Contributions. In the above hypothesis-based frame-
work, we develop an overall approach that enables selection
of sensors that are most relevant to localize transmitters.
In particular, we develop algorithms that aim to maximize
localization accuracy for a given budget of number of sensors
to be used for localization. More specifically, we make the
following contributions in the paper.

1) We design a greedy algorithm (GA) that selects sen-
sors iteratively to maximize the objective function of
localization accuracy, under the constraint of number of
sensors selected. We prove that GA yields a constant-
factor approximate solution for the special case of the
problem wherein there are only two hypotheses.

2) For the general case of more than two hypotheses, we
design an alternate greedy scheme (called AGA) based on
maximizing an auxiliary objective function. We prove that
AGA delivers a solution that has (i) an auxiliary objective
value within a constant factor of the optimal auxiliary
objective value, as well as (ii) a localization error within
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Fig. 1: Hypothesis-driven localization. The figure shows the simple
case of localizing a single transmitter with fixed power; thus, there is
a hypothesis created for each potential location. Observations from
deployed sensors are analyzed to determine the most likely prevailing
hypothesis (and thus, location).

a certain factor of the optimal localization error.
3) We optimize the time complexity of our developed al-

gorithms by a substantial factor, based on certain ob-
servations and reasonable assumptions. In addition, we
generalize our techniques to more practical and useful
settings.

4) We evaluate the performance of the developed algorithms
over multiple evaluation platforms: (1) large-scale simu-
lation using synthetically generated data using established
signal propagation models, and (2) publicly available
experimental data trace collected over an indoor WiFi
network with 44 sensors, and (3) our own data collection
using 18 outdoor software radio sensors in the 915 MHz
band with a custom transmitter. Results show that our
techniques outperform other state-of-the-art algorithm [2]
substantially (up to a factor of 50-60%).

A preliminary version of this paper has been accepted for
publication at IEEE Infocom 2020 [6]. This version of the
paper describes additional results about the performance of the
algorithm, as well as additional details about the experiments.
It also contains proofs of multiple lemmas and theorems that
had been omitted from the preliminary version.

II. BACKGROUND AND MOTIVATION

Problem Setting. The overall setting of the transmitter lo-
calization problem is as follows. Consider a geographic area,
with a number of spectrum sensors deployed or available (if
attached to mobile devices) at known locations. At any instant,
one or more transmitters are allowed to transmit signals
(on a common frequency). Each deployed/available spectrum
sensor senses and processes the aggregate received signal, and
reports appropriate metric (i.e., total received power or signal
strength) to a central server which estimates the location of
the transmitter(s) using the maximum-likelihood hypothesis
algorithm as described below. The overall objective of our
paper is to develop techniques to select an optimal subset of
sensors in order to accurately localize any present transmitters.
Though our developed techniques naturally extend to the case
of multiple transmitters, for simplicity, we implicitly assume
at most a single transmitter present at any instant. We consider

the extension to multiple transmitters in §III-G. We start with
defining basic notations used throughout the paper.

Hypotheses, Observations, and Inputs. We discretize the
given space into locations l1, l2, . . . , and transmit power
of a potential transmitter is similarly discretized into levels
p1, p2, . . .. We represent potential “configurations” of the pos-
sible transmitter by hypotheses H0, H1, . . . ,Hm, where each
hypothesis Hi represents a configuration (li, pi) of location li
and transmit power pi of a potential transmitter (see Figure 1).
We use the convention that hypothesis H0 corresponds to no
transmitter being present. Localizing any potential transmitter
is thus equivalent to determining the prevailing hypothesis. To
do this, we use observations from a set of deployed sensors.
We denote the observation vector of a subset of sensors T by
xT (we usually drop the subscript T, as it is clear from the
context).

Inputs. For a given set of sensors deployed over an area, we
assume the following available inputs, obtained via a priori
training, data gathering and/or analysis1:
• Prior probabilities of the hypotheses, i.e. P (Hi), for each

hypothesis Hi.
• Joint probability distribution (JPD) of sensors’ obser-

vations for each hypothesis. More formally, for each
hypothesis Hj , we assume P (xS |Hj) to be known for
each observation xS for the entire set S of deployed
sensor. Note that this also gives us the JPD’s of each
subset T ⊆ S.

Maximum a Posteriori Localization (MAP) Algorithm. We
use Bayes rule to compute the likelihood probability of each
hypothesis, from a given observation vector xT for a subset
of sensors T:

P (Hi|xT) =
P (xT|Hi)P (Hi)∑m

j=0 P (xT|Hj)P (Hj)
(1)

We select the hypothesis that has the highest probability,
for given observations of a set of sensors. Formally, the
MAP algorithm returns the hypotheses based on the following
equation:

arg
m

max
i=0

P (Hi|xT) (2)

The above MAP algorithm to determine the prevailing hy-
pothesis is known to be optimal [8], i.e., it yields minimum
probability of (misclassification) error. The above hypothesis-
based approach to localization works for arbitrary signal
propagation characteristics, and in particular, obviates the need
to assume a propagation model. However, it does incur a one-
time training cost to obtain the JPDs, which can be optimized
via independent techniques [9].

Selection of Sensors for Localization. As mentioned above,
in a typical setting, spectrum sensors may be deployed at pre-
determined locations or available at certain locations (if part of
mobile devices) to sense unauthorized signals and thus localize
any unauthorized transmitters. Two immediate problems of
interest in this context are: where to deploy given a number of

1In our concurrent work [7], we discuss novel interpolation techniques to
minimize such training cost.



3

sensors, and once deployed/available, which subset of sensors
to select for localization. The latter problem of selection of
sensors is motivated by the fact that, in most realistic settings,
the sensors (or their mobile devices) are not tethered to
AC power outlets and hence have limited energy resources.
Moreover, spectrum sensors also incur cost in transmitting
sensing data to the fusion/cloud center [10]. Thus, it is critical
to optimize resources and costs incurred in localization of
unauthorized transmitters, e.g., via the selection of an optimal
set of sensors. Note that the sensor-selection problem can also
be used to effectively deploy a given number of sensor, by
assuming sensors available at all potential locations.

III. OPTIMAL SENSOR SELECTION FOR INTRUDER
LOCALIZATION

In this section, we address the problem of sensor selection
for transmitter localization; informally, the problem is to select
an optimal set of B sensors such that the overall probability
of error of localizing a transmitter is minimized, given ap-
propriate JPDs as discussed in the previous section. We start
with formulating the problem in the following subsection. In
following subsection, we present a greedy algorithm for it and
prove that it is guaranteed to deliver an approximation solution
for the special case of two hypotheses. However, as shown, the
greedy algorithm can perform arbitrarily bad for the general
case of multiple hypotheses. Thus, we then modify our algo-
rithm to use an “auxiliary” objective function and show that
the modified algorithm delivers an approximation solution for
the general case of multiple hypotheses albeit with a slightly
worse approximation ratio. Finally, we discuss optimizing the
computation complexity of the designed algorithms, certain
extensions and other issues.

A. LSS Problem Formulation

We start with formally defining the optimization objective
(probability of error or misclassification) for a given subset
of sensors. Then, we formally define the sensor selection
problem, hereto referred to as Localization Sensor Selection
(LSS) problem. Throughout this section, we use hypotheses
H0 to represent the hypotheses with no transmitters present,
and Hi to represent the hypotheses wherein a transmitter is
present in ith configuration.
Probability of Error (Perr(T)). Recall that, for a given
observation vector, the MAP localization algorithm outputs
the hypothesis that has the most likelihood among the given
hypotheses. Thus, MAP can also be looked upon as a classifi-
cation technique. Given a subset of sensors T, we define the
probability of error or misclassification as the probability of
the MAP algorithm outputting a hypothesis different from the
actual ground truth (i.e., prevailing hypothesis). The expected
or overall probability of error is an expectation of the prob-
ability of error over all possible prevailing hypotheses and/or
observation vectors xT from T. Our techniques generalize to
the notion of distance-based localization error, as discussed in
§III-G.

Formally, let MAP(x) be the output of the MAP algorithm on
observation vector x from a given subset of sensors T. Given

Hi as the ground truth and x as the observation vector, the
probability of error Perr(T|Hi,x) can be written as:

Perr(T|Hi,x) = 1[MAP(x) 6= i|Hi], (3)

where 1 is an indicator function which is equal to 1 if the
predicate is true, and 0 otherwise. Since expectation over the
data point of an indicator function is its probability, we take
the expectation over x on both sides to get:

Perr(T|Hi) = P (MAP(x) 6= i|Hi) (4)

Above, the probability is over the random variable x. Now, if
the ground truth hypothesis is also not given, we can compute
an expectation over all possible hypotheses. Thus, the (overall)
probability of error for a given set of sensors T is given by:

Perr(T) =

m−1∑
i=0

P (MAP(x) 6= i|Hi)P (Hi) (5)

Localization Accuracy Function, Oacc(T). To facilitate
a greedy approximation solution, we formulate our sensor
selection as a maximization problem—and thus, define a
corresponding maximization objective. In particular, we define
the localization accuracy Oacc(T) as 1− Perr(T). Based on
the above equation Eqn. 5, we get the expression for Oacc(T)
as:

Oacc(T) = 1− Perr(T) =

m−1∑
i=0

P (MAP(x) = i|Hi)P (Hi)

(6)

Localization Sensor Selection (LSS) Problem. Consider a
geographic area with a set of sensors S deployed. Given a
set of hypotheses and JPD’s, as defined in previous section,
the OSS problem is to select a subset T ⊆ S of sensors
with minimum probability of error Perr(T) (or maximum
localization accuracy Oacc(T)), under the constraint that |T|
is at most a given budget B. The above formulation implicitly
assumes a uniform cost for each sensor; we generalize our
techniques to handle non-uniform sensor costs (see §III-G).

We show that the above LSS problem is NP-hard, via
reduction from the well-known maximum-coverage problem
(Appendix A). Thus, we develop approximation algorithms
below; in particular, our focus is on developing greedy ap-
proximation algorithms. The key challenge lies in showing
that the objective function satisfies certain desired properties
that ensure the approximability of the algorithm.

B. Transmitter and Sensor Model

We now formally define the assumptions that would allow
us to ensure the approximability of our algorithm. First, we
assume that the joint probability distribution (JPD) of the
distributions follow a joint Gaussian distribution with the
means (pi,Σ) for all hypotheses Hi ∀i = 0, . . . ,m− 1. Note
that the covariance matrix remains same across hypotheses,
since the correlation and noise are properties of the sensors.
The means pi can be different, as different power values
are received by the sensors depending on the location of the
transmitter.
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Fig. 2: Distribution of the received power from a transmitter at an
RTL-SDR sensor, and the Gaussian fit (green line) of the observed
distribution.
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Fig. 3: Classification of a data point between two Gaussians using a
threshold.

C. Properties of MAP Algorithm

To explain our selection selection algorithm, we first need to
explain a few properties of MAP algorithm. Assume that there
are two hypotheses Hi and Hj , with distributions (pi, σ

2)
and (pj , σ

2) as well as priors P (Hi) and P (Hj) respectively,
where pi, pj ∈ R. Without loss of generality, we assume
that pi < pj . In this case, given a data point X , the MAP
algorithm works by comparing it with a fixed threshold ST

(shown in Figure 3). If X ≤ ST , then MAP classifies X as
Hi, i.e. MAP (X) = i, otherwise it classifies X as Hj , i.e.
MAP (X) = j. Note that because this is a stochastic decision,
there will always be some probability of classification error,
depending on the value of ST . The MAP algorithm uses the
threshold value of ST =

pi+pj

2 , and it is well-known that this
value of ST provides the lowest probability of classification
error. Formally, we write this as:

X
Hj

≷
Hi

pi + pj
2

+ log
P (Hi)

P (Hj)
(7)

We now explain the case for multidimensional distributions,
where Hi and Hj are given by (pi,Σ) and (pj ,Σ) respectively
(pi,pj ∈ R,Σ ∈ R × R). In this case, the classification
of a given data vector can be done by comparing with a
hyperplane. However, this problem of classification between
distributions with multiple dimensions can be reduced to
classification between distributions with single dimensions,
using the following theorem:

Theorem 1. Given the hypotheses Hi ∼ N(pi,Σ) and Hj ∼
N(pj ,Σ), a data vector x = [x1 . . . xn] can be classified by

applying the following threshold test:

xT Σ−1(pj − pi)
Hj

≷
Hi

1

2
(pi + pj)

T Σ−1(pj − pi) (8)

We prove this in Appendix B. We call the LHS of Eqn
(8) as test statistic T (x). We also show as a corollary of
the theorem that the test statistic itself follows a Gaussian
distribution of N(piΣ

−1(pj −pi), (pj −pi)
T Σ−1(pj −pi))

and N(pjΣ
−1(pj−pi), (pj−pi)

T Σ−1(pj−pi)) if x is from
Hi and Hj respectively. Thus, our problem is now exactly
equivalent to classification using MAP to classify a data point
between two Gaussians with known means and same variance.

D. Greedy Algorithm (GA)
In this subsection, we analyze a simple greedy approach and

show that it delivers a constant-factor approximate solution for
the special case of two hypotheses. In the next subsection, we
present a modified greedy algorithm for the general case of
more than two hypotheses.
Greedy Algorithm (GA): A straightforward algorithm for
the LSS problem is a greedy approach wherein we iteratively
select a single sensor at each stage. At each stage, we select
the sensor that improves the localization accuracy Oacc(T)
the most. The algorithm iterates until the given budget B is
reached. We call this algorithm Greedy Algorithm (GA); see
Algorithm 1 for the pseudo-code.
Constant-Factor Approximation for 2 Hypotheses. The
approximation result of GA depends on two lemmas, which
we prove in the appendix. The first lemma says that addition
of a sensor to a given subset never reduces the value of Oacc:

Lemma 1. The objective Oacc(T) is monotone in nature, i.e.
if some sensor sk ∈ S \T, then Oacc(T ∪ {sk}) ≥ Oacc(T).

The second lemma says that the amount of increase in
accuracy follows a law of diminishing returns:

Lemma 2. The objective OaccT is submodular in nature, i.e.
if some sensor sk ∈ S \T2, where ∀T1 ⊆ T2 ⊆ S, we have:

Oacc(T1∪{sk})−Oacc(T1) ≥ Oacc(T2∪{sk})−Oacc(T2)
(9)

Intuitively, these lemmas follow from Theorem 1, where
we showed that the problem of identifying the right hypoth-
esis is equivalent to classifying between two unidimensional
Gaussians. It is well-known that if an objective is monotone
and submodular, then GA gives an approximation result [11].
Thus, the following theorem on the performance of GA now
holds:

Theorem 2. For the special case of two hypotheses, GA gives
a subset T of sensors whose localization accuracy is at least
63% of the optimal.

Performance of GA for more than two Hypotheses. For
the case of more than two hypotheses, GA no longer provides
a constant-factor approximation. In fact, we can show via a
counter-example that the Oacc() is not submodular for more
than 2 hypotheses. We show this by providing a counter-
example in Appendix C.
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Algorithm 1 Greedy Algorithm (GA).
INPUT: Set of available sensors S, budget B, objective Oacc

OUTPUT: Subset of sensors T

1: T← φ
2: while |T| ≤ B do
3: L← Oacc(T)
4: max ← 0
5: for all s ∈ S \T do
6: M = Oacc(T ∪ {s})− L
7: if M > max then
8: max ←M
9: r ← s

10: end if
11: end for
12: T← T ∪ {r}
13: end while
14: return T

E. Auxiliary Greedy Algorithm (AGA)

In the section, we design an approximation algorithm for
the general case of multiple hypotheses based on an auxiliary
objective function. To do so, we first analyze the proof of
Theorem 2 and see why it doesn’t generalize if the number of
hypotheses is greater than 2. This insight helps in defining an
“auxiliary” objective function that is the key to designing the
approximation algorithm for the general case.

Auxiliary Function. Let us consider a special case of MAP
algorithm, viz., MAPij which compares the likelihood of only
two hypothesis Hi and Hj and returns the one with a higher
likelihood. It is easy to formulate the objective function Oacc

in terms of MAPij too. From Equation 6, we easily get:

Oacc(T) =

m−1∑
i=0

P (
⋂
j 6=i

MAPij(x) = i|Hi)P (Hi) (10)

Oacc(T) =

m−1∑
i=0

[1− P (
⋃
j 6=i

MAPij(x) = j|Hi)]P (Hi) (11)

Above, x represents the observation vector for the set of sen-
sors T. For the case of two hypothesis, the above expression
is just

∑1
i=0[1 − P (MAPij(x) = j|Hi)]P (Hi) where j is

1 if i is 0 and vice-versa; Theorem 2 essential shows that
the term P (MAPij(x) = i|Hi) is submodular. However, for
the case of multiple hypothesis, computing the probability for
a union of events involves product (and sum) of appropriate
probability terms. Note that product of submodular functions
need not be submodular, while sum of submodular functions
is submodular. Thus, we approximate the above Oacc ()
expression as follows, so that it is a sum of submodular
terms. In effect, in defining the auxiliary objective Oaux(),
we estimate the probability of union of events in the above
equation by just taking a summation of the probability of
events, i.e., we ignore the other terms involving subsets of
events. Formally, we define the auxiliary objective Oaux() for
a set of sensors T as:

Oaux(T) = 1−
m−1∑
i=0

∑
j 6=i

P (MAPij(x) = j|Hi)P (Hi) (12)

The above auxiliary objection function is submodular if the
JPDs are Gaussian, as it is a sum of submodular functions
(P (MAPij(x) = i|Hi) is submodular, as per Theorem 2’s
proof). Note that, for a competitive algorithm for the original
LSS problem, we also need to show that maximizing Oaux()
also maximizes the original objective function Oacc().

Auxiliary Greedy Algorithm (AGA). We now modify our
Greedy Algorithm (Algorithm 1) to iteratively maximize the
auxiliary objective Oaux () instead of the original objective
Oacc (). We call this algorithm as Auxiliary Greedy Algorithm
(AGA). From the submodularity of the Oaux () for Gaussian
JPDs, it is easy to see that AGA delivers a solution T s.t.
Oaux (T) is within 63% of the optimal Oaux () possible. The
following lemma states that maximizing Oaux also maximizes
Oacc. See Appendix E for a proof.

Lemma 3. Let T be a subset of sensors already selected by
AGA at some iteration. We claim that Oaux(T) ≤ Oacc(T) ≤
1 − 1

k (1 − Oaux(T)), where k is a value less than m that
decreases as T grows (i.e., over AGA’s iterations).

We empirically evaluate the value of k defined above in §IV.
The above lemma yields the below theorem, whose proof is
shown in Appendix F.

Theorem 3. For Gaussian JPDs, AGA delivers a subset T of
sensors such that

Perr(T) ≤ 0.37 + 0.63kPerr(OPT),

where k is as defined in the above Lemma and OPT is the
optimal solution.

F. Optimizing AGA’s Computation Cost

In a straightforward implementation of AGA (akin to Algo-
rithm 1 for GA), Oaux function is computed (using Eqn. (12))
Bn number of times where n is the total number of sen-
sors. Eqn. (12) requires m2 computations of the expectation
P (MAPij(x) = j|Hi), which, for Gaussian distributions,
effectively requires computing the formula shown in Eqn. (11)
of auxiliary material, and thus takes O(B2) time as it involves
matrix multiplication of the observation vector of dimension
B with the covariance matrix of dimension B ×B. Thus, the
overall time complexity of a straightforward implementation
of AGA is O(m2nB3). As mentioned before (and in §II), the
number of hypotheses m can be large due to the large number
of potential transmitter locations and power values; however,
we can reduce the time complexity to O(Bn) as discussed
below, based on some observations and optimizations.

Reducing Number of Comparisons. Consider a sensor s
whose benefit is to be computed in the for loop of Algo-
rithm 1. Below, we show that effectively we only need to
consider a constant number of (Hi, Hj) pairs in Eqn. (12)
when computing s’s benefit, and thus removing the m2 factor
from the time complexity. We implicitly assume a single
transmitter in the below discussion, and later extend our
argument to multiple transmitters. Let us use R to denote the
maximum transmission “range” of the transmitter; formally,
R is such that, beyond R, the probability distribution of the
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signal received from the transmitter is similar to the signal
received when there is no transmitter present. We stipulate that
any observation xs at s, P (xs|Hi1) = P (xs|Hi2) for any two
hypotheses Hi1 and Hi2 whose corresponding locations li1
and li2 are more than R distance away from s. The implication
of the above observation is that, for a given sensor s, we can
group all the hypotheses Hi with corresponding location li
more than R distance away from s into one single “super”
hypothesis Hs. Then, if the total number of hypotheses with
corresponding locations within a distance of R from s is
say GR, then the total number of comparisons between pairs
of hypotheses in Eqn. (12) is effectively only (GR + 2)2,
involving GR hypotheses, H0, and Hs. The above brings down
the overall time complexity of AGA to O(G2

RnB
3). Note that

GR is essentially equal to the number of grid locations within
a circle of radius R times the total number of power levels,
and thus, can be considered as constant (does not vary across
problem instances)—which reduces AGA’s time complexity to
O(nB3).

Independent Sensor Observations. If we assume that the
observations across sensors are conditionally independent, the
JPDs can be instead represented by independent probabil-
ity distributions at each sensor location. In this case, the
covariance matrix is purely diagonal, which allows us to
“incrementally” compute the benefit of a sensor from one AGA
iteration to another and thus reduce AGA’s time complexity by
an additional factor of B2—and thus to O(nB). See Appendix
G for details.

G. Generalizations

Weighted (Distance-Based) Objective Function. The proba-
bility of error Perr function penalizes uniformly for each mis-
classification. However, in general, it would be useful to assign
different penalties or weights for different misclassifications.
E.g., Eqn (12) should be generalized to:

O′aux(T) = 1−
m∑
i=0

∑
j 6=i

wijP (MAPij(x) = j|Hi)P (Hi)

Above, wij is the weight function. We note that our techniques
and proofs of performance guarantees generalize easily to the
above generalized function, irrespective of the weight func-
tion. In particular, weight wij can be the Euclidean distance
between the locations li and lj corresponding to the hypotheses
Hi and Hj . For the general case of multiple transmitters,
where Hi and Hj may represent configuration of multiple
transmitters, a minimum-cost matching based objective can be
used to define the weight wij ; if the number of transmitters
in Hi and Hj are different, then an appropriately penalty for
misses or false-alarms can be added to the weight.

Non-Uniform Sensor Cost. Another generalization of interest
is to allow non-uniform cost for sensors, e.g., to prefer sensors
with more (remaining) battery resources. Here, each sensor s
may have a different cost c(s), and the LSS problem constraint
becomes: total cost of the selected set of sensors must be
less than a given cost budget. For this version of the LSS
problem, our algorithms need to be slightly modified in that

we should pick the sensor that offers the highest improvement
in the objective function per unit cost. To ensure a theoretical
performance guarantee, we also need to use the “knapsack
trick,” i.e., to pick better of the two solutions: one returned
by the modified algorithm, and the other the best one-sensor
solution [12]. It can be shown the overall algorithm still offers
a theoretical performance guarantee for submodular functions,
but the performance ratio is reduced by a multiplicative factor
of 2. The above model is useful when designing a “load-
balanced” strategy to maximize network lifetime of a system—
therein, the sensor-selection algorithm must be run periodically
based on the remaining battery resources.
Multiple Transmitters. Till now, we have implicitly assumed
that a single transmitter was present. Our techniques naturally
generalize to the case of multiple transmitters, if we represent
each combination of configurations of present transmitters by
a separate hypothesis. Since the MAP, GA, and AGA algo-
rithms are formulated in terms of hypotheses, they generalize
naturally to localization of multiple transmitters. However, the
key challenge arises due to the large number of hypotheses—
exponential in the number of potential transmitters— and thus,
the high time complexity of AGA. Fortunately, the techniques
discussed in previous subsection can be extended for the case
of multiple transmitters as follows.

The key observation is that, for a given hypothesis Hi, the
probability distribution of observations at a sensor s depends
only on the configuration of transmitters in Hi that within a
distance of R of s. I.e., for any observation xs at a sensor
s, P (xs|Hi1) = P (xs|Hi2) for any two hypotheses Hi1 and
Hi2 that have the same configuration (locations and powers)
for transmitters that are within a distance of R of s. The
implication of the above observation(s) is that, for a given s,
we can group the given hypotheses into equivalence classes
based on the configuration of transmitters close of s, and
to compute the benefit of a sensor s with AGA’s iteration,
we only need to compare pairs of equivalence classes (rather
than the original hypotheses). The number of such equivalence
classes is easily seen to be equal to GT

R where GR is the
number of locations (grid cells) within R times the number of
power levels, and T is the maximum number of transmitters
possible/allowed within a range R of s (or any location). Thus,
computation of benefit of s requires consideration of G2T

R pairs
of equivalence classes. If we assume T to be a small constant,
then the overall time complexity of AGA reduces to O(nB3)
as before, and to O(nB) if we assume independence of sensor
observations.

IV. EVALUATION

In this section, we evaluate the performance of our algo-
rithms developed in the previous sections. We start with a de-
scription of the evaluation platforms used in our experiments.

A. Implementation

Implementation Technique. To evaluate whether AGA runs
sufficiently fast to be feasibly used, we implement two distinct
versions of AGA using python. The first version, called AGA-
Basic, does not utilize the optimizations discussed in Section
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Fig. 4: Execution time of AGA both with and without the optimiza-
tions on a (i) CPU and on a (ii) GPU.

III-F. The second version, called AGA-OPT, includes these
optimizations. Each version utilizes multiple cores of a CPU
using joblib library [13] to compute the gain of each available
sensor in parallel. It also uses the numpy library to vectorize
operations wherever possible to make execution as fast as
possible. We run three different instances of AGA – with 100,
1600 and 4096 hypotheses. Each of these instances have 100
available sensors and a budget of 20. We execute this on a
Core i9-7900X CPU having a frequency of 3.30GHz and 20
cores.

Implementation on CPU. Figure 4(i) shows the execution
time of these three instances. We note that for small instances,
the execution time is relatively small. For example, for 100 hy-
potheses, AGA-basic only takes 13s to execute. However, this
rises to 28 minutes for 1600 hypotheses and to over 10 hours
for 4096 hypotheses. We also find that for small instances, the
optimizations do not lead to much improvement due to the
overhead of maintaining the data structures. However, there is
a large improvement for 4096 hypotheses, where we get an
execution time of 150 minutes using the optimized version.

Implementation on GPU. Although execution on CPU’s
using our optimizations is feasible, we further note that the
bulk of execution time is spent on matrix operations. This
suggests that execution on a GPU can lead to much better
utilization of data-level parallelism, and further speed up
execution. To evaluate this, we optimize the computation of
the gain of the sensors using numba library [14] to execute
it on a GPU. We utilize an nVidia GTX 1080 GPU having

2560 cores with a processor clock of 1.733 GHz. We then
note the execution time for each of the three instances of both
AGA-Basic and AGA-OPT.

Figure 4(ii) shows the execution times on a GPU. We note
that execution is much faster on a GPU than on a CPU. For
example, AGA-OPT now runs in only 8s, 10s and 57s for 100,
1600 and 4096 hypotheses respectively. This shows that AGA
can run very fast on a system with GPU, with a speedup of
up to 155 times on the large instances.

B. Evaluation Platforms

We use the following three evaluation platforms with vary-
ing fidelity of signal propagation characteristics, to demon-
strate the performance of our techniques.
• Simulation based on synthetic data. To demonstrate the

scalability of our techniques and the sensitivity of our
algorithms to changes in settings, we consider a large
geographic area of 4km by 4km, with signal path-loss values
generated using the SPLAT! application for the Longley-
Rice [15]. We use the noise in the sensor measurements
(measured independently) to generate the required JPDs.
We assume observations to be conditionally independent,
thus representing the JPDs as set of probability distributions,
one for each sensor and intruder configuration pair. Unless
otherwise stated, for this large-scale platform, we use 100m
x 100m grid cells giving 1600 potential locations, randomly
deploy a transmitter at the height of 30m at a random
power between 27-33 dBm which corresponds to roughly
250-750m of transmission range. We randomly deploy 100
spectrum sensors in the area.

• Indoor Data. We use publicly available data [16], which
deploys transmitters and receivers at 44 locations at an
indoor building of an area of 14m×14m. Here, we use 1m x
1m grid cells, thus giving us a total of 196 potential locations
and hypotheses. The transmitters transmit at a frequency of
2.4GHz.

• Outdoor Testbed. Finally, to evaluate our techniques in a
more practical outdoor setting, we deploy our own testbed
in a parking area of dimension 10m× 10m. Each grid cell
has size of 1m x 1m. We place a total of 18 sensors on
the ground. The sensors consist of single-board computers
such as Raspberry Pi’s and Odroid-C2’s connected to an
RTL-SDR dongle. The RTL-SDRs use dipole antennas. We
collect raw Inphase-Quadrature (I/Q) samples from the RTL-
SDRs [17], while transmitting data using a USRP-based
transmitter from each grid cell at a height of 1.5m. We
perform FFT on the I/Q samples with a bin size of 256
samples to get the signal power values, and then utilize the
mean and standard deviation of the power reported for each
of the sensors.

Metrics We evaluate the performance of a localization strategy
in terms of two key metrics: (i) Localization accuracy, i.e.,
Oacc(T), and (ii) Weighted localization error, which weights
the misclassification error by the Euclidean distance between
the actual and the predicted location (§III-G).
Compared Algorithms. We implement both of our designed
algorithms, AGA and GA. We also implement two other
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Fig. 5: Comparison of various techniques for (i) Localization accuracy
(Oacc ()), and (ii) Weighted localization error, for varying available
budget (number of sensors).

techniques for comparison purposes. The first technique, called
Coverage, is the selection heuristic from the recent work [2],
which essentially tries to maximize the “coverage” of the
sensors in a greedy manner.2 We also implement a Random
algorithm which selects the required sensors randomly. We
implement these algorithms in python, with extensive use
of numpy library for vectorized operations. To ensure that
our results are statistically significant, we run each of the
algorithms 100 times; the range of values is plotted in each
of the figures.

C. Simulation Based on Synthetic Data

Varying Budget. Figure 5 shows the performance of our tech-
niques for budgets varying from 1 to 20 sensors. We observe
that AGA and GA easily outperform other two algorithms
in terms of both metrics, with AGA outperforming even GA
quite significantly. For example, AGA outperform Coverage
by up to 39% and 56% for localization accuracy and error
respectively, while outperforming GA by 15% and 50% for
the two metrics respectively.
Varying Number of Hypotheses. We now show the perfor-
mance of our algorithms in terms of localization accuracy,
for varying number of hypotheses. In Figure 6, we plot
three different cases: (i) the default configuration of 100m
by 100m grid cells, (ii) a larger area of 6km by 6km with
100m by 100m grid cells giving 3600 potential locations, and
finally (iii) a configuration with default 4km by 4km area,
but smaller 62.5m by 62.5m grid cells. First, we observe that
AGA continues to outperform other techniques significantly
across different cases, with the performance gap between
AGA and others (especially GA) increasing with increase in
number of hypotheses. Also, as expected, with increase in area
and thus number of hypotheses, the accuracy of each of the
algorithms falls, but deterioration in AGA’s accuracy is much
less compared to other techniques.
Varying Sensor Density. Figure 7 shows the accuracy of lo-
calization for varying sensor density (i.e., number of available
sensors) with a fixed budget of 10 sensors. We note that the
accuracy of localization of AGA significantly improves when
we increase the number of sensors. For example, it increases
by 16% when the number of sensors increases from 50 to 150.
In contrast, the performance of GA and Coverage both actually
reduces by 7%. This is because having with an increase in

2Their approach Metropolis performs worse than their greedy approach in
open areas [2], and hence, not compared.
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Fig. 8: Comparison of various techniques, for sensors with non-
uniform cost.

sensor density GA and Coverage select sensors that are too
close to one another to be useful. In contrast, AGA has a
submodular objective which leads to an increase in accuracy
whenever the value of the optimal value increases.

Non-Uniform Sensor Costs. We also evaluate performance of
techniques under the setting of sensors with non-uniform cost.
We obtain the costs by computing the energy consumption of
each sensor by varying the number of samples from 32 to
2048 in multiples of 2. We then randomly assign some energy
and corresponding distributions to each sensor. Figure 8 shows
the performance for such heterogenous sensors. As expected,
AGA continues to outperform the other techniques in both
localization error. However, GA performs much worse than
expected in case of heterogeneous sensors.

Empirical Evaluation of k Value. We now evaluate the k
value as defined in Lemma 3. In particular, the performance
guarantee of AGA depends on the value of k, with better
performance guarantee for lower k (ideally, k should be equal
to 1). Figure 9 shows the value of k for varying budget. We
observe that for a very low budget, the value of k is very large,
but it reduces rapidly with increase in budget. In particular, for
budgets of 10 and 15 sensors, the value of k is 1.78 and 1.19
respectively. This shows that AGA’s performance guarantee
as per Theorem 3 reaches its near-best for a moderately small
budget.

Comparison with Optimal in Small Instances. We further
confirm AGA’s performance with respect to optimal, we con-
sider small instances of the problem (with 100 hypotheses)
and compare AGA with an optimal algorithm. The optimal
algorithm uses exhaustive search, which is impossible to
execute over larger instances. See Figure 10. We observe that
AGA and optimal perform near-identically, with the optimal
algorithm yielding at most 0.7% higher localization accuracy
than AGA. Note that GA performs worse than AGA and
optimal even in this case, albeit by a smaller amount than
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Fig. 11: Performance over public indoor data.

in cases with larger number of hypotheses. Moreover, even
for such small instances, the optimal algorithm takes at least
an order of magnitude more execution time compared to both
AGA and GA.

D. Evaluation in Indoor and Outdoor Testbeds

Indoor Data. We now evaluate our techniques over a pub-
licly available data-trace taken in an indoor environment, as
described in the previous subsection. See Figure 11. We again
observe similar performance trends as in previous experiments,
for both the performance metrics. The relatively smaller per-
formance gap between AGA and GA is likely due to smaller
a number of hypotheses.
Outdoor Testbed Figure 12 shows the performance of various
algorithms over our outdoor testbed described in the previous
subsection. Observe that AGA again performs the best among
all techniques in both the metrics. As in the indoor testbed, the
performance gap between the AGA and GA is less compared
to the large-scale simulations due to a small number of
hypotheses. Note that because of the noise in the dataset, the
localization accuracy reaches a maximum of only 75% even
with all the 18 sensors.

V. RELATED WORK

Sensor Selection for Transmitter Localization. A large
number of works have developed techniques for detecting
and localizing transmitters or intruders that emit radio sig-
nals [18], [19]. Note that the transmitter localization problem
is slightly different from another well-studied problem of
indoor localization [20], wherein a user is localized based on
signal received from multiple transmitters; herein, the issue of
selecting transmitters to localize the user has no incentive, and
hence not been addressed before. To the best of our knowledge,
none of these prior works on transmitter localization either
have addressed the optimization problem addressed in the
paper. The closest related works are [1] and [2] as discussed
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Fig. 12: Performance over outdoor testbed data.

next. The work [1] focuses on detection of unauthorized
transmitters using low-cost sensors in the context of shared
spectrum systems; they consider the problem of selection
of sensors in this context, and propose a heuristic with no
performance guarantees. The key difference of our work from
theirs is that they focus on detection of transmitters, which
is a much simpler problem than localization of transmitters.
In addition, [2] considers selection of sensors for transmitter
localization, but with a objective of maximizing the “coverage”
of the region by the sensors. They present heuristics without
any performance guarantees. Nevertheless, we implement their
approach and compare with our techniques (§IV).

Sensor Selection in Sensor Networks. Sensor selection
is a natural problem to address in the context of wireless
sensor networks deployed to detect and/or localize an event
or phenomenon (see [21] for a survey). Many of these works
have leverage the submodularity property to develop greedy
approximation algorithms. The closest work among these is
that of [22] which shows approximability of the greedy ap-
proach for the problem of minimizing uncertainty in estimating
a spatial phenomenon (e.g., temperature). However, in general,
the key difference of our work with these works is our desired
objective function (Oacc or Perr)—and thus, the making the
proof of monotonicity and/or submodularity of the objective
function very different. In our case, we had to even circumvent
the non-submodularity of the objective function Oacc by
considering an appropriate auxiliary objective function.

Online Selection of Sensors. An alternate formulation of our
sensor selection problem could be to select sensors adaptively
based on the observations of previously selected sensors.
This online problem is similar to the adaptive stochastic
optimization problem addressed in other contexts [23], [24],
[25], [26]. However, in online selection, a sensor is selected
based on analysis (which will incur non-trivial latency) of
observations of previous sensors. This makes localization
based on near-simultaneous sensor observations, required to
localize intermittent transmitters, infeasible. Also, note that
online selection needs to be done anew for each localization,
which may be performed very frequently (e.g., every second
or fraction of a second) in many applications, e.g., spectrum
patrolling. Thus, our focus is on offline selection.

VI. CONCLUSION

In this work, we have considered the hypothesis-driven
approach for localization of transmitters, and developed tech-
niques to optimize the localization accuracy under a constraint
of limited resources. Developed techniques have been shown
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to yield provably approximate solutions. Our work can be
instrumental in maximizing the network lifetime of a spec-
trum monitoring and/or patrolling system. Our future work
focusses on improving our theoretical performance guarantee
results, and developing similar sensor selection approxima-
tion algorithms for other localization approaches that are not
hypothesis-driven.
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Appendix

APPENDIX A
PROOF OF NP-HARDNESS

Lemma. The Offline Sensor Selection (LSS) problem is NP-
Hard.

Proof. In the maximum coverage problem, we are given a
universe set U = {uk}, and a collection of its subsets, Vk ⊆
U. The objective is to choose at most a budget B number of
Vk’s so that the number of items in their union is maximized.
To map this to LSS, we set U equal to the set of hypotheses
H0 to Hm−1. Also, we have a different Vk for each sk ∈ S.
Let the corresponding sensor observation be denoted by xk.
For each item ui ∈ Vk, we set the value of P (xk|Hi) = 1.
For each item ui ∈ U \Vk, we get P (xk|Hi) = 0. Now, let
Vk = {Hi : P (xk|Hi) = 1}. Thus, we have an LSS problem
instance, with a given JPD for all sensors, fixed number of
hypotheses and a fixed budget B. Solving this instance returns
a fixed subset of sensors T. Since a single sensor corresponds
to a single subset Vk, we select the subsets corresponding to
the selected sensors. Thus, we can solve an arbitrary maximum
coverage problem if LSS is solvable in polynomial time. This
shows that the LSS problem is NP-Hard.

APPENDIX B
PROOF OF THEOREM 1

Theorem 1. Given the hypotheses Hi ∼ N(pi,Σ) and Hj ∼
N(pj ,Σ), a data vector x = [x1, . . . , x|T|]

T can be classified
by applying the following threshold test:

xT Σ−1(pj −pi)
Hj

≷
Hi

1

2
(pj +pi)

T Σ−1(pj −pi) + log
P (Hi)

P (Hj)
(1)

Proof. We have two hypotheses Hi and Hj . We first compute
the posterior probabilities as follows:

P (Hj |x)

P (Hi|x)
=
P (x|Hj)P (Hj)

P (x|Hi)P (Hi)
[Using Bayes’ Theorem]

=
P (x1, . . . , x|T||Hj)P (Hj)

P (x1, . . . , x|T||Hi)P (Hi)

=
P (Hj)

P (Hi)

exp[− 1
2 (x− pj)

T Σ−1(x− pj)]

exp[− 1
2 (x− pi)T Σ−1(x− pi)]

=
P (Hj)

P (Hi)
exp[−1

2
(x− pj)

T Σ−1(x− pj)

+
1

2
(x− pi)

T Σ−1(x− pi)]

(2)

We now consider the ratio test:

P (Hj)|x)

P (Hi)|x
Hj

≷
Hi

1 (3)

Taking logarithm on both sides of Eqn. (2), we get:

−1

2
(x− pj)T Σ−1(x− pj) +

1

2
(x− pi)T Σ−1(x− pi)

Hj

≷
Hi

log
P (Hi)

P (Hj)

(4)

which on simplifying gives us:

(x− pi)Σ
−1(x− pi)− (x− pj)

T Σ−1(x− pj)
Hj

≷
Hi

2 log
P (Hi)

P (Hj)

=⇒ xT Σ−1pj + pT
j Σ−1x− pT

j Σ−1pj − xT Σ−1pi

− pT
i Σ−1x + pT

i Σ−1pi

Hj

≷
Hi

2 log
P (Hi)

P (Hj)

=⇒ 2xT Σ−1(pj − pi) + pT
i Σ−1pi − pT

j Σ−1pj

Hj

≷
Hi

2 log
P (Hi)

P (Hj)

=⇒ xT Σ−1(pj − pi)
Hj

≷
Hi

1

2
(pj + pi)

T Σ−1(pj − pi) + log
P (Hi)

P (Hj)
(5)

This proves our theorem. In the special case of equal priors,
i.e., P (Hi) = P (Hj), Eqn. (5) further simplifies to

xT Σ−1(pj − pi)
Hj

≷
Hi

1

2
(pj + pi)

T Σ−1(pj − pi) (6)

For convenience, we henceforth denote p = pj − pi.

We call the LHS of Eqn. (1) as test statistic T (x).

Corollary 1. If Hi is true, then T (x) follows the Gaussian
distribution N(pT

i Σ−1p,pT Σ−1p). If Hj is true, then T (x)
follows the Gaussian distribution N(pT

j Σ−1p,pT Σ−1p)

Proof. We first find the mean of T (x). We note that:

E[T (x)] = E[xT Σ−1p] = E[x]T Σ−1p

=

{
pT
i Σ−1p, if Hi is true

pT
j Σ−1p, if Hj is true

(7)

To find the variance of T (x), we denote the mean of T (x) to
be pk, where k ∈ i, j depending on whether hypotheses Hi

or Hj is true. We also note that the covariance matrix Σ is
symmetric positive definite, i.e., Σ = ΣT .

Var[T (x)] = E[T (x)− E[T (x)]]2

= E[xT Σ−1p− pT
k Σ−1p]2

= E[(x− pk)T Σ−1p]2

= E[pΣ−1(x− pk)(x− pk)T Σ−1p]

[as (Σ−1)T = (ΣT )−1 = Σ−1]

= E[pT Σ−1ΣΣ−1p]

= pT Σ−1p (8)

Thus, the statement of Corollary 1 follows.
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APPENDIX C
PROOFS OF LEMMAS 1 AND 2

We first derive an expression of Oacc(T). We note that:

P (MAP(x) = i | Hi)

= P
(
T (x) ≤ 1

2
(pj + pi)

T Σ−1(pj − pi) | T (x)

∼ N(pT
i Σ−1p,pT Σ−1p)

)
= P

(
T (x)− pT

i Σ−1p√
pT Σ−1p

≤ 1

2

√
pT Σ−1p

| T (x)− pT
i Σ−1p√

pT Σ−1p
∼ N(0, 1)

)
= P

(
Z ≤ 1

2

√
pT Σ−1p | Z ∼ N(0, 1)

)
[
introducing new random variable, Z =

T (x)−pT
i Σ−1p√

pT Σ−1p

]
= Φ(

1

2

√
pT Σ−1p) (9)

where Φ is the CDF of standard normal distribution. Also,

P (MAP(x) = j | Hj)

= P
(
T (x) ≥ 1

2
(pj + pi)

T Σ−1(pj − pi) | T (x)

∼ N(pT
j Σ−1p,pT Σ−1p)

)
= P

(
T (x)− pT

j Σ−1p√
pT Σ−1p

≥ −1

2

√
pT Σ−1p

|
T (x)− pT

j Σ−1p√
pT Σ−1p

∼ N(0, 1)

)
= P

(
Z ≤ 1

2

√
pT Σ−1p | Z ∼ N(0, 1)

)
[
introducing new random variable, Z =

T (x)−pT
j Σ−1p√

pT Σ−1p

]
= Φ(

1

2

√
pT Σ−1p) (10)

This gives us the following expression of Oacc(T):

Oacc(T) = P (MAP(x) = i|Hi)P (Hi)

+ P (MAP(x) = j|Hj)P (Hj)

= Φ(
1

2

√
pT Σ−1p)[P (Hi) + P (Hj)]

= Φ(
1

2

√
pT Σ−1p) [as P (Hi) + P (Hj) = 1]

(11)

We use this expression of Oacc(T) to get the following
lemmas:

Lemma 1. The objective Oacc(T) is monotone in nature, i.e.
if some sensor sk ∈ S \T, then Oacc(T ∪ {sk}) ≥ Oacc(T).

Proof. We show that the argument of Φ increases when we
add a sensor sk to T. To do this, we first denote the covariance
matrices of T and T∪{sk} by Σ and Σnew respectively. Also,
let:

Σnew =

[
Σ bk
bTk σ2

k

]
(12)

where the vector bk represents the noise correlation between
the sensors sk and si ∀ i ∈ [1, . . . , |T|] and σ2

k is the noise
covariance of the sensor sk. Using Banachiewicz inversion [1],
we get:

Σ−1new =

[
Σ−1 O
O O

]
+

[
−Σ−1bk

I

]
(σ2

k − bTk Σ−1bk)−1
[
−Σ−1bk I

]
(13)

Since Σnew � 0 and Σ � 0, the Schur complement of Σ in
Σnew is also positive semidefinite, i.e.,

Σnew/Σ = (σ2
k − bT Σ−1b) ≥ 0. (14)

With the addition of sensor sk to the subset T, the mean vector
can be rewritten as pnew =

[
pT µk

]T
. Now the argument of

Φ can be computed as:

pTnew Σ−1new pnew

=
[
pT µk

] [Σ−1 O
O O

] [
p
µk

]
+ a2k(σ2

k − bTk Σ−1bk)−1

= pT Σ−1 p+ a2k(σ2
k − bTk Σ−1bk)−1 (15)

where the scaler ak is given by

ak =
[
pT µk

] [−Σ−1bk
I

]
=
[
−Σ−1bk I

] [ p
µk

]
(16)

From Eqn. (14) and Eqn. (15) , we have

pTnew Σ−1new pnew ≥ pT Σ−1 p (17)

Thus, adding a dimension to p can never reduce the value
of pT Σ−1p. Since the CDF of the standard normal distribution
Φ is a non-decreasing function in its argument, Oacc(T)
increases by adding sensors to T.

Lemma 2. The objective Oacc(T) is submodular in nature,
i.e. if some sensor sk ∈ S \ T2, where ∀T1 ⊆ T2 ⊆ S, we
have:

Oacc(T1∪{sk})−Oacc(T1) ≥ Oacc(T2∪{sk})−Oacc(T2)
(18)

Proof. We denote the difference of the values of Oacc as gain
G, and define it as follows:

G(T, sk) = Oacc(T ∪ {sk})−Oacc(T) (19)

Now, let us consider two subsets of S, T1 and T2, where
T1 ⊆ T2. Note that in this case, Oacc(T1) ≤ Oacc(T2) due
to monotonicity. We also note that the double derivative of
Oacc is negative, and that the Oacc function is continuous and
differentiable at all points. Thus, from the nature of φ function,
and the fact that Oacc is monotone, we observe that the gain
G(T1, sk) ≥ G(T2, sk). This proves our theorem.
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APPENDIX D
COUNTER-EXAMPLE TO SHOW THAT ACTUAL OBJECTIVE

IS NOT SUBMODULAR

We consider the case where there are multiple hypotheses,
where each hypothesis Hi(i = 0, . . . ,m) has a multi-variate
Gaussian distribution with its individual mean but the same
covariance. Formally,

Hi : x ∼ N(pi,Σ) (20)

For convenience, we call this setting as Gaussian input with
multiple hypotheses. We now show that in this setting, the
objective Oacc is not submodular.

Lemma. In a setting with multiple hypotheses, Oacc is not
submodular.

Proof. We have the following expression of Oacc:

Oacc =

m∑
i=0

∏
j 6=i

[1− P (MAPij(x) 6= j|Hi)]P (Hi) (21)

Note that since MAPij is the test among the two hypotheses:

Hi : N(pi,Σ) & Hj : N(pj ,Σ) (22)

We first shift the means of both hypotheses so that the mean
of Hi is set to O. This does not affect the probability of
misclassification, since both the means are equally shifted.
Then, Hi and Hj have means of O and pj − pi respectively.
Now, using Lemma 2, we have the value of Oacc as:

Oacc =

m∑
i=0

P (Hi)
[∏
j 6=i

(1−Q(
1

2

√
(pj − pi)T Σ−1(pj − pi)))

]
(23)

We now show that Oacc is not submodular using a counter-
example. Let there be three hypothesis H0, H1 and H2 with
prior probabilities P (Hi) each equal to 0.33 and two sensors
with the mean vectors [0, 0], [0.75, 0.75] and [0.5, 0.5]. Also
assume that Σ is an identity matrix. A realistic scenario where
this configuration is possible is shown in Figure 1.

We first observe that when no sensors are selected, we
select one among the three hypothesis at random, which will
be correct only with an expected probability of 0.33, i.e.,
Oacc({}) = 0.33. We now show the values of Oacc, which
is also shown visually in Figure 2.

Oacc({s1}) = 0.3571 (24)

Thus, the gain G(s1, {}) = Oacc(sk) − Oacc({}) = 0.023.
Now, we compute the gain of adding the second sensor.
Selecting both sensors, we get the value of Oacc as:

Oacc({s1, s2}) = 0.4041 (25)

Thus, the gain G(s2, {s1}) = Oacc({s1, s2})−Oacc({s1}) =
0.0469. We observe that the gain has gone up from 0.023 to
0.0469 on adding the sensor s2 to our set {s1, s2}. Thus, the
objective Oacc is not submodular.

H2H1

s1

s2

Y

O

Fig. 1: A schematic representation of the configuration of sensors and
hypotheses described in Appendix D. The location corresponding to
hypothesis H1 is closer to the origin as compared to H2, since higher
power is sensed if it is true. Note that H0 is not shown, as it denotes
absence of any transmitter.

APPENDIX E
PROOF OF LEMMA 3

First, we recall from Section 3 that:

Oacc(T) =

m−1∑
i=0

[1− P (
⋃
j 6=i

MAPij(x) = j|Hi)]P (Hi), and

(26)

Oaux(T) = 1−
m−1∑
i=0

∑
j 6=i

P (MAPij(x) = j|Hi)P (Hi) (27)

We prove the lemma in three parts.

Oaux(T) ≤ Oacc(T). This directly follows from an applica-
tion of Boole’s inequality [2] which states that the probability
of a union of events is never greater than the sum of the
probabilities of individual events. In particular, by Boole’s
inequality, we have for all i:

P (
⋃
j 6=i

MAPij = j|Hi) ≤
∑
j 6=i

P (MAPij = j|Hi) (28)

Then, by multiplying each by P (Hi), summing over all i,
subtracting each side from 1, and noting that

∑
i P (Hi) = 1,

we get Oaux(T) ≤ Oacc(T) using Eq (26) and Eq (27).

Oacc(T) ≤ 1− 1
k (1−Oaux(T)). To get this, we utilize the

fact that the probability of a union of events is more than the
probability of each of the individual events. Thus,

P (
⋃
j 6=i

MAPij(x) = j|Hi) ≥ max
j 6=i
{P (MAPij(x) = j|Hi)} ∀i.

We also have the below, as maximum is greater than mean:

max
j 6=i
{P (MAPij(x) = j|Hi)} ≥

1

m

∑
j 6=i

P (MAPij(x) = j|Hi) ∀i,
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Fig. 2: In the configuration shown in Appendix D, we show (a) value of Oacc for different subsets, and (b) increase in value of Oacc.

where 0 ≤ i ≤ m. Now, using Eq (26) and the above two
equations, we get:

Oacc(T) ≤ 1− 1

m

m∑
i=0

∑
j 6=i

P (MAPij(x) = j|Hi)P (Hi)

= 1− 1

m
(1−Oaux(T)).

Value of k reduces with increase in Oacc. We need to show
that:

1−Oaux(T ′)

1−Oacc(T ′)
≤ 1−Oaux(T )

1−Oacc(T )
, where T ′ ⊇ T (29)

We show the more general case. For any events, A, B, if their
individual probabilities reduce the ratio of their sum and union
also reduces, i.e.

P (A1) + P (B1)

P (A1 ∪B1)
≥ P (A2) + P (B2)

P (A2 ∪B2)
, (30)

where P (A1) ≥ P (A2) & P (B1) ≥ P (B2)

Let ∆A = P (A1)−P (A2) and ∆B = P (B1)−P (B2). Then,
we have:

P (A2) + P (B2)

P (A2 ∪B2)

=
P (A1)−∆A + P (B1)−∆B

P (A1)−∆A + P (B1)−∆B − (P (A1)−∆A)(P (A2)−∆B)

=
P (A1) + P (B1)−∆

P (A1) + P (B1)−∆− (P (A1)−∆A)(P (B1)−∆B)

=
P (A1) + P (B1)−∆

P (A1 ∪B1)−∆ + (P (B1)∆A + P (A1)∆B −∆A∆B)

≤
P (A1) + P (B1)

P (A1 ∪B1)

Note that the last term in the denominator is a positive
term. This shows that the denominator has increased more, and
the value of the overall fraction has reduced. We can easily
generalize this to more than two events. We note that both
Oacc(T

′) ≥ Oacc(T ), and Oaux(T ′) ≥ Oaux(T ). Thus, Eqn.
(29) follows.

APPENDIX F
PROOF OF THEOREM 3

Let T be AGA solution, and T’ be any solution. We have:

Oaux(T) ≥ 0.63Oaux(T′)

(1−Oaux(T) ≤ 0.63(1−Oaux(T′)) + 0.37

(1−Oacc(T) ≤ 0.63k(1−Oacc(T
′) + 0.37

Perr(T) ≤ 0.63kPerr(T′) + 0.37

We have used Lemma 3 in the third equation above. Let T’
be the solution with optimal Oacc () (and thus, optimal Perr),
and the lemma follows.

APPENDIX G
INDEPENDENT SENSOR OBSERVATIONS

From proof of Theorem 1 and notations defined therein,
note that Oaux can be written as:

Oaux(T) = 1−
∑
i

∑
j 6=i

Q((pj − pi)Σ
−1(pj − pi)

T )P (Hi),

(31)
where Q(x) denotes the Q-function [3]. Now, suppose we wish
to compute Oaux(T∪{sk}) for a sensor sk whose observations
have a mean of pki for hypothesis Hi and a variance is σ2

k. Let
us denote the argument of Q() in Eq (31) by qij(T). Then,
we have the following recurrence relation:

Oaux(T ∪ {sk}) = 1−
∑
i

∑
j 6=i

Q(qij(T ∪ {sk}))P (Hi)

= 1−
∑
i

∑
j 6=i

Q(qij(T) +
(pki − pkj)2

σ2
k

P (Hi)

We note that computing qij(T) directly using Eq (31) takes
O(B2) time. However, we can compute pij(T) incrementally
by using the equation

qij(T ∪ {sk}) = qij(T) +
(pki − pkj)2

σ2
k

in constant time. As computing the Q-function takes constant
time, the above reduced the time complexity by a factor of
O(B2).
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