
Energy-Aware H.264 Decoding

Abstract. The increasing use of more resource-intensive multimedia
applications in communication has made it essential to ensure better
utilization of available computing resources. At the same time, energy
consumption has turned out to be one of the most important resource
constraints in modern systems. Digital videos are an important part of
multimedia, and a large number of video standards are currently avail-
able. In this paper, we work on the most commonly used video standard
named H.264. We propose a method to reduce the energy consumption
involved in video decoding by selective degradation of video quality. Ex-
periments on the LIVE video database show that our proposed method
is quite effective in practice.

1 Introduction

The rise of both environmental concerns as well as limits placed on performance
by energy dissipation has given rise to energy-aware computing. Moreover, em-
bedded systems having limited sources of energy are increasingly being used for
more and more complex tasks. Designers are, therefore, increasingly looking at
ways of reducing the energy footprint of their applications [1].

In order to make them more user-friendly, computing systems are gradually
turning towards communication through multimedia such as graphics, audio and
videos. While this increasing use of multimedia has made computer systems more
accessible to people, it has also made it essential to ensure that such systems
have enough resources to deal with these demands. Since energy is one of the
more important resources, building energy-efficient systems has turned out to
be an important goal of designers.

With improvements in processor speeds according to Moore’s Law [2], energy
consumption by processors have gradually increased. In embedded systems, the
amount of energy consumption is limited by the capacity of the power source.
In desktop and server systems, energy consumption is limited by the amount of
heat dissipation possible within the die area [3]. Thus, the constraint on energy
consumption has placed a limit on the performance of embedded, desktop as well
as server systems. An increasingly popular theme of research today is to limit
the amount of energy consumption at the software level. This has been done at
compiler-level, operating system level as well as at the application level. At the
application level, energy-aware design of various commonly used software such
as virtual machines, wireless sensors and video decoders are currently topics of
active research [1].

A video decoder is an essential component in the playback of video files. Video
decoders are, thus, commonly used on mobile devices having limited sources of



energy. Thus, reducing energy consumption of video decoders is likely to enable
users of mobile devices to decode more high resolution videos.

Among the many available video standards currently available, H.264 is the
most commonly used standard. This is because H.264 offers very good video
compression with little loss of quality[4]. For this reason, H.264 is widely used
in both desktop and mobile platforms. It is also very commonly used for video
streaming.

In this paper, we present a method to perform energy-aware decoding of
H.264 videos. For simplicity, we have concentrated here only on intra-coded
frames, i.e. frames in which information is derived solely from decoded pixels
present in the same frame. We show that significant gains in energy consumption
can be made by lowering quality of the video during the process of decoding.
We perform experiments to show that significant energy gains can be made with
little loss of video quality.

The rest of this paper is organized as follows. Section 2 briefly discusses
the H.264 standard, existing methods of measuring energy consumption of a
modern computing system and ways of measuring quality of videos. Section 3
describes our technique of reducing the energy footprint during the process of
video decoding. The experiments performed and observations recorded are then
discussed in Section 4. Section 5 lists some other work related to energy-aware
video decoding, and the ways in which they differ from our contribution. Section
6 concludes this paper.

2 Background

2.1 H.264 standard

A H.264 video [5, 6] consists of a sequence of frames. A frame is an array of
luma samples (related to luminance) and two corresponding arrays of chroma
samples (related to red and blue chrominance). Each frame is further divided
into spatial units called slices. A slice consists of blocks of 16 x 16 pixels, known
as macro-blocks (MB). A macro-block contains type information describing the
choice of methods used to code the macro-block, prediction information such
as intra prediction mode, and coded residual data. Within a macro-block, luma
samples may be coded as one of the three types of block sizes, namely 4x4, 8x8
or 16x16 pixels. Chroma samples are commonly coded as blocks of 8x8 pixels.

Reconstruction is an important step in the decoding of an H.264 video frame.
Reconstruction of a decoded macro-block involves obtaining the data from neigh-
bouring macro-blocks based on which motion prediction had been made by the
encoder. This cannot be done independently, but only after fetching data of
neighbouring macro-blocks. In an intra-coded video frame, all dependencies are
in the same frame of video. The H.264 standard specifies four neighbours for a
macro-block in an intra-frame, namely, left, top-left, top and top-right. For ex-
ample, in Figure 2.1, the macroblock labelled 5 has the macroblocks labelled 4, 1,
2 and 3 as its left, top-left, top and top-right neighbours respectively. In addition,



a macroblock includes a variable amount of residual information that cannot be
inferred from previous macroblocks. This residual information is converted into
frequency domain using a modified form of Discrete Cosine Transform (DCT),
and then stored within the encoded bitstream.

Fig. 1. A 3x3 H.264 frame

2.2 Measurement of Energy Consumption

In order to enable energy-aware computation, it is essential to monitor the
amount of energy or power consumed while running a program. This can be
done by reading the Model-Specific Registers (MSRs) which are available on
almost all modern processors. Intel, in particular, allows the application user to
read the amount of energy or power consumed by a code fragment by reading
its MSR registers through its RAPL (Running Average Power Limit) driver.

Using RAPL to obtain energy consumption has two major disadvantages.
First, it cannot measure energy consumption at very low granularity, i.e. the
energy consumed is given in multiples of 125 mJ . Second, it does not quantify
the energy consumption involved in different stages of instruction execution.
Thus, it is not possible to suggest improvements in software design by simply
using RAPL output without first studying the reasons which lead to high energy
consumption [7].

In order to understand better the relation between program instructions and
energy consumption, power models have been developed that can estimate the
energy consumption involved depending on the number of instructions fetches,
number of memory accesses at different levels of cache accesses and other factors.
It has been shown that energy consumption by an architectural component is
proportional to its activity ratio. The activity of an architectural component here
refers to the number of operations performed by it per unit time. These power
models allow us to recognize the components that consume more power, and
thus point us towards techniques to reduce energy consumption by suggesting



methods to reduce the number of operations performed by some component. In
this paper, we have used one such power model to develop ways to reduce energy
consumption of video decoders [8].

2.3 Measures of Video Quality

Measuring quality of video decoding is an active area of research. Our work
focuses on measuring the quality of video obtained after the entire process of
decoding is completed. This essentially implies that the decoded video obtained
after degradation can be compared with another reference video decoded without
degradation. This process of measuring video performance is known as Full-
Reference video quality measurement. Wang et al. [9] provides an excellent
survey of traditional methods of video quality along with their drawbacks.

The traditionally most common Full-Reference video quality measure is Peak
Signal-to-Noise Ratio (PSNR). Peak Signal-to-Noise Ratio is obtained by:

PSNR = 10log10
MAX2

I

MSE

where MSE or Mean Square Error is the square of the sum of differences in
intensity of each color element, and MAXI is the maximum possible intensity,
which is obtained using the number of bits used to represent a particular color
component. There are two different types of PSNR that can be used:

1. Average PSNR: In this case, the PSNR of each image is obtained individually,
and their arithmetic mean is then calculated.

2. Global PSNR: In this case, the MSE of the entire video is first obtained, and
then its ratio with the maximum possible intensity is obtained. The logarith-
mic operation is applied on this ratio. This method basically concatenates
all the frames of the video to form a single image of very large dimension,
and then calculates its PSNR [10].

PSNR, though still widely used as a metric to measure video qualities, merely
compares the differences between the reference video and the output video. This
metric does not always agree with the human perception of video quality. Thus,
researchers continued to look for better metrics of video quality.

A metric that is widely used to measure quality of images is the Structural
Similarity Index Metric (SSIM). It uses the formula

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where µx is the average value of pixels along the width of a frame, µy is the
average value of pixels along the height of a frame, σ2

x is the variance of pixels
along its width, σ2

y is the variance of pixels along its height, σxy is the covariance
of x and y, c1 and c2 are constants that are typically used to stabilize the division
with a weak denominator. SSIM is a linear metric that gives a number between 1



and -1, with 1 being returned when the reference and the test frame are identical
to each other.

PSNR and SSIM, taken together, are the most common measures of video
quality used nowadays by far. However, it has been observed that these two
metrics do not take into account the interaction between different frames, or
any information present in a video about the motion of objects [11].

One metric that takes into account the motion information and has been
shown to provide a much better measure of video quality is the MOtion-based
Video Integrity Evaluation (MOVIE) index, developed at the Laboratory for Im-
age and Video Engineering at University of Texas, Austin. The MOVIE index
consists of two distinct components — spatial and temporal MOVIE. The spatial
index uses comparison techniques similar to other video quality assessment algo-
rithms such as PSNR, but with much more detailed information. The temporal
index captures any temporal distortions introduced into the video. Experiments
have shown that the MOVIE index has a much higher correlation with human
perception of video quality [12].

3 Methodology

In order to demonstrate the efficacy of our method, we need to first determine
the amount of power or energy consumed by the decoder process. This requires
calibrating the power model that we have selected with our processor. The next
step involves profiling of the video decoder to determine the steps in the decode
process that take up significant chunks of the total power consumption. Finally,
we modify the video decoder in order to reduce the amount of energy consumed.
These three steps are discussed in detail in the following subsections.

3.1 Calibration of Power Model

We have used a power model where the total power consumption can be de-
composed into that of individual architectural components [8]. The motivation
behind using such a power model is two-fold:

1. It allows us to determine the architectural components that consume most
power, which in turn helps us identify the steps where reducing power con-
sumption would be most beneficial, and

2. it allows us to study the relation between macroblock properties and the
power consumption involved in decoding them. In general, RAPL does not
give the required level of precision required to obtain the power consumption
involved in decoding each macroblock.

In this power model, the power consumption of a component is assumed to be
directly proportional to the activity ratio of each component. This power model
considers a system to be made up of the following components:

1. Processor Frontend (FE),



2. Integer unit (INT),
3. Floating-point unit (FPU)
4. Single Instruction Multiple Data unit (SIMD)
5. Branch Prediction Unit (BPU),
6. L1 cache
7. L2 cache,
8. Memory and bus.

To obtain the weights associated with each architectural component, we have
profiled the modified microbenchmark suite used in [8]1. The microbenchmarks
have been designed in such a way that it is easily possible to separate the power
consumption of each individual component. This has helped us minimize the
chances of regression error. The weights thus obtained (Table 1) have been vali-
dated by profiling the SPEC2006 benchmarks. The decoder that we worked with,
does not use any floating-point and SIMD instructions, hence, we neglected the
power consumption of these units in the above computation.

Profiling of the individual components has been done using Performance
Application Programming Interface (PAPI) [7], which uses hardware counters
to obtain various performance metrics. The total power consumed by the system
has been measured using Intel Running Average Power Limit (RAPL) drivers. To
ensure that power from other programs do not interfere with the total power, all
other applications have been turned off as far as possible. Each microbenchmark
has been run for 30 seconds each. This time limit has been imposed through
asynchronous signals to ensure minimum interference in processor performance.

Table 1. Power Model for an Intel Core 2 Duo processor

Component Power(mW)

Front-end, PFE , 789

Integer Unit, PINT 261

Floating Point Unit, PFP 502

Branch Processing Unit, PBPU 1908

L1 cache, PL1 856

L2 cache, PL2 24437

Front-side Bus, PFSB 8852

Static power (constant) PSTATIC 8701

3.2 Profiling of video decoder

We have used the video decoder of Joint Model reference software [13], which has
been developed by the video standardization team for better understandability

1 freely available at http://rbertran.site.ac.upc.edu/tools/micro.tar.bz2



of the standard. We have profiled separately the process of CABAC (entropy
decoding), motion compensation and application of loop filter to conclude that
the process of motion compensation consumes the largest amount of power.
We have, therefore, concentrated on minimizing the power consumption during
motion compensation.

Fig. 2. Power Consumption at Different Stages of Decoding

The process of motion compensation essentially involves obtaining the pixel val-
ues of the predecessor macroblocks and summing them up with the residual
data present in the encoded data. This fetching of residual data incurs signifi-
cant power expense, since data has to be fetched from main memory, and then
calculated for each pixel. By selectively ignoring some of the residual data, it is
possible to significantly lower the amount of power consumption involved while
minimizing the loss of video quality. This neglecting of residual data is done at
the macroblock-level, where macroblocks satisfying some properties are selected
as victims and their residual data is left unused.

3.3 Modification of Video Decoder

Using power analysis, we observed that a major amount of power consumption
occurs due to the fetching of residual data. In order to reduce the amount of
power consumption involved, we degrade the quality of some macroblocks by
ignoring a portion of the residual data. The pixel data of such macroblocks
is obtained solely through motion compensation. However, arbitrarily selecting
macroblocks for such degradation would adversely affect the quality of video



and render it unfit for use. We therefore, propose a heuristic that intelligently
degrades video quality in order to minimize its effect on video quality.

Our strategy considers two major factors involved in selecting which mac-
roblocks to ignore –the amount of power that decoding a macroblock requires,
and the effect of degrading the macroblock on other neighbouring macroblocks.
The quality of pixels in neighbouring macroblocks could degrade if we arbitrarily
choose macroblocks for degradation, due to the presence of drifts. Since mac-
roblock dependencies can exist in the form of long chains, an error introduced at
some point in the macroblock could be transmitted to macroblocks much farther
from the origin. To avoid such errors, we preferably choose macroblocks having
fewer dependencies.

Algorithm 1 SelectVictimBlock

1: S[MB]← ReadMBSyntax
2: D[MB]← GetDependencies(S[MB])
3: A[MB]← meanQuantization(S[MB])
4: if mode = 1 then
5: R[MB]← ResidualData
6: DecodeMB(S,D,R)
7: else if mode = 2 then
8: if Quantization(S[MB]) < A[MB] then
9: O[MB]← DependencyCount(S[MB])

10: if O[MB]! = 0 or NeighboursDegraded(S[MB]) = FALSE then
11: R[MB]← ResidualData
12: end if
13: end if
14: else if mode = 3 then
15: if Quantization(S[MB]) < A[MB] then
16: if O[MB] > 1 or NeighboursDegraded(S[MB]) = FALSE then
17: R[MB]← ResidualData
18: end if
19: end if
20: end if
21: DecodeMB(S,D,R)

We have investigated degradation strategies for different classes of videos and
come up with three different options (or modes, as used in the algorithm above)
in which our algorithm works. These options are as below:

– Mode 1: No degradation,
– Mode 2: Degradation less than α, and
– Mode 3: Degradation more than α,

where α is a context-dependent parameter to be provided by the user. The actual
value of α may vary for different classes of videos. In our experiments, we have
chosen α as 12%.



Algorithm 1 shows our overall strategy. The algorithm selects macroblocks
whose residual data will be ignored. The macroblocks are selected based on the
mode in which the user wants the decoder to run, the number of dependencies
of the macroblock, and also depending on whether any adjacent macroblocks
have been degraded. In the algorithm, variable S refers to the syntax elements
of a macroblock, D refers to the list of dependencies, A is a temporary variable
that stores the mean quantization value of macroblocks and R stores the list of
blocks within a macroblock in which residual data is present. The variable O
refers to the list of outgoing edges from a block. The function ReadMBSyntax
parses the syntax elements of the bitstream and populates the data structure of
the macroblock. The function GetDependencies then uses the data dependency
information stored in the data structure to obtain the data dependency informa-
tion required for motion compensation. The function meanQuantization returns
the mean of the quantization step sizes among all macroblocks within the frame.

As shown in Algorithm 1, while running in no degradation mode, the video
is decoded without any modifications. For all other modes where degradation is
necessary, macroblocks with lower quantization step than average are first se-
lected. Within these macroblocks, those blocks on which no other blocks outside
depend, are selected for degradation in mode 2. The residual data of these blocks
are ignored, and the pixel data for these are obtained solely using motion com-
pensation. For mode 3, blocks which have one or fewer dependencies are selected
for degradation. However, if its neighbouring block has already been degraded,
then it is left untouched in order to ensure that the changes are not reflected
over too large an area of the frame.

4 Experiment and Results

One major problem faced by researchers while working on video quality is the
lack of standard benchmark videos present that is widely accepted in academia
or industry. In order to mitigate this problem, the LIVE database for videos
was developed [14–16]. The LIVE Video Quality Database contains ten uncom-
pressed high-quality videos. These videos are – bs (blue sky), mc (mobile and
calendar), pa (pedestrian area), rb (river bed), rh (rush hour), sf (sunflower),
sh (shield), st (station), tr (tractor) and pr (park run). The videos are given in
the form of planar 4:2:0 yuv files at a resolution of 768 × 432. They have been
extensively used for subjective and objective video quality assessment. Seven of
the videos have a frame rate of 25 frames per second, while the rest have a frame
rate of 50 frames per second. The videos that are used by the Video Quality
Experts Group (VQEG) for standardization of measures of video quality which
have been made available are also a part of this database. We have used these
videos for this work.

We have used the Joint Model reference software [13] version 18.3 to perform
our experiments. The decoder is executed to decode the encoded video, and the
energy consumption as well as PSNR of the decoded video is then recorded.
Now, the decoder is modified as discussed in section 3, and then this modified



decoder is used to decode the same reference video. The measures of quality of
the two versions of the decoded video so obtained are then calculated.

Fig. 3. Reduction in Video Quality and Energy Consumption on LIVE videos

As discussed in Section 2, there is no single widely accepted measure of video
quality. We have, therefore, provided results on four different metrics to better
understand the amount of video degradation resulting from our strategy. The
metrics used are a) average PSNR b) global PSNR c) average SSIM and d)
average of the MOVIE indices. Both average and global PSNR as well as SSIM
of the videos have been calculated using the open-source software libyuv[10].
MOVIE index has been calculated using the software provided by the original
proposers of the method. The activation ratio of each unit has been calculated
using the open-source Performance Application Programming Interface (PAPI)
version 5.2.0 [17]. This has been multiplied by the weights given in Table 1
and then the static power is added. The value obtained is multiplied by the
time required to perform the decoding in order to determine the total energy
consumed.

Fig. 3 shows the arithmetic mean of video quality degradation, measured
in average and global PSNR, SSIM and MOVIE, and the corresponding energy
gain, taken over each of the ten videos. We note that, as expected, more en-
ergy gains are made in mode 3 than in mode 2. Similarly, greater loss of video
quality is seen in mode 3 as compared to mode 2. This can be explained by



observing that the quality of video decreases with an increase in the number
of victim macroblocks. We select more macroblocks in mode 3 than in mode 2,
and, therefore, the quality of videos in mode 3 reduces further. We also note
that, in each case, the loss in quality as measured using PSNR was greater than
the other video metrics. This can be explained by observing that PSNR does
not take into account human perception, unlike SSIM and MOVIE index, and
so the value of PSNR reduces even if introducing an error does not reduce video
quality according to human perception.

5 Related Work

Minimization of energy for software and hardware systems has become an impor-
tant area of active research. In [1], Ahmad and Ranka provide a good survey of
methods, both at hardware and software level, of reducing energy computation.

Since H.264 is widely used in resource-constrained systems, improving its
performance has long been a source of active research. In [18], Chang et al. work
on reducing power consumption of an H.264 encoder. In [19], Nam et al. discuss
modifying the video decoder so that the amount of time needed to decode a video
is reduced. Park et al. suggest adding an additional re-quantization step to the
decoding process, and combining it with motion compensation step to reduce
energy consumption in [20]. Huang et al. discuss in [21] methods for reducing
power consumption of a decoder using Dynamic voltage and frequency scaling
(DVFS). Xu and Choy proposed techniques to reduce power consumption of a
hardware H.264 decoder in [22].

6 Conclusion

In this paper, we present a method to reduce the power consumption involved
while decoding a video encoded in H.264. Our experiments showed significant
gains with relatively small amounts of video degradation. This method could
be used by video decoders in embedded and streaming systems to prolong the
lives of their power sources, and lead to lower energy consumption in desktop
systems.
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