
Mobility-Aware Service Placement for Vehicular
Users in Edge-Cloud Environment

Rahul Mudam1, Saurabh Bhartia1, Soumi Chattopadhyay1

and Arani Bhattacharya2

1 Indian Institute of Information Technology, Guwahati, India
2 Indraprastha Institute of Information Technology, Delhi, India

Abstract. In the era of Internet-of-things (IoT), both the number of web ser-
vices and the number of users invoking them are increasing everyday. These
web services utilize a cloud server for access to sufficient compute resources
for service delivery. A disadvantage of cloud computing is that it is known
to have a high latency because of its large distance (both physical distance
as well as number of hops) from the end user device. A key technique of en-
abling low-latency web services, called edge computing, brings the compute
resources closer to the end device. Edge computing enables better resource
utilization and it reduces latency. However, since there are numerous com-
pute resources or ‘edge resources’, determining where the services should be
placed becomes a new challenge. In this paper, we consider the case of public
transport vehicles utilizing edge computing to reduce latency while providing
such web services. We first model the dynamic service placement problem
considering user mobility. We then propose two algorithms to solve this prob-
lem. The first algorithm utilizes an Integer Linear Programming (ILP) to
obtain an optimal solution, albeit at the cost of scalability. We then propose
a heuristic algorithm to achieve a low latency, while also scaling to large prob-
lem instances. We validate the performance of both the techniques through
extensive trace-driven simulations.

1 Introduction

With the recent improvement of wireless connectivity, services are generally delivered
by software vendors from data centers. This paradigm of delivering services, called
cloud computing [17], has made it easier for software vendors to provide new services
or upgrade their existing ones. However, cloud computing being inherently central-
ized, fails to deliver low latency to users [2]. With latency becoming a major factor
in satisfying users, multiple works have proposed using a more decentralized archi-
tecture, that complements the existing data centers. This decentralized architecture
is known as edge computing [17]. In edge computing, data is placed in locations that
are physically and logically closer to the user. This could be either mini-data centers
associated with the network base stations [18], or compute resources provided by
a third party [13]. Edge computing promises to deliver low-latency services, while
maintaining the advantages of data centers.

However, utilizing edge computing to deliver services in practice has a number
of challenges. For example, it is possible for users to move around in vehicles. Such
movement of users makes it challenging to decide the edge device where data and
state of services should be placed that are sought by users [24]. While a number of
works have studied this problem of service placement, most of them do not consider
the mobility of users [2, 16]. Works that have looked at the mobility of users either
focus on a single user [1, 10] or depend on more compute-intensive techniques like

2 R. Mudam, S. Bhartia, S. Chattopadhyay, A. Bhattacharya.

path prediction or other forms of learning [3, 9, 10, 14, 25]. Many of them also do not
consider the memory constraints imposed by edge devices.

In this paper, we study the service placement problem in a dynamic environment
considering user mobility, viz., physical mobility of users while accessing said ser-
vices. We consider the case of users situated in moving vehicles, from which they
are accessing a set of services at different points of time. This also includes the
possibility of the vehicles themselves accessing services, in particular, in the case of
autonomous or semi-autonomous vehicles. The objective therefore is to dynamically
place/re-place the services either on the cloud or on an edge device to minimize the
overall latency felt by the users. Here, we first model the service placement problem
in a dynamic environment. We then propose an optimal (oracle) algorithm to solve
this problem using Integer Linear Programming (ILP). Though the optimal algo-
rithm gives a solution, it assumes that information about the entire trajectory of the
vehicle is available a priori. We show that it also suffers from scalability issues, i.e.
for a large dataset, it is incapable of generating results in real-time.

To circumvent this problem, we utilize the ILP to solve the problem in stages.
We utilize the fact that although the entire trajectory of the vehicles is usually not
known in advance, users tend to know their next few destinations. This information
is usually available from location-based applications such as Google Maps. Using this
information, we are able to repeatedly run the ILP to obtain solutions for different
time windows. Finally, we also propose a heuristic called First Come First Serve
(FCFS) that utilizes information about only one destination to solve the service
placement problem.

Our evaluation utilizes traces of publicly available datasets. We show that our
technique reduces latency significantly (around 6.76 times better) compared to multi-
ple baseline techniques. We also show that the FCFS heuristic in most cases performs
close to the optimal solution given by ILP. Finally, we also show that the execution
overhead of our heuristic is negligible compared to the amount of reduction in latency.

We summarize our contributions as follows:

1. We model the dynamic service placement problem considering user mobility and
formulate it as a ILP to minimize the overall latency.

2. We propose two techniques of obtaining a realistic solution. The first technique
solves the ILP in multiple time windows. The second technique uses a heuristic
algorithm called FCFS using information about the next destination of the vehicle.

3. We perform extensive experiments based on real dataset to compare the optimal
and FCFS algorithms with multiple baseline techniques. We show that FCFS
provides on average 6.76 times lower latency than the best baseline, while adding
an overhead of only order of tens of milliseconds.

2 Problem Formulation

In this section, we design a mathematical model of the dynamic service placement
problem (DSPP). We consider our model as dynamic since here we assume that the
location of the trajectory changes over time. In other words, the relative position
between the user and each edge device keeps on changing over time. We begin with
describing our system under consideration. We model our system as eight tuples
M = (C, E ,N ,R, T ,H,S):

1. A set of n execution platforms Ex = C ∪ E , where
(a) C = {C1, C2, . . . , Ck} is a set of cloud servers.

Mobility-Aware Service Placement 3

(b) E = {Ek+1, Ek+2, . . . , En} is a set of edge devices.
2. A set of network parameters N .
3. A vehicular road route map R.
4. A set of vehicular trajectories T = {T1, T2, . . . , Tm}.
5. A set of handheld devicesH = {H1,H2, . . . ,Hm}, where eachHi ∈ H is associated

with a unique Ti ∈ T .
6. A set of services S = {S1,S2, . . . ,Sr}.

We now discuss the characterization of each of the components of M in details.

1. Each execution platform Exi ∈ Ex is characterized by three tuples (Ui, Di, TCi),
where Ui, Di and TCi refer to the uplink speed, downlink speed and the total
memory capacity of Exi, respectively. We assume each cloud server to have suffi-
cient memory, i.e., ∀Ci ∈ C, TCi is infinite, so that the execution of the web services
is not constrained by the memory capacity of a cloud server. This assumption is
true for most commercial cloud servers.

2. The set of network parameters N contains an average propagation delay PDi,j of
an execution platform Exi ∈ Ex from a location Lj .

3. The route map R = (L, E) is given as a graph, where
– L is the set of vertices of the graph. Each vertex Li ∈ L of R represents a

location.
– E is the set of links of the graph. Each link eij = (Li,Lj) ∈ E indicates the

existence of a vehicular road between locations Li and Lj .
4. Each trajectory of a vehicle Ti is modeled as the tuple of the following tuples: Ti =

((Li1, TSi1, TS′i1, Ŝi1), (Li2, TSi2, TS′i2, Ŝi2), . . . , (Lix, TSix, TS′ix, Ŝix)), where
(a) The vehicle passes through the locations Li1,Li2, . . . ,Lix.
(b) At timestamp TSij the vehicle reaches the location Lij and at timestamp

TS′ij the vehicle leaves Lij .
(c) Ŝij is the set of services invoked by Ti at location Lij .

Since we target services invoked on public transport vehicles, we expect the times-
tamps and the routes taken to be known in advance.

5. Each handheld device Hi ∈ H is characterized by two tuples (Uhi , D
h
i), where Uhi

and Dh
i refer to the uplink and downlink speeds, respectively.

6. S is the set of services invoked by the vehicles. The data requirement of each
service varies across the trajectories. Therefore, each service Si ∈ S of a trajectory
Tj ∈ T is defined as 3-tuple: Si = (Ipi,j , Opi,j , PMi,j), where
(a) Ipi,j is the average input file size required to be uploaded to an execution

platform from the handheld device of the trajectory Tj to invoke the service
Si.

(b) Opi,j is the average output file size generated by Si and to be downloaded
from the respective execution platform to the handheld device of Tj .

(c) PMi,j is the worst case peak memory required by Si to be executed when
invoked from Tj .

Our model is generic enough to handle interactive services as well. An interactive
service can be divided into multiple blocks, where each block can be represented by
a service as defined above. Therefore, an interactive service, in our model, can be
treated as multiple atomic services.

We now define the notion of latency for Si of Tj . Consider Si being invoked from
Hj from TSx to TSx+k′ while traveling through Ll0,Ll1, . . . ,Llk′ . Also consider in
each TSk, for k ∈ {x, x + 1, . . . , x + k′}, Si is executed in Expk ∈ Ex. The latency
for Si of Tj is computed as:

4 R. Mudam, S. Bhartia, S. Chattopadhyay, A. Bhattacharya.

1. Initial Upload: At the initial timestamp TSx, when Si of Tj starts its execution,
the input file (i.e., IPi,j) of Si of Tj is uploaded to Exp0 from location Ll0.

2. Final Download: At the final timestamp TSx+k′+1, when Si of Tj finishes its
execution, the output file (i.e., OPi,j) of Si of Tj is downloaded from Expk′ to Hj
at Ll(k′+1).

3. Intermediate Transfer: In an intermediate timestamp TSk, for x < k ≤ (x + k′),
when Si of Tj continues its execution, the state of Si of Tj may be transferred
from Exp(k−1) to Expk through the handheld device Hj at location Llk. The state
size of a service is represented by its peak memory, i.e., PMi,j .

The uploading/downloading latency for Si of Tj has two key components: (a) trans-
mission delay and (b) propagation delay. The service uploading/downloading is as-
sociated with three different events: (i) data uploading from the sender device, (ii)
data propagation from a sender device to the receiver device, (iii) data downloading
to the receiver device. While (i) and (iii) together determine the transmission delay,
(ii) decides the propagation delay. Mathematically, the latency is defined as: IPi,j

Uhj︸ ︷︷ ︸
uploading

+ PDl0,p0︸ ︷︷ ︸
propagation delay

+
IPi,j

Dp0︸ ︷︷ ︸
downloading

︸ ︷︷ ︸

Initial Upload

+

(
OPi,j

Upk′
+ PDpk′,l(k′+1) +

OPi,j

Dhj

)
︸ ︷︷ ︸

Final Download

+

k′∑
k=1

((PMi,j

Up(k−1)

+ PDp(k−1),lk +
PMi,j

Dhj

)
︸ ︷︷ ︸

download from Exp(k−1)

+
(PMi,j

Uhj
+ PDlk,pk +

PMi,j

Dpk

)
︸ ︷︷ ︸

upload to Expk

)
Ip(k−1),pk

︸ ︷︷ ︸
Intermediate Transfer

(1)

where, Ip(k−1),pk is an indicator variable, indicates if state of Si of Tj is transferred
from one execution platform to another in the intermediate timestamps. Formally:

Ip(k−1),pk =

{
1, if Exp(k−1) 6= Expk
0, otherwise

(2)

The key objective of this work is to reduce the overall latency across all services
of all trajectories. Since the edge compute resources available are usually fixed, this
requires us to design an algorithm to decide where to place each of the services. We
model this objective as that of reducing the sum of latencies across all the services
and all the users.

3 Detailed Methodology

In this section, we present our methodology to solve DSPP. We first propose the
optimal solution for DSPP, followed by a heuristic solution based on First Come
First Serve (FCFS).

3.1 Optimal Algorithm

Our optimal solution is based on the Integer Linear Programming (ILP) formulation.
We first define a set of Boolean variables B as follows:

yi,j,k,l,p,u =

{
1, if Si of Tj is uploaded to Exp from Ll at TSk

0, otherwise

Mobility-Aware Service Placement 5

yi,j,k,l,p,d =

{
1, if Si of Tj is downloaded from Exp at Ll at TSk

0, otherwise

zi,j,k,p =

{
1, if Si of Tj is executing in Exp at TSk

0, otherwise

We now design the objective function and the set of constraints required to formulate
the ILP using B. It may be noted that in this formulation, the objective is to minimize
the overall latency across all services of all trajectories, which is obtained by choosing
the appropriate value of each Boolean variables in B by the ILP solver. Therefore,
the objective function is formulated by summing up the latency of all services of all
trajectories. However, the latency expression of Si of Tj , which is used in the objective
function of ILP, is different from Expression (1). In the definition of the latency of Si
of Tj , we consider that the execution platform, where Si of Tj to be placed in each
timestamp is known to us. However, in the objective function of this formulation,
the execution platform is to be decided by the ILP solver itself. Therefore we need
to reformulate the latency expression for each service of each trajectory. We now
discuss the three cases again, which we discussed earlier to define the latency.

Let the execution time span of Si of Tj from timestamp TSx to TSx+k′ be denoted
by Γij = {TSx+0, TSx+1, . . . , TSx+k′}, while Tj is at location Llk at TSx+k ∈ Γij .

– Initial Upload : At the initial timestamp (i.e., at TSx), Si of Tj is uploaded to an
execution platform to be decided by the ILP solver, and captured by the following.

λ
1
ij =

∑
Exp∈Ex

(
IPi,j

Uhj
+ PDl0,p +

IPi,j

Dp

)
yi,j,x,l0,p,u (3)

We note that in Expression (3), only one Boolean variable corresponding to the
execution platform, where Si of Tj is to be uploaded initially, is set to 1 by the
ILP solver. We ensure this by adding a constraint, which is discussed later.

– Intermediate Transfer : In each intermediate timestamp, Si of Tj has two options:
either Si of Tj continues its execution in the same platform executing in the pre-
vious timestamp, or it gets downloaded from the previous execution platform and
uploaded to some other execution platform. Mathematically,

λ
2
ij =

k′∑
k=1

(∑
Exp∈Ex

(PMi,j

Up
+ PDp,lk +

PMi,j

Dhj

)
yi,j,k,lk,p,d +

∑
Exq∈Ex,
Exp 6=Exq

(PMi,j

Uhj
+ PDlk,q +

PMi,j

Dq

)
yi,j,k,lk,q,u

)

(4)

– Final Download : In this case, Si of Tj has to be downloaded from its last execution
platform, which is expressed by the following expression.

λ
3
ij =

∑
Exp∈Ex

(
OPi,j

Up
+ PDp,l(k′+1) +

OPi,j

Dhj

)
yi,j,(k′+1),l(k′+1),p,d (5)

We now formulate the objective function of the ILP as follows:

Minimize:
∑
Tj∈T

∑
Si∈Tj

(
λ
1
ij + λ

2
ij + λ

3
ij

)
(6)

We now discuss the set of constraints required for this formulation. First, the number
of times each Si of Tj has been uploaded to an execution platform Exp has to be
equal to the number of times the same has been downloaded from Exp.

∀Tj ∈ T and ∀Si ∈ Tj ; ∀Exp ∈ Ex
∑

TSx≤TSk≤TSk′

yi,j,k,lk,p,u =
∑

TSx≤TSk≤TSk′+1

yi,j,k,lk,p,d

(7)

6 R. Mudam, S. Bhartia, S. Chattopadhyay, A. Bhattacharya.

where, the execution time span of Si of Tj is from TSx to TSx+k′ , while Tj passes
through location Llk at TSk.

Each Si of Tj continues its execution on Exp at TSk if Si of Tj has been uploaded
to Exp, but not yet downloaded from Exp. We have the following constraint to
capture this fact:

∀Tj ∈ T and (∀Si ∈ Tj) ; ∀TSk ∈ Γij ; ∀Exp ∈ Ex

zi,j,k,p =
∑

TSψ≤TSk

yi,j,ψ,lψ,p,u −
∑

TSψ≤TSk

yi,j,ψ,lψ,p,d (8)

where, Tj passes through location Llψ at TSψ.
The following constraint ensures that each Si of Tj must execute on exactly one

execution platform in each timestamp throughout its time span.

∀Tj ∈ T & (∀Si ∈ Tj) ; ∀TSk ∈ Γij ;
∑

Exp∈Ex

zi,j,k,p = 1 (9)

Our final constraint is related to the memory capacity of each edge device. At each
timestamp TSk, the memory constraint of each edge device has to be satisfied. An
edge device cannot accept any service, if it does not have residual memory capacity
to satisfy the service’s memory requirement.

∀TSk ∈ T ; ∀Exp ∈ E ;
∑
Tj∈T

∑
Si∈Tj

PMi,j ∗ zi,j,k,p ≤ TCp (10)

where TCp is total capacity of Ep.
Although the ILP provides an optimal solution to DSPP that minimizes total

latency, it does not scale for large problem instances. Moreover, we may not always
have complete knowledge about all the trajectories in advance. Thus, we propose a
window-based optimal strategy to overcome this problem.

3.2 Window-based Optimal Algorithm

The crux of the window-based optimal strategy is that we do not require to have
complete information about all the trajectories in advance. However, if we have prior
knowledge of the next few timestamps, say ω number of timestamps, then also we
can apply the same optimal algorithm on each sub-part of the trajectories. The
main idea of this algorithm is to divide the entire set of timestamps into multiple
windows of size ω and solve the problem optimally for each window individually. We
note that we need to transfer the previous state of the system (i.e., which service
of which trajectory is executing on which execution platform) to its next state to
obtain the optimal solution for the next window. Clearly, when ω is the total number
of timestamps across all trajectories, the window-based optimal algorithm generates
the optimal solution. For a smaller value of ω, although this approach does not
produce an optimal solution, this approach increases the scalability as compared to
the optimal algorithm, since it handles a smaller set of variables at a time.

In case of large number of timestamps, the window-based optimal algorithm scales
better compared to the optimal approach. Therefore, we can use this approach as an
online technique. However, for a large number of trajectories, edge devices, or the
number of services per timestamp per trajectory in one window, the window-based
optimal algorithm does not scale as well in real-time. This can increase the compu-
tation overhead of running it online. Therefore, in the next subsection, we propose a
scalable heuristic algorithm, which can solve the placement problem dynamically in
real-time.

Mobility-Aware Service Placement 7

3.3 Heuristic using FCFS

We now discuss our heuristic algorithm, which solves DSPP by first come first serve
(FCFS) scheduling. In FCFS, if a service Si of a trajectory Tj starts its execution
earlier on an execution platform Exp than another service Si′ of Tj′ , Si of Tj gets
higher priority over Si′ of Tj′ on Exp. In case of tie, it gets resolved arbitrarily. The
FCFS algorithm is an online algorithm as it runs on each timestamp. Therefore, this
algorithm does not require the trajectory information in advance.

If a service Si of a trajectory Tj executes at timestamp TSk, we have three
possibilities. Analyzing each of the possibilities, the service placement decision is
taken. We now discuss the principle of the FCFS algorithm.

1. Si of Tj is placed to the fastest execution platform accessible from the current
location having the residual capacity to accommodate the service for processing
at TSk, if Si of Tj starts its execution at TSk.

The fastest execution platform is the one having latency equal to minExq∈Ex
(IPi,j
Uhj

+PDlk,q +
IPi,j
Dq

)
.

2. If Si of Tj starts its execution before TSk and it is already on the fastest edge
device accessible from the current location or on the cloud, no action needs to be
taken.

3. If Si of Tj starts its execution before TSk and it is neither on the fastest edge
device accessible from the current location nor on the cloud, Si of Tj may need
to be transferred from the current edge device to the fastest execution platform
accessible from the current location having capacity to accommodate it. However,
this decision is taken based on a look-ahead in the next K timestamps, where K
is an input to this algorithm, as discussed below.

Consider the execution time span of Si of Tj is up to TSx+k′ , while Tj passes
through location Llk at TSk. Also consider Si of Tj executed on Exq at TSk−1. We
first define a transfer latency Tr(Exq, TSψ,Llψ) from Exq to the fastest execution
platform accessible from Llψ at TSψ as:

Tr(·) =

(
PMi,j

Uq
+ PDlψ,q +

PMi,j

Dhj

)
+ min
Exp∈Ex

(
PMi,j

Uhj
+ PDlψ,p +

IPi,j

Dp

)
(11)

The execution platform chosen Exc for Si of Tj at TSk is:

Exc =

{
Exq, if Tr(Exq, TSk,Llk) ≥ minTSψ Tr(Exq, TSψ,Llψ)

Exp, otherwise
(12)

where, TSk ≤ TSψ ≤ min(TSk+K , TSx+k′), Exp is the fastest platform accessible
from Llk and has residual capacity to accommodate Si of Tj . The above equation
checks whether the total time required to transfer Si of Tj at TSk from Eq to Ep is
less than the time required to transfer it in the later timestamps. If that is the case,
Si of Tj is transferred at TSk. Otherwise, Si of Tj continues its execution on Exq.
We make the following observations about FCFS:

1. Since FCFS is an online algorithm, it is executed in each timestamp in each
handheld device, which adds an additional overhead in the overall latency. Exper-
imentally, we have shown that the overhead incurred due to the execution of this
algorithm is very small.

2. Whenever an edge device accepts any service for execution, it broadcasts its own
residual capacity. Therefore, computation of residual capacity of edge devices does
not have any impact on the latency computation.

8 R. Mudam, S. Bhartia, S. Chattopadhyay, A. Bhattacharya.

3. The quality of this algorithm depends on the value of K. In general, with an
increase in the value of K, the solution quality, i.e., the latency monotonically
improves. However, after certain value of K, this improvement stagnates. We also
note that with an increase in the value of K, the computation time of the FCFS
algorithm increases up to a certain value of K. Unless mentioned otherwise, we
consider the value of K as 1. However, in the experimental section, we have shown
the trade-off between the computation time and the solution quality in terms of
the latency for different values of K.

Time Complexity: The FCFS algorithm iterates over each timestamp, and in one
timestamp, the algorithm iterates over each trajectory to find out what all services
are executed in that timestamp. It accordingly places the services on an appropriate
execution platform to obtain a low latency. Therefore, the complexity of the FCFS
algorithm is polynomial in the size of the set of trajectories. More specifically, the
worst-case time complexity of the FCFS algorithm is the order of the size of the
set of trajectories, i.e., O(|T |), since each trajectory is defined as the set of services
accessed across all timestamps.

4 Experimental Results

In this section, we present our experimental results with analysis. We implemented
our proposed framework in python. All experiments were performed on a system with
the following configuration: AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx, 2100
Mhz, 4 Cores(s), 8 logical processor(s) @ 2.10 GHz with 8GB DDR4 RAM. We used
Gurobi [5] as the ILP solver. We begin with a discussion of the datasets used for our
evaluations.

4.1 Dataset Generation

We conducted our experiments on a real dataset, which we generated for the evalua-
tion and a set of synthetically generated datasets. We now discuss these two datasets
in detail.

Real Dataset Generation We could not find any real benchmark dataset that
can be used directly to evaluate the performance of our proposed framework. There-
fore, we designed our own dataset by combining multiple datasets to model var-
ious dimensions of our problem model. We now demonstrate each component of
M = (C, E ,N ,L,R, T ,H,S) below.

In our real dataset, we considered only one cloud server. We used the Pantheon3

dataset to generate the uplink and downlink speeds of the cloud. We assumed one
edge device per location and generated the uplink and downlink speeds of each edge
device randomly between 3 MBps to 10 MBps. We obtained these values by observ-
ing actual transmission speeds using a Wi-Fi dongle connected to a Raspberry Pi.
The size of the memory of each edge device was generated randomly between 512
MB to 4 GB considering the configuration of Raspberry Pi. The propagation delay
from a location to an edge device was generated randomly following a distribution,
which was obtained from our collected ping latency data. We conducted an experi-
ment to collect the ping latency of our institute server from different locations. The
propagation delay from a location to the cloud was generated from the distribution

3 https://www.pantheon.stanford.edu/summary/?page=1

Mobility-Aware Service Placement 9

obtained from our collected data containing the ping latency of Amazon and Google
servers from different locations. The set of locations, route map and the set of vehic-
ular trajectories were constructed from gatech4 dataset. The gatech dataset contains
10 different user trajectories, where the positions of the vehicles were captured in
terms of latitude and longitude pairs. We first extracted the latitude-longitude pairs
from the dataset. We then used K-means [8] algorithm with Haversine distance [20]
function to discretize the set of locations. The route map was generated from the ve-
hicular trajectories of gatech dataset. To obtain the set of services and their duration
of invocations per user, we used Carat5 dataset. The uplink and downlink speeds of
each handheld device were estimated from a distribution, obtained from the uplink
and downlink speeds of a set of cell phones. Finally, we generated the input, output
and the worst case memory requirement of each service by random sampling from our
collected dataset. We performed an experiment on publicly available service APIs to
obtain the input, output and the worst case memory requirement.

Synthetic Dataset Generation To show the performance scalability of our frame-
work, we extended our experiments on synthetically generated dataset, which we
discuss below. For each instance of the dataset, externally, we provided the number
of edge devices and clouds, the number of trajectories, the total number of services,
the number of timestamps, and the number of services per trajectory per timestamp.
For each dataset, we first randomly generated the graph representing the route map.
The number of vertices in the graph was equal to the number of edge devices. We
used a probability p following the uniform distribution to generate a link between
each pair of vertices. We note that a trajectory of our system is nothing but a path
of the graph, which was chosen randomly. Finally, for each trajectory tuple, we ran-
domly assigned two timestamps. The first timestamp shows the time to enter into
the location, while the second timestamp shows the time to leave the location. The
rest of the part of each dataset were generated similarly, as described above.

4.2 Comparative Methods

We compared our methods with three baseline techniques:

1) Proactive method: This method assumes that if a service of a trajectory is
uploaded to any execution platform, it continues the execution until the execution
platform becomes inaccessible from the current location of the vehicular trajectory.
In this approach, a service of a trajectory is uploaded, if required, to the fastest
execution platform accessible from the current location of the trajectory having the
residual capacity to accommodate the service. The inaccessibility of an execution
platform is measured in terms of its propagation delay. A service of a trajectory is
transferred from one execution platform to another when the propagation delay of
the former execution platform is more than a given threshold value from the current
location of the trajectory.

2) Reactive method: In this method, each service of a trajectory changes the
execution platform along with the vehicular trajectory across the span of the service.
Here, in each location of a trajectory, a service of the trajectory is uploaded to
the fastest execution platform accessible from the current location of the trajectory
having the residual capacity to accommodate the service.

4 https://www.crawdad.org/gatech/vehicular/20060315/
5 https://www.cs.helsinki.fi/group/carat/data-sharing/

10 R. Mudam, S. Bhartia, S. Chattopadhyay, A. Bhattacharya.

Table 1. Comparative study on the real dataset (all in seconds)
Network parameters

|T | |S| |E| |TS| #S/T , TS
10 121 10 10 2 to 5

Comparative study with different algorithms
Subject Optimal FCFS Proactive Reactive Cloud

Lat - 12.52 12.52 17.37 291.11
CT - 0.01 0.02 0.024 0.02

FCFS with K-look ahead
K 2 3 5 7 10

Lat 8.61 6.14 6.07 6.07 6.07
CT 0.01 0.01 0.01 0.02 0.02

**note: #S/T , TS the number of services per trajectory per timestamp

3) Cloud-based method: In this method, each service of each trajectory is
uploaded to the cloud. The service continues its execution in the cloud until it finishes.
Finally, the service gets downloaded from the cloud to the handheld device.

4.3 Analysis on real dataset

In this section we briefly discuss our experimental analysis. We begin with analyzing
the results obtained on the real dataset. Table 1 shows the results on the real dataset.
From the table we have the following observations:

1. Performance of FCFS: The proposed First Come First Serve (FCFS) algorithm
(with look-ahead 1) was as good as the proactive technique and better than the
reactive and cloud-based techniques in terms of latency.

2. Performance of Optimal: The optimal algorithm was unable to produce any
result due to the size of the dataset.

3. Execution time of FCFS: Our FCFS algorithm was able to generate the results
in the order of tens of milliseconds.

4. Impact of look-aheads on FCFS: As we increased the number of look-aheads
K, the latency monotonically reduced. However, this improvement stagnates be-
yond K = 5. This is because for our available dataset, the entire set of decision
parameters can usually be obtained by FCFS when K ≥ 5. As is evident from
Table 1, the execution timespan of any service is bounded by 5 timestamps.

To generalize the overall characteristics of our proposed optimal and FCFS algo-
rithms, we further extended our experiments on synthetically generated datasets.

4.4 Analysis on synthetically generated dataset

In this analysis, we varied different network parameters, i.e., the number of trajec-
tories (|T |), the number of edge devices (|E|), the number of timestamps (|TS|), the
number of services (|S|), and the number of services per trajectory per timestamp
(#S/T , TS), to analyze the performance of different algorithms. At a time we varied
only one parameter while keeping the rest of the parameters constant.

We first performed an experiment with a smaller dataset. Figures 1(a) - (e) shows
the comparative study between different algorithms. We have the following observa-
tions:

1. Performance of Optimal Algorithm: As evident from Figures 1(a) - (e), the
optimal algorithm produced the best results in terms of latency. However, the
optimal algorithm was quite expensive in terms of computation time. For a rela-
tively large dataset, the optimal algorithm was, therefore, unable to produce any
result.

Mobility-Aware Service Placement 11

(a) (b)

(c) (d)

(e)

Fig. 1: Comparative study between different methods by varying the number of (a) trajec-
tories (|S| = 10; |E| = 5; |TS| = 5; #S/T , TS = 2− 5); (b) edge devices (|T | = 5; |S| = 10;
|TS| = 5; #S/T , TS = 2− 5); (c) services per trajectory per timestamp (|T | = 5; |S| = 20;
|E| = 5; |TS| = 5); (d) timestamps (|T | = 5; |S| = 10; |E| = 5; #S/T , TS = 2 − 5); (e)
services (|T | = 5; |E| = 10; |TS| = 5; #S/T , TS = 2− 5)

2. Comparison between FCFS and Optimal Algorithms: On average, the
optimal algorithm was 2.43 times better than the FCFS algorithm in terms of la-
tency, while the FCFS algorithm was 306 times faster than the optimal algorithm.
This signifies the purpose of the FCFS algorithm.

3. Comparison between FCFS and baseline techniques: In few cases, the
FCFS algorithm was worse than the proactive or cloud-based techniques. As ap-
parent from Figures 1(a) - (e), in only 1 out of 27 cases, the proactive technique
and the cloud-based technique had 1.5 times and 1.6 times lower latency than
the FCFS, respectively. However, on average, the FCFS algorithm had 6.76 times
lower latency than the best algorithm among proactive, reactive, and cloud-based
techniques (in each case).

4. Variation of network parameters: As observed from Figures 1(a) - (e), with
the increase in the number of trajectories, edge devices, timestamps or services
per trajectory per timestamp, the computation time of both the optimal and the
FCFS algorithms monotonically increased. However, the number of services did
not influence the computation time. While the number of services increases the
variation of services to be invoked, it does not increase the total number of services
invoked from each trajectory.

As discussed earlier, for a large dataset, the optimal algorithm was not able to pro-
duce any result. However, our FCFS algorithm is scalable enough to generate results
in a reasonable time limit. Figures 2(a) - (e) show the results on larger datasets. A
similar trend was observed from the larger datasets as well. Here, in Figures 2(a) -

12 R. Mudam, S. Bhartia, S. Chattopadhyay, A. Bhattacharya.

(a)
100 500 1000 2500 5000

The number of trajectories

0.01

1

100

10000

1000000

100000000

La
te

nc
y

(s
ec

)

FCFS-Overhead
FCFS-Run

Proactive
Reactive

Cloud

0

2000

4000

6000

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

(b)

100 500 1000 2500 5000
The number of services

0.01

1

100

10000

1000000

La
te

nc
y

(s
ec

)

FCFS-Overhead
FCFS-Run

Proactive
Reactive

Cloud

0

1

2

3

4

5

6

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

(c)

100 200 500 1000 2000
The number of edge devices

0.1

10

1000

100000

10000000

La
te

nc
y

(s
ec

)

FCFS-Overhead
FCFS-Run

Proactive
Reactive

Cloud

0

100

200

300

400

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

(d)

10 15 20 25 30 50
The number of timestamps

100

1000

10000

100000

La
te

nc
y

(s
ec

)

FCFS-Overhead
FCFS-Run

Proactive
Reactive

Cloud

0

10

20

30

40

50

60

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

(e)

10 to 20 30 to 40 50 to 60 70 to 80 90 to 100
The number of services per trajectory per timestamp

100

1000

10000

100000

1000000

La
te

nc
y

(s
ec

)

FCFS-Overhead
FCFS-Run

Proactive
Reactive

Cloud

0

100

200

300

400

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
)

Fig. 2: Comparative analysis on large datasets by varying the number of (a) trajectories;
(b) edge devices; (c) services per trajectory per timestamp; (d) timestamps; (e) services;
Unless otherwise mentioned, the general configuration of the network parameters for this
experiment are: |T | = 100; |S| = 100; |E| = 100; |TS| = 10; #S/T , TS = 5− 10

(e), we reported the overall time taken by the FCFS algorithm across all trajectories
across all timestamps (as shown by the blue line graph in Figure 2). However, in each
case, we also reported the latency overhead (i.e., the computation time of the FCFS
algorithm in each trajectory in each timestamp) added due to the computation time
of the FCFS algorithm. We note that for the larger dataset, the latency overhead
generated due to the computation time of the FCFS algorithm was significant, as
shown in Figures 2(a) - (e). However, the FCFS algorithm was still 2.57 times better
than the best technique among proactive, reactive, and cloud-based methods (in each
case) in terms of latency. We further note that only in 3 out of 26 cases, the proactive
technique was 1.5 times better than the FCFS in terms of latency.

4.5 Impact of Tunable Parameters

We now discuss the impact of two tunable parameters on the trade-off between
solution quality and computation time.

Impact of window size (ω): We first discuss the impact of window size in case
of window-based optimal algorithm. We compared the solution quality (i.e., latency)
of the window based optimal algorithm for different window sizes with the optimal
algorithm. Figure 3(a) shows the latency and overhead due to the computation time
of the algorithm across different window sizes for five different datasets (i.e. Cases
1-5), where each dataset represents a different set of parameter configurations. As
evident from Figure 3(a), on average, with the increase in the size of window, the
solution quality improved. This is expected, as with an increase in the window size,
in general the window-based optimal algorithm gradually approaches the optimal
solution.
Impact of lookaheads (K): We now discuss the impact of K in the case of the
K-look-ahead FCFS algorithm. We compared the solution quality (i.e., latency) of

Mobility-Aware Service Placement 13

(a)

Case 1 Case 2 Case 3 Case 4 Case 5
Different Parameter Cases

0

5

10

15

20

25

Ti
m

e
(s

ec
)

WS 1-L
WS 1-O

WS 2-L
WS 2-O

WS 3-L
WS 3-O

WS 4-L
WS 4-O

Optimal-L
Optimal-O

(b)

Fig. 3: Trade-off between computation delay and latency for (a) window-based optimal
algorithm; (b) FCFS with K-look ahead. For (a), the darker colors (labels ending with a
suffix ’-L’) denote latency, while the lighter colors (labels ending with a suffix ’-O’) denote
overhead.

the K-look-ahead FCFS algorithm for a specific value of K with the 1-look-ahead
FCFS algorithm. Figure 3(b) shows the means and standard deviations of latency
improvement and computation time degradation. While the latency improvement
was calculated as the ratio between the latency obtained by 1-look-ahead FCFS
and K-look-ahead FCFS, the computation time degradation was determined by the
ratio between the time taken by K-look-ahead FCFS and 1-look-ahead FCFS. As
evident from Figure 3(b), with the increase in the value of K, the solution quality
monotonically improved, and computation time degraded. However, we note that
after a certain limit, the solution quality did not improve significantly with an increase
in the value of K. The trade-off between the solution quality and the computation
time gets captured by the value of K.

In summary, FCFS provides a good balance between the solution quality (i.e.,
latency value) and computation time. The solution quality can be improved further
at the cost of computation time using K-look-ahead FCFS.

5 Related Work

The rise of low-latency applications for the Internet of Things has made it necessary
to utilize edge devices, instead of depending only on cloud services [2, 7, 14]. Multiple
studies have appeared in the literature about providing such low-latency services. The
first category deals with service placement in an edge-cloud environment, whereas
the second category handles service requests for users of vehicles.

Service Placement in Edge-Cloud Environment: The problem of service place-
ment in edge-cloud environment has received attention recently [11, 16, 19, 23]. One
of the earliest solutions to the service placement problem was proposed in [16], where
the authors first provided an (IoT) model along with the Quality of Service (QoS)
requirement of the services and formulates Fog Service Placement Problem (FSPP)
based on QoS requirements. In [4, 6, 15, 19, 23], the authors model the application
placement problems and then propose a solution based on the different changing
dynamics of the network and requests. None of these studies focus on user mobility.
Our work builds on these ideas to propose an algorithm that considers the mobility
of users.

Edge Service for Vehicular Users: The authors in [24] identified the requirement
of the mobility problem, highlighted the advantages of mobility and discovered open
challenges in this direction. In [1] and [25], the authors considered an application
with multiple components to be placed on the set of edge devices across multiple

14 R. Mudam, S. Bhartia, S. Chattopadhyay, A. Bhattacharya.

timestamps for a moving user. Finally, [3] utilized a simulation tool to benchmark
the performance of various algorithms. In contrast, our objective is to minimize the
overall latency while multiple mobile users access different services at various points
of time of their journey.

A number of works also consider optimizing service placement for moving user de-
vices [3, 9, 10, 21, 22]. Mobmig [12] focused on solving the service placement problem
in the context of edge users from moving vehicles by looking at the direction of its
movement. However, its primary focus is on load balancing, and not on minimizing
overall latency. References [21] and [22] model the problem of service placement as
an Markov Decision Process (MDP). Unlike our work, these analytical model do not
consider multiple users and multiple services to reduce the complexity of their model.
Reference [10] utilized Thompson Sampling to handle the uncertainties inherent in
placing services on edge clouds. However, it considers the response time of only a
single user at a time, and considers a much simpler service model without considering
the diversity of data requirements for different services. Moreover, these studies [9,
10] do not consider the dimension of memory requirement and availability, prefer-
ring to focus only on optimizing latency. In contrast, our work focuses on optimizing
service latency while adhering to the memory constraint imposed by edge devices.

6 Conclusion

In this paper, we study the dynamic service placement problem in a distributed
edge-cloud environment with emphasis on user mobility. We first model the problem
and propose an optimal solution to this. To address the scalability issue, we further
propose a heuristic algorithm considering FCFS scheduling. The experimental results
on real and synthetic datasets show the effectiveness of our proposal. One limitation
of this work is the assumption of having prior knowledge of the service invocation
logs. In the future, we will utilize techniques shown by prior studies to predict services
invoked to relax this assumption.

7 Acknowledgment

We would like to acknowledge Dr. Ansuman Banerjee, Indian Statistical Institute and
Dr. Nanjangud C Narendra, Ericsson Research Bangalore for their initial discussions
on this project.

References

1. Bahreini, T., Grosu, D.: Efficient placement of multi-component applications in edge
computing systems. In: ACM/IEEE Symposium on Edge Computing. p. 5. ACM (2017)

2. Bhattcharya, A., De, P.: Computation offloading from mobile devices: Can edge devices
perform better than the cloud? In: ARMS-CC Workshop. p. 1–6 (2016)

3. Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., Zomaya, A.Y.: Mobility-aware ser-
vice composition in mobile communities. IEEE TSMC: Systems 47(3), 555–568 (March
2017). https://doi.org/10.1109/TSMC.2016.2521736

4. Farhadi, V., et al.: Service placement and request scheduling for data-intensive appli-
cations in edge clouds. In: IEEE INFOCOM. pp. 1279–1287 (2019)

5. Gurobi Optimization, L.: Gurobi optimizer reference manual (2019), http://www.

gurobi.com

6. He, T., et al.: It’s hard to share: joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources. In: IEEE ICDCS. pp. 365–375 (2018)

Mobility-Aware Service Placement 15

7. Lin, L., et al.: Computation offloading toward edge computing. Proceedings of the IEEE
107(8), 1584–1607 (Aug 2019). https://doi.org/10.1109/JPROC.2019.2922285

8. MacQueen, J., et al.: Some methods for classification and analysis of multivariate ob-
servations. In: Fifth Berkeley symposium on mathematical statistics and probability.
vol. 1, pp. 281–297 (1967)

9. Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: Mobility-aware dynamic service
placement for mobile edge computing. IEEE Journal on Selected Areas in Communica-
tions 36(10), 2333–2345 (Oct 2018). https://doi.org/10.1109/JSAC.2018.2869954

10. Ouyang, T., Li, R., Chen, X., Zhou, Z., Tang, X.: Adaptive user-managed service place-
ment for mobile edge computing: An online learning approach. In: IEEE INFOCOM.
pp. 1468–1476. IEEE (2019)

11. Pasteris, S., Wang, S., Herbster, M., He, T.: Service placement with provable guarantees
in heterogeneous edge computing systems. In: IEEE INFOCOM. pp. 514–522 (2019)

12. Peng, Q., et al.: Mobility-aware and migration-enabled online edge user allo-
cation in mobile edge computing. In: IEEE ICWS. pp. 91–98 (July 2019).
https://doi.org/10.1109/ICWS.2019.00026

13. Rausch, T., Avasalcai, C., Dustdar, S.: Portable energy-aware cluster-based edge com-
puters. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC). pp. 260–272 (Oct
2018). https://doi.org/10.1109/SEC.2018.00026

14. Rejiba, Z., Masip-Bruin, X., Maŕın-Tordera, E.: A survey on mobility-induced service
migration in the fog, edge, and related computing paradigms. ACM Comput. Surv.
52(5), 90:1–90:33 (2019)

15. Selimi, M., et al.: Practical service placement approach for microservices architecture.
In: IEEE/ACM CCGRID. pp. 401–410 (2017)

16. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards qos-aware fog service place-
ment. In: IEEE ICFEC. pp. 89–96 (2017)

17. Tong, L., Li, Y., Gao, W.: A hierarchical edge cloud architecture for mobile computing.
In: IEEE INFOCOM. pp. 1–9 (2016)

18. Tran, T.X., et al.: Collaborative mobile edge computing in 5g networks: New paradigms,
scenarios, and challenges. IEEE Communications Magazine 55(4), 54–61 (2017)

19. Urgaonkar, R., Wang, S., He, T., Zafer, M., Chan, K., Leung, K.K.: Dynamic service
migration and workload scheduling in edge-clouds. Performance Evaluation 91, 205–228
(2015)

20. Van Brummelen, G.: Heavenly mathematics: The forgotten art of spherical trigonome-
try. Princeton University Press (2012)

21. Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., Shen, X.S.: Delay-aware microser-
vice coordination in mobile edge computing: A reinforcement learning approach. IEEE
Transactions on Mobile Computing pp. 1–1 (2019)

22. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dy-
namic service migration in mobile edge computing based on markov decision
process. IEEE/ACM Transactions on Networking 27(3), 1272–1288 (June 2019).
https://doi.org/10.1109/TNET.2019.2916577

23. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applications
in edge computing environments. vol. 5, pp. 2514–2533. IEEE Access (2017)

24. Waqas, M., Niu, Y., Ahmed, M., Li, Y., Jin, D., Han, Z.: Mobility-aware fog computing
in dynamic environments: Understandings and implementation. IEEE Access 7, 38867–
38879 (2018)

25. Zhao, H., Deng, S., Zhang, C., Du, W., He, Q., Yin, J.: A mobility-aware cross-edge
computation offloading framework for partitionable applications. In: IEEE ICWS. pp.
193–200. IEEE (2019)

