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Cost of spectrum increased 3x in / years
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How can Reqgulators Protect Spectrum?

Intruder
lllegal transmitter)

poru BE

DVB-T+DA

lllegal transmitters
must be detected:

1) With high accuracy,
2) by cheap sensors
3) incurring low cost

Deploys a large number
of sensors belonging to
different users

DVB T+DAB+FM

DpYBTHDABM =2

Crowdsourcing promises to satisty accuracy and cost requirements
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Challenges of Crowdsourcing

1) Handle sensor
heterogeneity?

2) Select
Sensors

Global

Decision
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3) Fuse sensor decisions
to get global decision
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Too much diversity makes getting observations expensive
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Observed distributions

Support Vector Regression




Our Solution

Observed distributions
(few configurations)
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Need to Choose Sensor Parameters

< Po improves

O
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' Number of Samples

. . FFT Bin Size
. 5 Bes

Energy cost rises

Tradeofft between Po and energy cost
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Selecting Sensor with Highest Po does not Work
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Our Approach
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Sensor Fusion
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L ocal Decisions have Randomness
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L ocal Decisions have Randomness

Different decisions
| from sensors close by

Global

Fusion decision
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Sensor fusion algorithm need to fuse noisy local decisions




Chair Varshney Fusion Rule
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Chair Varshney Fusion Rule

Optimal

lobal
algorithm» 9 . .
decision

global decision by weighing each sensor decision
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Sensor Fusion Algorithm

Better
performance
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Our sensor fusion performs better than baseline
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—— Get global decision from local noisy sensor decisions

e Weigh local decisions from sensor model to get global decision
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