
Service Level Guarantee for Mobile Application
Offloading in Presence of Wireless Channel Errors

Arani Bhattacharya∗, Ansuman Banerjee†, Pradipta De∗
∗Department of Computer Science, SUNY Korea, {arani, pradipta.de}@sunykorea.ac.kr

†Indian Statistical Institute, {ansuman@isical.ac.in}

Abstract—Mobile cloud computing is increasingly being used
in recent times to offload parts of an application to the cloud
to reduce its finish time. However, quality of offloading deci-
sions depend on network conditions and hence many offloading
solutions assume that MAC layer retransmissions will tackle
transient frame errors. This can lead to suboptimal solutions,
as well as, degrade service level guarantee of reducing finish
time compared to execution without offloading. In this work,
we propose an error-aware solution that uses run-time channel
conditions to adapt the offloading decisions. We guarantee that
given a failure rate bound (ε), offloading decisions will achieve
application execution in less time than that of local execution
with a probability of (1-ε) while operating in networks with
unpredictable error characteristics. Simulation results show that
at channel error rate of 20%, our heuristic provides 90%
guarantee of better performance than on-device computation and
reduces the mean finish time by 18% compared to execution
without any offloading.

Index Terms—Mobile Cloud, Application Offloading, Cross-
Layer Network Optimization

I. INTRODUCTION

Mobile computing platforms, from smart sensors to smart-
phones, are increasingly used in personal and enterprise en-
vironments. However, these devices have limited compute
capacity. This limitation can be mitigated by offloading parts
of a mobile application to execute on cloud servers, thereby
reducing application finish time. A number of proposals [1],
[2] for mobile cloud computing have received prominence in
literature. Among other factors, offloading decisions depend
on network conditions. Since network conditions in mobile
environment vary widely, offloading decisions based on pro-
filed network parameters can lead to sub-optimal solutions.

Channel error rates are one of the hardest to model among
network parameters. Channel error is dependent on unpre-
dictable external interference, and mobility characteristics, like
walking or driving. Measurement based studies have shown
channel error rates up to 30% under different conditions [3],
[4]. Therefore, offloading solutions depend on the MAC layer
retransmission mechanism to handle channel errors. Since the
number of retransmissions can depend on transient channel
error states, this can undermine the benefit of offloading in
saving energy and/or finish time.

We illustrate with an example. We take a task graph with
100 tasks, where a task, representing a method in the appli-
cation execution, can be offloaded to the remote cloud server
for faster execution. Given each task’s workload profile, and
network parameters, an optimization solver (as in MAUI [1])

0 5 10 15 20 25 30
1.5

2

2.5

3

3.5

Channel Error (%)

Fi
ni

sh
Ti

m
e

(s
)

Estimated
Actual
Oracle
Local

Fig. 1: Execution time comparison under varying channel errors.

computes the estimated time to finish execution. Fig. 1 shows
a comparison of application finish time using four schemes:
Estimated is the result of using an optimization solver with
application and network profile as input, local computes
without any offloading, actual is the result of offloading in
practice due to channel errors, and an hypothetical solution
(called oracle in the figure) assumes complete knowledge of
channel errors. Compared to local execution, where no task is
offloaded, an offloading scheme performs better. However, in
practice, the channel error conditions can break the assumption
about network parameters. In presence of varying channel
errors, the actual result of offloading may not be as computed
by an optimization solver. An oracle solution, with complete
knowledge of channel errors, can indeed perform better.

In this work, we pose the question, even in presence of
unpredictable channel errors, can we ensure service level
guarantee to complete the application execution faster than
that of local execution on the device? We show that, given a
failure rate bound, the question can be modeled as a chance
constrained optimization problem [5]. We propose an error-
aware run-time adaptive heuristic that decides at each task
offload point, the locally optimal choice considering stochastic
channel errors. We provide guarantee to minimize the expected
application finish time. Our scheme ensures that an application
completes execution faster than local execution, in presence of
retransmissions due to channel errors. We validate our solution
using simulations and on traces of benchmark applications.

We present relevant prior work in Section II. Section III
and Section IV present the analytical model and the proposed
heuristic. Evaluation is presented in Section V followed by
conclusion in Section VI.

V Vertex set of the graph
E Edge set of the graph
vj A task in the application execution
vm Last task in the graph
(vi, vj) A dependency from the task vi to vj
M0 Mobile device
M1 Cloud server
tlj Execution time of task vj on machine Ml

r Time to migrate a single frame
Um Time deadline given to application
ε Failure bound given to application
wij Number of frames needed to migrate (vi, vj)
xj Variable indicating execution of vj on M0 or M1

zij Maximum number of retransmission attempts of (vi, vj)
Yij Number of retransmission attempts of frames of (vi, vj)
Rij Total time to migrate (vi, vj)
Tj Finish time of vj
αk Failure bound on kth migration
αs
k Failure bound on sending packet of kth migration
αr
k Failure bound on receiving packet of kth migration

TABLE I: Symbols introduced in Section III

II. RELATED WORK

There are two different categories of work in the context of
offloading over wireless channels. One group of work assumes
that the Medium Access Control (MAC) layer handles channel
errors successfully. The first offloading frameworks, MAUI
[1] and CloneCloud [2], used this approach. They estimated
the channel bandwidth before solving the offloading decision
problem. Another offloading framework, ThinkAir [6] looks at
history of migration and assumes that the channel conditions
remain similar to the past observations. Some other works try
to reduce the amount of data migration. [7] proposes compiler-
level optimizations to decide which data is actually used by
the cloud server. These offloading frameworks do not consider
the cost of transmission failure.

Finally, a few studies have considered the effect of channel
errors. [8] shows how intelligent checkpointing of applications
to ensure consistency on the mobile device and the cloud
server can save energy of offloaded applications. COSMOS
[9] senses the response time to determine the quality of con-
nection, and uses this observation for the offloading decision.
However, they do not consider retransmission of lost packets.
In [10], the authors consider retransmission, but the decision
about the number of retransmissions is not made at run-time.
In Foreseer [11], the initial partition obtained by running
an optimization solver is modified at run-time based on the
channel bandwidth. In contrast to the work above, our proposal
models the number of retransmissions due to channel errors
and presents an adaptive offloading algorithm design.

III. MODELS AND PROBLEM FORMULATION

We represent execution of a mobile application as a directed
acyclic graph (DAG) G = (V,E), where the vertex set V
represents the set of m methods or tasks, and the edge set
E represents the dependencies among tasks. A task can be
executed either locally on the mobile device, M0, or on the
remote cloud server, M1. However, the first and last task, v1

and vm respectively, must execute on the mobile device. If a

task vj is executed on a platform, M0 or M1, different from
that of any of its predecessor tasks, vi’s, where (vi, vj) ∈ E,
then the task output states of vi must be transferred over the
network to vj’s execution platform. Since the data transfer size
will vary across dependencies, therefore, the number of data
fragments or frames at the MAC layer will also vary.

The wireless channel is modeled as a stochastic pro-
cess [12], where the probability of successful transmission of
a frame is denoted by p. The value of p depends on the time
varying nature of the channel. However, we assume that for
a single data packet (i.e. for all the corresponding frames)
the channel state remains unchanged. Due to channel errors,
if a frame is lost, it is retransmitted. Let Yij be the total
transmission attempts for all the frames of a packet transferring
data from vi to vj . If the time to transmit a frame is r, then
the time, Rij , for the packet transmission will therefore be,

Rij = rYij

Since Yij depends on the channel conditions, both Yij and Rij
are stochastic parameters.

The total time to execute an application depends on where
each task is executed (i.e. execution time) and the time for
the network transfer (i.e. migration time). Note that time to
execute an application is same as the finish time, Tm, of the
last task, vm. Tm depends on the time for network transfers
(Rij’s), and is therefore also a stochastic parameter. Let Uj
denote the time taken to finish vj if vj and all tasks preceding it
are executed locally. Our objective is to minimize the expected
finish time, Tm, under a constraint that Tm exceeds the local
execution time, Um only with a fixed probability ε. The
constraint guarantees a service level agreement (SLA) that
the application finish time will exceed local execution time
(Um) with maximum probability ε while offloading to cloud in
unpredictable channel conditions. We express this as a chance
constrained optimization problem:

Min E[Tm]

subject to: P(Tm > Um) ≤ ε (1)

We now explain the nature of this optimization problem.
Since there are some tasks in the DAG that must be executed
on M0, there may be multiple send and receive migrations
to the cloud server. We consider these migrations in pairs.
A send migration offloads the data needed by an offloaded
method from M0 to M1, while a receive migration sends
data back from M1 to M0. Corresponding to every send
migration of a method, we can therefore uniquely associate
a receive migration of another method before the next send
migration is initiated. We leverage on this pairwise send-
receive association to build the foundation of our theory. In
our work, for the sake of simplicity, we use a migration to
denote a send-receive association pair. Then, we define the
event of failure of a single migration as “execution time greater
than local execution time”. We denote the failure for kth

migration attempt as Fk, i.e. Fk is true if (Tj > Uj) where
vj is executed on mobile device. Since the condition of the

channel may change between migrations, it is possible that
after a single migration is completed, the channel condition
degrades to allow no further migrations. Thus, failure of a
single migration may lead to failure of the entire execution.
We therefore, rewrite the chance constraint as:

P(
⋃
k

Fk) ≤ ε, (2)

where k varies over the number of migrations during the
application’s execution from start to finish. Using inclusion-
exclusion principle [13], we rewrite this as:∑

k

P(Fk) ≤ ε (3)

A conservative way to satisfy Eqn 3 is by imposing a failure
bound αk on each migration:

P(Fk) ≤ αk, ∀k such that:
∑
k

αk ≤ ε (4)

As before, a single migration consists of two different
probabilistic events: sending a packet to cloud and receiving
it back to mobile device. Then, the total time available for
migration to satisfy deadline may be divided up into three
components: sending a packet, executing tasks on cloud and
receiving a packet. Since only sending and receiving are
probabilistic events, we define F sk and F rk as failure while
sending and receiving respectively. Here, F sk and F rk are
defined as events denoting failure to send and receive a packet
within an assigned time (to be detailed in the following)
that guarantees SLA satisfaction. As in Eqn 4, we bound the
probability of failure while sending and receiving by αsk and
αrk respectively:

P(F sk) ≤ αsk and P(F rk) ≤ αrk such that: αsk + αrk = αk (5)

We need αsk and αrk that minimizes the overall application
finish time. We now establish a bound on the number of
transmission attempts for each individual send or receive
migration. Let zij be the maximum number of transmission
attempts for a send or receive migration between vi and vj .
The values of αsk and αrk determine the value of zij . We
assume a single packet of (vi, vj) data contains wij frames.
Thus, if migration (either send or receive) is performed, the
actual number of transmission attempts Yij must satisfy:

wij ≤ Yij ≤ zij (6)

We need to find values of zij that minimize the overall
execution time while satisfying to satisfy SLA. Increasing
zij reduces the failure rate. However, this also increases the
expected application finish time.

IV. SOLUTION APPROACH

In this section, we design a heuristic that minimizes appli-
cation finish time. We denote zsij and zrij as the maximum
number of transmission attempts for send and receive migra-
tions respectively. This requires allowing a maximum zsij and
zrij transmission attempts while sending and receiving packets
from cloud server.

We explain our methodology on zsij . The computation of
zrij is similar. Sending a (vi, vj) packet succeeds only if all
of its wij frames are successfully transmitted. Let Qij be a
random variable denoting the number of frames successfully
transmitted in a total of zsij transmission attempts. Then,
failure to send a dependency to the cloud server (F sk) occurs
when less than wij frames are transmitted successfully in zsij
transmission attempts. We, therefore, rewrite Eqn 5 as follows:

P(Qij < wij) ≤ αsk (7)

As discussed before in our channel model, the probability
p of successful transmission remains same while sending
frames of a single packet. Thus, we can treat Qij as a
binomial random variable with the parameters zsij and p, i.e.
Qij ∼ Binomial(zsij , p). There is no closed form formula to
find the probability of success of at least wij trials in zsij
attempts [14]. We, therefore, find an approximate value of
zsij using Hoeffding’s inequality [15]. Hoeffding’s inequality
states that for a random variable, Qij ∼ Binomial(zsij , p),
the deviation from the mean t (where t < 0) is bounded by:

P(Qij − E[Qij] ≤ t) ≤ exp{−2t2/zsij} (8)

We rewrite Eqn 7 as shown below to match Eqn 8.

P(Qij < wij) ≤ αsk
=⇒ P(Qij − zsijp < wij − zsijp) ≤ αsk

=⇒ P(Qij − E[Qij] < wij − zsijp) ≤ αsk
=⇒ P(Qij − E[Qij] ≤ wij − zsijp− 1) ≤ αsk

=⇒ exp{
−2(wij − zsijp− 1)

zsij
} ≤ αsk (9)

Taking logarithm of both sides of Eqn 9, and solving for zsij
gives us the solution:

zsij ≥
4wijp−4p−ln(αsk)+

√
(4wijp−4p−ln(αsk))2+8p2(wij−1)2

4p2

zsij represents the minimum number of send attempts needed to
satisfy the SLA. Since increasing the number of transmission
attempts also satisfy the SLA, we can utilize the inequality√
a+ b ≤

√
a +
√
b in the above expression for zsij to get a

higher bound on zsij as:

zsij ≥
8wijp− 8p− 2 ln(αsk) + 2

√
2p(wij − 1)

4p2
(10)

Eqn 10 expresses the SLA constraint for sending (Eqn 5) in
terms of number of transmission attempts zsij . z

s
ij being an

integer, we write zsij as:

zsij = d8wijp− 8p− 2 ln(αsk) + 2
√

2p(wij − 1)

4p2
e

= dp(wij − 1)(4 +
√

2)− ln(αsk)

2p2
e (11)

As discussed earlier, the kth migration also involves receiv-
ing a packet of (vi′ , vj′) from cloud server to mobile device.
Solving the SLA constraint involves finding both zsij and zri′j′ .

Using the same method that we used for zsij , we find the
number of transmissions zri′j′ to receive a packet:

zri′j′ = dp(wi
′j′ − 1)(4 +

√
2)− ln(αrk)

2p2
e (12)

So far, we have the values of zsij and zri′j′ in terms of weight
parameters αsk and αrk respectively. We need to find values
of αsk and αrk that minimize total time to send and receive
packets, i.e. network time. We note that the time to send and
receive a packet is equal to zsij × r and zri′j′ × r respectively.
Thus, total network time is given by zsij × r + zri′j′ × r. We
differentiate this with respect to αsk and set the derivative to
0 to obtain αsk = αrk = αk/2. Therefore, we replace αsk and
αrk in the expressions of zsij and zri′j′ respectively by αk/2:

zsij = dp(wij − 1)(4 +
√

2)− ln(αk/2)

2p2
e (13)

zri′j′ = dp(wi
′j′ − 1)(4 +

√
2)− ln(αk/2)

2p2
e (14)

The above gives us the values of zsij and zri′j′ needed to satisfy
SLA in terms of αk for the different migrated edges.

We now need to assign values of αk for each migration.
The values of αk must be assigned in a way that satisfies Eqn
5. Moreover, the total number of possible migrations are not
known. A conservative strategy is to choose higher values of
αk for the early migrations, since saving time at the beginning
increases the time available for later migrations. Thus, we
choose αk as a geometric distribution, with a ratio of 1/2
as shown below:

αk =
ε

2k
(15)

Our heuristic now follows directly from this calculation. It
takes as input the set of tasks V, the set of tasks E, the time
deadline Um, failure bound ε and time to transmit a single
frame r. It then executes each task either on mobile device
or cloud server. Whenever a task vj is ready for execution on
the mobile device (M0) or the cloud server (M1), we check
whether executing it on the same machine or migrating it saves
time. The time required for migration is obtained by sensing
the channel condition at each step to find the probability p of
successful transmission and using it to calculate the number
of transmission attempts zsij and zri′j′ . For simplicity, since zsij
and zri′j′ have the same expressions, we refer to it as zij in
our heuristic. If migration is faster, then a packet of (vi, vj) is
migrated. While migrating, sending of a packet from mobile
device to cloud server can be aborted before transmitting all
frames if the number of failures is high. However, this is not
possible for receiving a packet from cloud server to mobile
device, since execution must finish on mobile device. The
exact algorithm is shown in detail in Algorithm 1.

We now analyze the time complexity of our method. The
Procedure CALCULATE-BUDGET iterates over all depen-
dencies in the application. Thus, it has a time complexity
of O(|E|). Procedure EXECUTE-APPLICATION iterates over
each task in the graph. For each task, it calls CALCULATE-
BUDGET once. Thus, the total complexity of computing the

Algorithm 1 Our channel error offloading algorithm.
1: procedure EXECUTE-APPLICATION(V, E, Um, ε, r)
2: x[1] ← 0
3: k ← 1
4: Execute first task v1 on mobile device
5: for all vj ∈ V ready for execution do
6: Get the probability of successful transmission p
7: αk = ε/2k

8: CALCULATE-BUDGET(V, E, Um, p, αk , r)
9: Y ← 0

10: for all (vi, vj) ∈ E do
11: Calculate number of frames wij for migration

12: zij = d
p(wij−1)(4+

√
2)−ln(αk/2)

2p2
e

13: if x[i] = 0 & mobBudget[j] > cldBudget[j] +zijr then
14: migTime ← Ti - cldBudget[j]
15: x[j] ← 1
16: f ← 1
17: while f ≤ wij & x[j] = 1 do
18: maxAttempts ← migTime / rwij
19: Attempt migration of fth frame maxAttempt times
20: if migration of frame failed then
21: x[j] ← 0
22: end if
23: Store number of frame transmission attempts in Yij
24: f ← f + 1
25: end while
26: else if x[i] = 0 & mobBudget[j] ≤ cldBudget[j]+zijr then
27: x[j] ← 0
28: else if x[i] = 1 & mobBudget[j] +zijr > cldBudget[j] then
29: Attempt transmission of frames till successful migration
30: Store number of frame transmission attempts in Yij
31: x[j] ← 0
32: k = k + 1
33: else if x[i] = 1 & mobBudget[j] ≤ cldBudget[j] +zijr then
34: x[j] ← 1
35: end if
36: end for
37: Y ← max(Y , Yij)
38: h ← x[j]
39: Execute vj on Mh

40: Tj ← Ti + rY + thj
41: end for
42: end procedure
43: procedure CALCULATE-BUDGET(V, E, Um, p, αk , r)
44: cldBudget[m] ←∞
45: mobBudget[m] ← Um − t0m
46: C ← {vm}
47: for all vj ∈ C do
48: for all (vi, vj) ∈ E do
49: Let wij be number of frames to migrate (vi, vj)

50: zij ← d
p(wij−1)(4+

√
2)−ln(αk/2)

2p2
e

51: mobTime[j] ← max(mobBudget[j] - t0i ,cldBudget[j] - t1i - zij r)
52: cldTime[j] ← max(cldBudget[j] - t1i , mobBudget[j] - t0i - zij r)
53: mobBudget[i] ← min(mobBudget[i], mobTime[j])
54: cldBudget[i] ← min(cldBudget[i], cldTime[j])
55: end for
56: C ← C ∪ vi
57: end for
58: end procedure

overall budget is O(|V||E|) It also has an inner loop that
iterates over each dependency of a single task. Assuming the
number of frames to be transmitted as constant, this has a
time complexity of O(|E|). Therefore, total time complexity
of using our algorithm is equal to O(|V||E|). Assuming a
constant number of parallel tasks, and since |V| = m, the
time complexity is equal to O(m2).

V. EVALUATION

In this section, we evaluate the performance of our algo-
rithm using simulation on both randomly generated graphs
and benchmark programs.

Parameter Range of Values
Migration time of each packet (r) 50 ms
Server speed compared to mobile device 5 times
Processor power 1 J/s
Network power 0.5 J/s
Number of random graphs 10000
Failure bound 1%
Channel error rate 30%

TABLE II: Parameters used for each simulation experiment. Unless
mentioned otherwise, these parameters are used in the experiments.

A. Settings

We implement our heuristic at different channel error rates
and failure bounds. To better understand the performance of
our algorithm, we implement an Integer Linear Programming
(ILP) based solution which assumes that there is no channel
error. We also implement another ILP-based solution called
oracle which knows in advance the cases in which transmis-
sion attempts fail. We have assumed in our simulation that
the channel error rate varies around the mean with uniform
distribution. The simulation parameters are given in Table II.

B. Simulation Results

To study the performance of our heuristic, we first run the
ILP-based solution, oracle and our heuristic on a set of 10000
randomly generated graphs. We then compare the failure rate,
mean finish time and energy consumption of our heuristic with
the ILP-based solution and the oracle.

ILP 0.1 1 2 5 10

0.1

1

10

100

Failure Rate Bound (ε)

Fa
ilu

re
ra

te
(%

) p̄ = 5% p̄ = 10% p̄ = 20% p̄ = 30%

p̄ = 40% p̄ = 50%

Fig. 2: Comparison of failure rate at different levels of channel
error (p̄) using ILP and our heuristic at different failure bounds
(ε). Failure represents a finish time higher than local execution.

1) Failure rate: We compare the failure rates of the three
implementations to check whether our algorithm satisfies the
failure bound. Fig. 2 shows the failure rates under different
channel conditions compared to ILP based solution. We omit
the oracle implementation since it knows in advance the cases
of transmission failure and therefore, can never fail. We also do
not show channel error rate of 2%, since the number of failures
at 2% is too small. At channel error rates of 5%, 10% and
30%, the ILP gives a failure rate of 0.03%, 4.5% and 28.1%
respectively. The failure rates for our solution are bounded
within 10% even at 30% channel error, giving a service level
guarantee of 90%. The number of failures in our scheme never
exceeds the defined failure bound ε.

ILP Oracle 0.01 0.1 1 2 5 10

4

6

8

10

Local

Failure Rate Bound (ε)

Fi
ni

sh
Ti

m
e

(s
)

p̄ = 2% p̄ = 5% p̄ = 10% p̄ = 20%
p̄ = 30% p̄ = 40% p̄ = 50%

Fig. 3: Comparison of finish time at different levels of channel
error (p̄) using ILP and our heuristic at different failure bounds
(ε). Oracle solution represents best possible finish time for a
given level of channel error.

ε
p̄ 5 10 20 30 40 50

0.1 22 19 14 10 8 7
1 31 28 22 17 14 11
2 34 32 25 20 16 13
5 39 36 30 24 20 16
10 41 39 34 28 23 19

TABLE III: Percentage of tasks executed on cloud server at
different channel error rates (p̄) and failure bounds (ε).

These observations confirm that since ILP runs a priori,
its solution might lead to worse than expected results while
executing the application. Although our heuristic does not
guarantee an optimal solution, it can sense the channel condi-
tion and decide accordingly whether to offload. This reduces
the number of failures compared to an ILP. Moreover, when
the number of errors in the wireless channel increases, our
heuristic reduces the chances of failure by offloading tasks to
the cloud. We confirm this observation by noting in Table III
that the number of tasks executed on cloud server decreases
with a decrease in failure bound (ε).

We also note that in a few cases the number of failures
decreases with an increase in channel error. However, this
decrease in failure at a higher channel error rate is less than
0.2%, which may be explained by the uncertain nature of the
wireless network.

2) Finish Time: We compare the finish times of our heuris-
tic with the ILP-based and oracle solutions. Fig. 3 shows the
mean finish time of the application samples under varying
channel error rates. The heuristic has a better average perfor-
mance than global optimization solver for channel error rate
greater than 10%. When the channel error exceeds 20%, our
heuristic takes less time than the ILP solution in all cases,
with a failure rate of 10% giving a gain of 18%. Below 20%
error, our heuristic provides a solution within 5% of the ILP
solution for all values of ε. At error rate of 50%, the ILP takes
twice the finish time of our heuristic.

We explain these observations by noting that an ILP obtains
the best possible solution when there is no channel error. Thus
at lower levels of channel error, it performs better, because
channel error does not lower finish time significantly. When
the number of channel errors increases, our heuristic performs

better since it is able to adapt to the channel condition.
3) Energy Consumption: We now investigate the effect of

our heuristic on energy consumption of the battery in the
mobile device. Since a mobile device runs on battery, reducing
usage of battery energy is important for mobile users. We
assume that execution on mobile device consumes power of 1
J/s, while network transmission takes 0.5 J/s. Fig. 4 compares
the energy consumption of our heuristic with the ILP based
solution. We note that energy consumption follows the same
trend as finish time. This is because, the power consumption
of processor system is greater than the network card. Thus,
reducing the number of tasks that are executed on mobile
device also reduces its energy consumption.

ILP Oracle 0.01 0.1 1 2 5 10

2

4

6

8

Local

Failure Rate Bound (ε)

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

p̄ = 2% p̄ = 5% p̄ = 10% p̄ = 20%
p̄ = 30% p̄ = 40% p̄ = 50%

Fig. 4: Comparison of energy consumption on mobile device at
different levels of channel error (p̄) using ILP and our heuristic
at different failure bounds (ε). We have obtained the energy
consumption by assuming that processor power = 1 J/s and
network power = 0.5 J/s.

0 0.1 0.25 0.5 1 1.5 2

4

4.5

5

Channel error deviation (σ × x)

Fi
ni

sh
Ti

m
e

(s
)

0 0.1 0.25 0.5 1 1.5 2

1
2
5

10

100

Channel error deviation (σ × x)

Fa
ilu

re
ra

te
(%

)

Fig. 5: Effect of deviation in channel condition when tasks are
executed on cloud server on finish time and failure rate. The
amount of deviation is measured in multiples of the channel
standard deviation.

4) Effect of Channel Variation: We study how deviation in
the channel error rate during execution on cloud server affects
the performance of our heuristic. Fig. 5 shows the impact of
change in the channel condition during execution on cloud
server on failure rate and finish time. We note that the mean
finish time is not affected much by changes in the channel
condition. However, both the standard deviation of the finish
time and the failure rate increases when the channel condition
changes more frequently.

We explain these observations by noting that the condition
of the channel may either improve or worsen. The overall
effect, therefore, balances out to give a mean finish time close

to the solution given by the heuristic. However, the cases in
which the channel has more errors result in failure. Thus, the
number of failures increases with an increase in deviation of
the channel error rate. This also explains the increase in the
standard deviation of the application finish times when channel
error increases.

C. Trace-driven Results

To further confirm that our results are practical, we generate
graphs from execution traces of SPECjvm08 benchmarks.
We utilized AspectJ framework to generate traces of six
SPEC benchmark programs: compress, scimark.monte-carlo,
crypto.aes, mpegaudio, scimark.fft.small and cypto.rsa. These
benchmarks were chosen based on the workloads that are most
commonly run on mobile devices. Of these benchmarks, the
programs compress, scimark.monte-carlo and crypto.aes are
compute-intensive. The other programs mpegaudio, crypto.aes
and crypto.rsa are input-intensive as they read data from a file.

compress
scimark.fft.small

scimark.monte-carlo crypto.aes crypto.rsa
mpegaudio

2

4

6

8

Benchmarks

Fi
ni

sh
Ti

m
e

(s
)

Heuristic ILP Oracle Local

compress
scimark.fft.small

scimark.monte-carlo crypto.aes crypto.rsa
mpegaudio

0

20

40

Benchmarks

Fa
ilu

re
ra

te
(%

)

Heuristic ILP

Fig. 6: Comparison of finish time and failure rate of six dif-
ferent SPECjvm2008 benchmarks using execution on mobile
device (local), oracle solution, our heuristic and ILP. Each
benchmark has been executed 100 times.

Fig. 6 show the finish time and failure rate on each of these
benchmark programs. We note that in each case, the finish
time is lower than the ILP, but higher than the oracle solution.
This confirms our finding that our heuristic gives a better finish
time in the presence of channel errors. Moreover, for the input-
intensive applications, the ILP solution has a higher finish time
than local execution. From the failure plot, we also note that
the failure rate is lower than 1% for each of the benchmark
programs. This is much lower than the ILP solution, where
the failure rates are all higher than 10%.

These observations confirm that our adaptive heuristic works
on realistic workloads. Moreover, input-intensive applications

require higher number of migrations, and thus lead to more
failures using an ILP-based solution. Our heuristic can reduce
failure while executing input-intensive applications by reduc-
ing the number of tasks executed on cloud server when the
channel error probability is high.

VI. CONCLUSION

Offloading of mobile applications to cloud servers can
augment the limited compute capacity of their processors.
However, the quality of offloading based execution depends
on the network parameters, like channel error conditions.
Unbounded retransmissions to handle channel errors can lead
to service degradation as it may end up taking longer than
local execution time to complete the application. In this work,
we propose an adaptive algorithm that tracks the channel error,
defines a stochastic model to capture channel conditions, and
uses it to adjust the number of retransmissions to deliver a
better service level guarantee in completing an application
compared to optimization solutions. The mean finish time of
an application is also comparable to typical solutions. We show
the efficacy of our technique on both traces and randomly
generated application profiles.

Our study has a few limitations. First, we assume that the
channel error during a single migration remains same. This
may not hold true in a rapidly varying channel. However,
we have shown through simulation that a rapidly varying
channel affects finish time only when the amount of channel
variation is high. Secondly, our algorithm does not guarantee
the minimum possible expected finish time. We provide a
heuristic that reduces the application finish time compared to
local execution under different channel conditions.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with

code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011.

[3] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11
packet delivery from wireless channel measurements,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 159–170, 2011.

[4] J. Gozalvez, M. Sepulcre, and R. Bauza, “Impact of the radio channel
modelling on the performance of vanet communication protocols,”
Telecommunication Systems, vol. 50, no. 3, pp. 149–167, 2012.

[5] E. Erdoğan and G. Iyengar, “Ambiguous chance constrained problems
and robust optimization,” Mathematical Programming, vol. 107, no. 1-2,
pp. 37–61, 2006.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012 Proceedings IEEE. IEEE,
2012.

[7] S. Yang, Y. Kwon, Y. Cho, H. Yi, D. Kwon, J. Youn, and Y. Paek, “Fast
dynamic execution offloading for efficient mobile cloud computing,”
in Pervasive Computing and Communications (PerCom), 2013 IEEE
International Conference on. IEEE, 2013, pp. 20–28.

[8] Y.-W. Kwon and E. Tilevich, “Energy-efficient and fault-tolerant dis-
tributed mobile execution,” in Distributed Computing Systems (ICDCS),
2012 IEEE 32nd International Conference on. IEEE, 2012, pp. 586–
595.

[9] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
“Cosmos: computation offloading as a service for mobile devices,” in
Proceedings of the 15th ACM international symposium on Mobile ad
hoc networking and computing. ACM, 2014, pp. 287–296.

[10] W. Zhang, Y. Wen, and D. Wu, “Collaborative task execution in mobile
cloud computing under a stochastic wireless channel,” vol. 14, no. 1,
Jan 2015, pp. 81–93.

[11] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri, “Run time application
repartitioning in dynamic mobile cloud environments,” Cloud Comput-
ing, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[12] M. Patzold, Mobile fading channels. John Wiley & Sons, Inc., 2003.
[13] W. Szpankowski, “Inclusion-exclusion principle,” Average Case Analysis

of Algorithms on Sequences, pp. 49–72, 2001.
[14] R. W. Gosper, “Decision procedure for indefinite hypergeometric sum-

mation,” Proceedings of the National Academy of Sciences, vol. 75,
no. 1, pp. 40–42, 1978.

[15] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, vol. 58, no.
301, pp. 13–30, 1963.

