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Abstract—Roadside traffic monitoring is increasingly per-
formed by deploying roadside high-resolution video cameras and
then running computer vision (CV) models on the video data.
Since computer vision models are compute-intensive as they
utilize deep neural networks (DNNs), the data is usually sent to
one or more edge servers located adjacent to mobile base stations,
thereby keeping the in-situ (on camera) processing load as less as
possible. Recent techniques propose running CV models on tiles
of videos separately to detect and track small objects. Several CV
models exist, each with different requirements of compute and
memory. Since more compute and memory-intensive CV models
provide higher accuracy, a key challenge of such techniques
is to determine which vision model should be used on which
tile. This becomes even more challenging if multiple videos
are processed by the same edge server. In this paper, we first
formulate this problem of model selection and tile allocation as
an Integer Linear Programming (ILP) instance, and then propose
an approximation algorithm based on linear relaxation followed
by randomized rounding to solve it. We present experimental
results of our methods on an open source dataset based on trace-
driven simulation to show that it gives result fast enough while
also reducing execution time in a variety of scenarios.

I. INTRODUCTION

Traffic monitoring via deployment of cameras is often used
to reduce the number of traffic accidents, identify crimes and
accidents on streets and to analyze traffic patterns for better
planning. Such traffic monitoring depends on executing object
detection algorithms on the video streams captured by the
cameras. Executing object detection algorithms is possible on
the compute resources available at the camera (though limited)
[1] and on additional edge servers connected to cell towers [2].

A major challenge of such traffic monitoring is that accurate
object detection is compute-intensive in nature. The most
common strategy of object detection is to utilize a deep
neural network (DNN) like YOLO [3] that has been pre-
trained specifically for traffic surveillance. Furthermore, higher
accuracy is possible by splitting the videos into rectangular
blocks called tiles and running DNN on each tile separately
[4]. However, such separate running of DNNs can lead to an
added problem of scalability, as execution of CV models on
individual tiles becomes an even more compute-intensive task.

To address this challenge, modern video analytic systems
for traffic surveillance apply a very lightweight mechanism
to identify the tiles that are likely to have any objects. Once
the likelihood of objects being present are obtained, the object
recognition algorithms with compute-intensive DNNs are used
to obtain additional details such as the object type or size.

For high accuracy, it is essential to run object recognition
on as many tiles as possible, in the descending order of the
likelihoods of the objects being present.

A second challenge comes from the fact that a large variety
of object recognition algorithms exists today, with differences
in amount of computation necessary and accuracy values. For
example, a public version of YOLO [5], has around 5 different
models. There are also other off-the-shelf models that could
be used, with different computation-accuracy tradeoff. While
smart cameras themselves often have the ability to run DNNs,
they are usually limited to running only one or two simple
models due to memory and compute limitations. Since both the
cameras and the edge devices have memory and computation
capability constraints, it is essential to judiciously decide (i)
which devices (among multiple edge devices and/or on-camera
compute) to utilize for execution, and (ii) which models to use,
if any, for the individual tiles. These decisions further need
to be taken on the network controller at the edge, making
it challenging to use compute-intensive mechanisms to solve
this joint model selection and tile allocation task. Further, the
execution of CV models on the tiles needs to be completed
quickly, preferably, with a guaranteed response time, so that
the necessary alerts can be sent out.

Videos are usually sent over the network in temporal chunks
called segments lasting for 0.5-2s of content. Each such video
segment is split into a fixed number of tiles. In this paper, we
address the problem of tile processing using CV models, where
the objective is to maximize for each segment, the number
of tiles processed within a stipulated time, subject to other
constraints such as memory and compute available at both the
camera and the edge nodes. We first show that this problem is
NP-hard, and formulate an integer-linear programming (ILP)
task. However, for large scale instances, using an ILP to derive
an optimal solution in real-time often becomes infeasible, and
this may affect the end to end response time, and delay the
needed alerts. To circumvent this, we first solve a relaxed
linear programming version of the formulation using a stan-
dard LP-solver. Standard LP-solvers are known to be highly
optimized, and can solve problems in the order of milliseconds
[6]. However, the solution given by an LP-solver is often not
feasible, as it often provides fractional solutions to the problem
of allocation of tiles to edge servers. We make the solution
feasible by using a randomized rounding approach, where
the fractional values of the decision variables are rounded to
integer values with a probability distribution. We show that



Fig. 1: An illustration of tiled encoding, with tiles numbered
for notational convenience. Note that objects in T2 look
significantly smaller than those in T6 or T10, thus allowing
smaller CV models to be run on T6 / T10 than on T2.

our constraints are satisfied with a high probability, making it
possible for us to repeat the process of randomized rounding
until we obtain a feasible solution. We further show that this
solution is bounded by a constant times the optimal solution.

Our experiment uses a trace-driven simulation on the UA-
DETRAC dataset [7]. We obtain traces of execution for 5
different YOLO models and use it to compare against a
number of baseline approaches in terms of both the number
of tiles scheduled and running time. We also compare it with
the ILP, to compare against the best possible performance.

II. BACKGROUND AND RELATED WORK

A. Working of Video Surveillance Systems

We first explain the functioning of a standard traffic surveil-
lance system. We then explain the utility of using tiles.

A video surveillance system consists of a set of roadside
cameras connected to edge servers over a cellular network
[8], [9]. The edge servers have multiple computer vision (CV)
models that can be utilized depending on necessity. Each
computer vision model, such as YOLOv5 [5] and Fast-RCNN
[10] comes with different levels of execution time, memory
consumption and accuracy. Running such compute-intensive
CV models is usually done on specialized vector processors, or
graphical processing units (GPUs). Most of today’s GPUs can
run multiple CV models in parallel. In such cases of parallel
execution, each CV model can start executing the video chunk
received at different times depending on their arrival and CV
model requirements. The video streams captured by cameras
are first encoded into a standard form called codec. The most
common codecs used are H.265 and AV1. Usually, these
videos are divided into temporal segments of 0.5-2s, and
then transmitted over the cellular network. However, a key
challenge faced by CV models on running the videos on these
chunks of videos is that it is often difficult to identify small
objects [4]. A strategy proposed by a number of recent works
is to split the video into smaller spatial blocks called tiles,
and then run the CV models on each individual tile. Encoding
in the form of tiles is also supported by the codecs and have
been exploited by multimedia applications for a number of
other applications, such as parallel encoding [11] and efficient
allocation of bitrates to individual spatial portions [12]. Tiles
also make it easier to apply lightweight techniques like frame
differencing to determine where objects are more likely to be
located. Then, it is possible to apply CV models on tiles in
decreasing order of their likelihood of having objects.

Potential of Separate Tile Scheduling: We now motivate
the advantages of separate tile scheduling using an example.
Figure 1 shows a snapshot of a video segment. Conventional
techniques send the entire segment together to the same edge
device and apply a single CV algorithm on it. However, as
visible in Fig. 1, often the camera is positioned in a way that
objects in some specific parts of the frame (in this case, say
Tile T2) are farther from the camera lens than other objects
(Tile T9). Detecting objects from tile T2, therefore, requires
a larger CV model than detecting an object from tile T10.
This opens up the possibility of processing at a tile level
granularity. Indeed, some of the tiles may need lightweight
processing, which can be carried out at the camera itself,
instead of sending them to the edge, thereby improving latency.

B. Technique of Randomized Rounding

A major challenge of solving scheduling problems like the
one addressed in this paper, is that they are often NP-Hard.
While such NP-Hard scheduling problems can usually be
formulated as an instance of integer-linear programming (ILP)
and solved optimally using optimization solvers, they are often
time-consuming in practice. A common approach is to design
an approximation algorithm, that provides a bound on its
performance with respect to the optimal while running much
faster than the ILP. One commonly used method of generating
an approximation algorithm, is to relax the problem into a
linear programming problem (with fractional and thus non-
feasible outputs), and then apply rounding with a probability
equal to the fractional value to either 0 or 1 to get an integral
solution. By showing that this solution so obtained satisfies
the constraints with a high probability, it is possible to show
that we have an efficient approximation algorithm.

We utilize Chernoff bounds to show that the solution
is feasible with high probability. Chernoff Bound [13][14]
provides a bound on the tail of the distribution of the sum
of n independent 0-1 random variables, which are also known
as Poisson trials. It shows that the deviation of random variable
X , where X = X1 +X2 + ....+Xn (Xi’s are Poisson trials),

from its expected behaviour is low. Formally, let X =
n∑

i=1

Xi

where Xi = 1 with probability pi and Xi = 0 with probability

(1-pi), and the Xis are independent. Let µ =
n∑

i=1

pi. Then,

• Upper tail (bound on the deviation above the mean):
Inequality (1) shows that, for a real number γ > 0, the
probability that X goes above its expectation µ, by γµ or
more, is low.

P (X ≥ (1 + γ)µ) ≤ e−
γ2

γ+2µ (1)

• Lower tail (bound on the deviation below the mean):
Inequality (2) shows that, for a real number 0 < γ < 1,
the probability that X goes below its expectation µ, by
γµ or more, is low.

P (X ≤ (1− γ)µ) ≤ e−
γ2

2 µ (2)



C. Related Work

Selection of Appropriate CV Model: A number of studies
address this problem, some of them being [15], [16], [17], [18].
Focus [15] runs a lightweight convolutional neural network
(CNN) at the time of video ingestion, and then utilizes a deeper
CNN if the video contains objects of interest. VideoStorm [16]
utilizes the least compute-intensive DNN that also satisfies
the accuracy constraint. VideoEdge [17] identifies the tradeoff
between execution platform and accuracy of inference. JCAB
[18] considers network bandwidth availability to identify the
right configuration of video quality. These techniques all focus
on selecting the right models, without considering tiling.
Use of Tiling for Video Optimization: A number of different
video applications utilize tiles to optimize their bandwidth
usage. For example, ClusTile [19], Mosaic [12] and Flare [20]
all utilize tiles at different bitrate/resolutions depending on the
user’s viewport to optimize quality of experience of streaming
360 videos. EdgeDuet [4] shows the power of tiling for small
object detection. Our work builds on these studies to further
study the allocation of these tiles to edge devices.
User Edge Allocation: Multiple studies have formulated the
problem of allocation of workloads to edge devices [21],
[22], [23]. For example, Heteroedge [21] allocates computer
vision tasks on edge servers by modeling and then scheduling
directed acyclic graphs. Unlike our work, they do not focus on
traffic surveillance, but on tasks given by smartphones of users.
The work [22] allocates tasks to edge devices based on their
levels of criticality, i.e. tasks that help prevent accidents are
assumed to have higher probabilities than the rest. Our work
considers these approaches, but identifies the right model as
well as the allocation jointly. Another orthogonal approach is
to use reinforcement learning for task allocation [23]. Since in
our case the state and requirements are known to the controller,
we take a deterministic version of the problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the following discussion, we explain the system model
assumed in our work. We assume that there is a network
controller connected to all the base stations through a wired
backbone network. The network controller can take intelligent
decisions about which models to run on different edge servers,
and data could be requested and fetched accordingly. This
architecture has been widely used for task allocation in the
context of edge computing [24], [25].

We now formally define the system of traffic surveillance.
A set of cameras, denoted by C = {C1, . . . , Cr} are deployed
on the roads for traffic surveillance. Each camera may transmit
data to one or more among potentially multiple reachable
cellular base stations (denoted by using the cellular network),
which is then forwarded by the base station to the edge server
for processing on the wired network connecting them. The
camera itself has very limited memory and compute capability,
that permits to have only one or two lightweight CV models.

Since each base station is directly connected to the edge
servers (denoted by S = {S1, . . . , Sn}), utilizing any edge

server requires transmitting the required data to the corre-
sponding base station. This is typically done by sending a
control message from the cellular base station to the camera (as
seen in modern cellular networks). However, such a request-
and-fetch approach incurs a latency equal to the round-trip-
time, which is typically less than 20 ms [26]. Note that the
latency of communication between the cellular tower and the
network controller is less than 1ms [27], as it is directly
handled by the wired network connecting them.

The traffic surveillance system works as follows. We con-
sider a system where the controller decides based on past
calibration and/or knowledge, as in [28] and [29]. The system
is bootstrapped by sending all the tiles of each camera (denoted
by T = {T1, . . . , Tp}) to the edge server closest to it. The edge
server runs a number of CV algorithms to analyze the tile
statistics, such as the size of objects, background content and
speed of movement, as in [29]. These tile statistics are sent
to the network controller. The network controller identifies
the characteristics of the tile, and also has details of the
capabilities of the CV models (denoted by V = {V1, . . . , Vl}).
Accordingly, it decides which CV models are suitable for
execution on each tile. It utilizes this decision to further
allocate each tile either to an appropriate model on the camera
itself, or transfer it to some nearby edge server via the
cellular base station. Allocating tiles to edge servers incurs an
additional communication latency, equal to the time needed
to send the tile to the appropriate base station. This decision
is communicated to the cellular base station via the wired
network, so that the requests can be further propagated to
the appropriate cameras. The allocation for the set of tiles
for the next segment is performed accordingly. This process
repeats across the sequence of tiles, thus allowing the network
controller to dynamically change the task allocation strategy
if the video content changes due to changes in light/weather
conditions, speed of the vehicles, etc. Once the system is
online, the cameras send the tiles to the edge servers via the
cellular network. The cellular network controller, connected to
the cell towers by the wired network, gathers statistics such as
object size and background content about the tiles, identifies
the accuracy thresholds for each such tile, and then decides to
allocate specific tiles to the edge devices or to the camera itself.
The cellular base stations, in turn, request the required video
tiles from the cameras according to the allocation decision
and pass the tile data to the edge server connected to it. Fig.
2 shows the system.

Let T = {T1, T2, . . . , Tp} be the set of tiles generated for a
segment. Each tile Ti has an associated set of CV models by
which it can be processed, considering accuracy requirements,
denoted by δi, where δi ⊆ V . To maximize the number of
tiles processed per segment, the network controller generates
a strategy that serves the following:

• for each edge server, decide the set of CV models to be
instantiated, depending on their total memory capacity,
and the requirements of the tiles.

• for each tile, decide whether (i) it can be processed by a
model on the camera itself, or (ii) needs to be sent to some
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Fig. 2: Our system model showing how tiles are scheduled in the context of edge computing. Each cell tower has an edge
server with a GPU. The network controller decides which tiles to schedule on which server, and sends it to the cameras as
control data. The tiles are then sent over a cellular network.

edge server where the required CV model is available, or
(iii) cannot be processed anywhere.

The task of tile generation, model selection and tile allocation
is independent across segments. For each segment, the set
of tiles to be processed is available. Depending on the tile
requirements, the controller selects a set of models to run
on each server and assigns the tiles to appropriate (model,
camera / server) pair such that the total completion time for
processing the contents of the segment stays within a pre-
specified bound. For some segments, not all tiles may be
possible to be processed completely within the bound due to
available memory limits and the memory needs of the CV
models needed by the tiles. Thus, we aim to maximize the set
of tiles processed per segment, while keeping the completion
time within a bound. This calls for a joint optimization for
model choice and tile allocation that we address in this work.
On a server Si ∈ S, the instantiated models run in parallel.
The CV models running on the servers are not known apriori.
Depending on the available memory and set of tiles to be
processed for a segment, the models are selected for each edge
server, while a fixed set of models runs on each camera. The
models are assumed to be present in the secondary storage of
each device, so that fetching them for execution in memory
does not lead to additional latency. Each camera is in the
coverage range of at least one server. The tiles generated by
Cl ∈ C can be assigned to a CV model on Cl itself, or on
any server Sk that covers Cl. The latter incurs an additional
communication latency.

A. Problem Hardness
In this section, we show the NP-hardness of our joint tile allo-
cation and model selection (JTAMS) problem with a reduction
from the known NP-hard problem of Multiple Knapsack with
assignment restrictions (MKARP) [30] [31]. In MKARP, a set
of items, say Y , and a set of knapsacks, say X , are given as

input. Each item yi ∈ Y has a non-negative weight, wi, and
a non-negative profit, pi. Similarly, each knapsack xk ∈ X
has a non-negative capacity. For each item yi ∈ Y , the set
of knapsacks that can hold them is defined (Ai ⊆ X). The
objective is to find an assignment of items to knapsacks with
maximum total profit, such that every element is assigned to
at most one knapsack, satisfying the assignment restrictions
and capacity constraint. We define the set of tiles T and set of
models V , where each tile Ti ∈ T can only be processed by
model Vi, Vi ∈ V . We associate the set of models, V , with the
set of items, Y ; and the set of processing units, P , with the set
of knapsacks, X . The weight and profit for each element of
Y is the memory capacity of the corresponding model and 1,
respectively. For each item yi ∈ Y , we associate Ai with the
set of processing units that can process the corresponding tile
Ti, that is (gi∪Ni). From this construction it now follows that
a tile allocation and model selection satisfying the constraints,
maximizes the number of assigned tiles iff the corresponding
set of items, Y , can be assigned to the knapsacks satisfying
the assignment and capacity constraints, maximizing the total
profit. This allows us to conclude JTAMS is NP-Hard. □

B. ILP Formulation

Let P = C ∪ S = {P1, P2, . . . , Pr, Pr+1, . . . , Pn+r} be the
set of processing units, where C and S is the set of cameras
and edge servers respectively. For each Pi ∈ P , mi represents
its memory capacity and V(Pi) (⊆ V) denotes the set of CV
models instantiated on it for a specific segment. Let αjk denote
the time to process a tile by CV model Vj on Pk. Let cik
denote the communication latency of sending a tile Ti from
camera Cl to processing unit Pk. Note that cik = 0 if the tile
is processed at the camera itself (that is, l = k), otherwise it
is a positive value which depends upon the distance between
camera Cl that generated tile Ti, and server Sk. Let gi denote



the camera that generated tile Ti, where Ti ∈ T . Similarly, for
each tile Ti ∈ T , let Ni denote the set of nearby edge servers.
Let yjk be a binary decision variable that is set to 1 to indicate
that CV model Vj is running on processing unit Pk. Also, let
xijk be a binary decision variable that is set to 1 if tile Ti is
assigned to CV model Vj on processing unit Pk.

xijk ∈ {0, 1} ∀Ti ∈ T , Vj ∈ V, Pk ∈ P
yjk ∈ {0, 1} ∀Vj ∈ V, Pk ∈ P

(3)

We first model the memory constraints. We note that on
each server, depending on its memory capacity, different
combinations of CV models can be selected. Therefore, for
each server Sk, the sum of the memory required by selected
models should not exceed the available memory. Formally,∑

Vj∈V
[yjk ×m(Vj)] ≤ mk, ∀Sk ∈ S (4)

For each camera, a set of lightweight CV models Cw (where
Cw ⊆ V), satisfying the memory constraint, is pre-loaded.

yjl = 1, ∀Cl ∈ C,∀Vj ∈ Cw, & yjl = 0, ∀Cl ∈ C,∀Vj /∈ Cw

(5)

We further note that, to process a tile Ti by model Vj on Pk,
model Vj should be loaded on processing unit Pk. Formally,

xijk ≤ yjk ,∀Ti ∈ T ,∀Vj ∈ V,∀Pk ∈ P (6)

Furthermore, every tile should be assigned to at most one CV
model on some server / camera, i.e:∑

Pk∈P

∑
Vj∈V

xijk ≤ 1 ∀Ti ∈ T (7)

A tile Ti can only be assigned to a model that satisfies its
accuracy constraint, δi. We set the remaining possibilities to
0.

xijk = 0 ∀Ti ∈ T ,∀Pk ∈ P, ∀Vj ̸∈ δi (8)

Similarly, considering coverage constraints, any edge device
that is not in the vicinity of a camera cannot be used, i.e:

xijk = 0, ∀Ti ∈ T ,∀Vj ∈ V, ∀Sk ∈ (S −Ni) (9)

Since a tile Ti, generated at camera Cl cannot be assigned to
any other camera, we set the corresponding x variables to 0,
i.e:

xijl = 0 ∀Ti ∈ T ,∀Vj ∈ V,∀Cl ∈ C, where gi ̸= l (10)

The time to process the tiles for a segment should not
exceed a pre-specified bound L. This has to account for the
communication latency (may be 0 for a tile processed in-situ)
and the completion time of the models running on an edge
server for the specific set of tiles assigned for that segment. In
other words, any model on any edge server / camera should
finish processing the set of tiles assigned to it, within L. Note
that, the models on a processing unit run in parallel, while tiles
assigned to a specific model on a server are processed one after
another. To express this, we sum over all tiles assigned to a
model on a processing unit, and for each such tile, account for

Algorithm 1 Model selection and Tile allocation
1: procedure ALLOCATION(C,S,D,L,m|P|,V,m(V), α, c)
2: while t = 1 to . . . do
3: T ← Set of tiles generated for segment t
4: δ|T | ← Set of valid models for each tile
5: g ← Camera index for each tile
6: (e, p, x, y)← ILP(T , δ, g)
7: t← t+ 1

the communication latency it may have incurred, along with
the processing time necessary to process it on that model on
that server, as expressed in the following.∑

Ti∈T
xijk(αjk + cik) ≤ L, ∀Vj ∈ V,∀Pk ∈ P (11)

Our objective is to maximize the number of tiles that can be
processed for each segment.

Maximize:
∑
Pk∈P

∑
Vj∈V(Pk)

∑
Ti∈T

xijk (12)

We note that the constraints (4)–(12) are all linear in nature.
A feasible solution to this ILP gives the set of models to
run on each server, the maximum number of tiles that can
be processed for this segment and an optimal allocation
of the tiles to appropriate models on the server / camera
while honoring the processing accuracy, memory and time
bound constraints. It is worth noting that all models cannot
be trivially instantiated on each edge server, considering the
runtime memory needs of the CV models and the total memory
capacity available on the edge server for executing the CV
workloads. Each camera runs a fixed set of pre-loaded models.

C. The Overall Approach

The above presents an ILP for the model instantiation and tile
allocation problem for handling the set of tiles originating for
a segment. Algorithm 1 summarizes the overall approach. At
the beginning of each segment t, we get a set of tiles T and
their respective accuracy ensuring models, δ|T |. The function
ILP() contains the ILP formulation, defined in Section III-B.
A call to ILP() for a specific segment returns the following:

• Model selection for each server for that segment.
• Tile assignment for that segment
• Time e to produce the allocation for that segment. This

is typically the time incurred for solving the ILP.
It may be noted that for any server, the set of models selected
to be instantianted may change across segments, depending on
the tile requirements and the resulting allocations.

IV. APPROXIMATION ALGORITHM

The ILP formulation given in Section III-B gives an optimal
solution for JTAMS for each segment, however, the time it
takes to generate a solution increases with an increase in
problem size. Thus, we now present an approximation algo-
rithm [32] [33] to use in place of the ILP. The approximation
algorithm (Algorithm 2) is obtained by relaxing the integrality
constraint (Eq (3)) on the variables and then using randomized
rounding on the fractional solution to get an integral feasible



Algorithm 2 Approximation Algorithm (RR)
1: procedure APPROX(C,S,P,N ,m|P|,V,m(V), α, c)
2: (x̃ijk, ỹjk)← CALLLP (T , δ, g)
3: repeat
4: for (j, k) ∈ (V × P) do
5: ŷjk ← 1 with probability ỹjk
6: for i ∈ T do
7: for (j, k) ∈ (V × P) do
8: if j ∈ δi, k ∈ (Ni ∪ gi), ŷjk = 1 then
9: x̂ijk ← 1 with probability

x̃ijk

ỹjk
10: else
11: x̂ijk ← 0
12: Among all (j, k)’s where x̂ijk is set to 1, select one at

random and set others to 0
13: until (x̂, ŷ) defines a feasible solution
14: return x̂, ŷ

solution to the problem. The first step of the approximation
algorithm is LP Relaxation, i.e., the variables xijk and yjk can
have any real value in the range [0, 1]. The optimal solution
obtained from the above relaxed LP might be fractional, and
is denoted by x̃ijk and ỹjk. To get an integer solution, these
fractional values are rounded to 0 or 1. Let x̂ijk and ŷjk
denote the integer solution obtained after rounding. For each
(j, k) pair, where j ∈ V and k ∈ (P), variable ŷjk is set
to 1 with probability ỹjk (in Lines 4-5). Let gi denote the
camera that generated tile Ti ∈ T . A tile can be assigned to
model j on unit k only if j is available on k, that is, the
corresponding ŷjk is set to 1. In lines (6-11), x̂ijk is set to 1

with probability x̃ijk

ỹjk
, otherwise it is set to 0. In lines (7-11), a

tile i ∈ T can be assigned to multiple (Vj , Pk) pairs by setting
the corresponding x̂ijks to 1. However, from inequality (7), a
tile can be assigned to at most one CV model on the camera
or some server. To ensure that inequality (7) is satisfied, 1
out of the multiple possible allocations for tile i is selected at
random, and the remaining x̂ijks set back to 0. Note that a
solution is considered feasible (Line 13 in Algorithm 2) if the
model selection satisfies the memory constraint on each server
and the tile processing time does not exceed L. We now derive
some bounds related to our solution approach below.

The probability that decision variable ŷjk is set to 1 is,
P [ŷjk = 1] = ỹjk. x̂ijk can be 1 only when ŷjk = 1,

P [x̂ijk = 1] = P [x̂ijk = 1|ŷjk = 1]P [ŷjk = 1]

=
x̃ijk

ỹjk
× ỹjk = x̃ijk

(13)

Lemma 1. The solution returned by Algorithm 2 satisfies the
memory constraint on each server, in expectation.

Proof. The expected amount of memory required by the
models selected by Algorithm 2 on a server k is written as,

E[
∑

j∈V(k)

(ŷjkm(Vj))] =
∑

j∈V(k)

P [ŷjk = 1]m(Vj)

=
∑

j∈V(k)

(ỹjkm(Vj)) ≤ mk

(14)

where the second equation holds because ŷjk is set to 1 with
probability ỹjk. The last inequality is due to the memory
constraint in the relaxed LP.

Lemma 2. The maximum time to process the tiles allocated
by Algorithm 2 does not exceed L, in expectation.

Proof. The expected time to process the tiles by model Vj on
processing unit Pk is,

E[
∑
Ti∈T

x̂ijk(αjk + cik)] =
∑
Ti∈T

P [x̂ijk = 1](αjk + cik)

=
∑
Ti∈T

x̃ijk(αjk + cik) ≤ L

(15)
where, the second equation holds because x̂ijk is 1 with
probability x̃ijk. The last inequality is due to the presence
of the bound constraint (≤ L) in the relaxed LP.

Theorem 1. JTAMS is solved using Algorithm 2 with an
approximation ratio of (1−

√
2r

Z∗
LP

), where Z∗
LP is the optimal

value of the relaxed problem in LP form.

Proof. Algorithm 2 returns the expectation of the objective
value as,

E[
∑
Pk∈P

∑
Vj∈V(Pk)

∑
Ti∈T

x̂ijk] =
∑
Pk∈P

∑
Vj∈V(Pk)

∑
Ti∈T

P [x̂ijk = 1]

=
∑
Pk∈P

∑
Vj∈V(Pk)

∑
Ti∈T

x̃ijk

(16)

Note that each term x̂ijk is an independent random variable.
Let Z∗

LP represent the optimal value of the relaxed JTAMS.
Using the Chernoff Bound theorem [13],

P [
∑
Pk∈P

∑
Vj∈V(Pk)

∑
Ti∈T

x̃ijk ≤ (1− γ)Z∗
LP ] ≤ e−

γ2

2 Z∗
LP

(17)

where 0 < γ < 1. Let Z∗
ILP represent the optimal solution

of the JTAMS problem. As this is a maximization problem,
relaxed LP can assign all the tiles that ILP does, as well as a
few more in fractions, hence Z∗

ILP ≤ Z∗
LP , based on which

we can further derive that,

P [
∑
Pk∈P

∑
Vj∈V(Pk)

∑
Ti∈T

x̃ijk ≤ (1− γ)Z∗
ILP ]

≤ P [
∑
Pk∈P

∑
Vj∈V(Pk)

∑
Ti∈T

x̃ijk ≤ (1− γ)Z∗
LP ] ≤ e−

γ2

2 Z∗
LP

(18)

We minimize the upper bound of the probability by taking:

e−
γ2

2 Z∗
LP ≤ 1

er
(19)

where, r is the number of cameras. This implies that the upper
bound quickly converges to 0 as the number of cameras grows.
Accordingly, γ should be,

e−
γ2

2 Z∗
LP ≤ e−ror, γ ≥

√
2r

Z∗
LP

(20)



In practise, Z∗
LP tends to be much bigger than r (that is, the

number of tiles assigned by the relaxed LP is much larger
than the number of cameras), and therefore 0 < γ < 1 always
holds when γ ≥

√
2r

Z∗
LP

. From Eq (17) and (20), we get the

approximation ratio as (1− γ) = (1−
√

2r
Z∗

LP
).

Theorem 2. Algorithm 2 ensures that the memory used in any
processing unit Pk ∈ P never exceeds 1

2 (
√

M
mk

+1)(
√

M
mk

+2)

times than its memory capacity with high probability, where
M is the memory requirement of the largest model.

Proof. In Algorithm 2, the models are selected for each pro-
cessing unit, satisfying the memory constraint in expectation.
Each term is an independent variable and therefore by applying
the Chernoff Bound theorem, we have

P [
∑

Vj∈V(Pk)

ŷjkm(Vj) ≥ (1 + γ)mk] ≤ e−
γ2

2+γ mk (21)

where γ > 0. To make the upper bound as small as possible,
we take,

e−
γ2

2+γ mk ≤ 1

eM
(22)

where M = max(m(Vj),∀Vj ∈ V) represents the memory
required by the largest model. M makes the upper bound close
to 0. Accordingly, γ should satisfy,

e−
γ2

2+γ mk ≤ e−M

=⇒ γ ≥ M +
√
M2 + 8Mmk

2mk

(23)

In practice, mk should be much larger than M (i.e., Mmk >>
M2) hence we set,

γ =
M + 3

√
Mmk

2mk
(24)

Solving this, we get,

1 + γ =
1

2
(

√
M

mk
+ 1)(

√
M

mk
+ 2) (25)

The memory used in Pk does not exceed 1
2 (
√

M
mk

+1)(
√

M
mk

+

2) times its memory capacity, with high probability.

Thus, we have proved in Thoerem 1 that Algorithm 2
provides an objective value close to the optimal, whereas in
Theorem 2 that it also requires few number of iterations to get
a feasible solution.

V. EXPERIMENTS

We now present experimental results to show the performances
of the methods in practice. We compare the accuracy obtained
and the number of tiles processed within the time bound.

Yolo model
(Vj)

m(Vj) (in
GB)

αj,k on 4GB
Camera Ck

(in s)

αj,k on 8GB
Server Sk (in

s)
n 1.313 0.735 0.090
s 1.367 1.680 0.105
m 1.479 3.765 0.210
l 1.715 6.750 0.360
x 2.075 12.180 0.615

TABLE I: Memory requirement and per tile processing time
of 5 YOLO models on different servers

A. Baseline Approaches

We compare Algorithm 2 with the following baselines:
• B-RMS: Chooses a random subset of models in the first

segment, and keeps it unchanged over the other segments.
• B-LA: Assigns each tile Ti to the CV model M ∈ δi with

lowest accuracy value.
• B-HA: Assigns each tile Ti to the CV model M ∈ δi

with highest accuracy value.
• B-CAM: Assigns each tile to the camera itself.

B. Experimental Setup

We have 25 edge servers and 125-200 camera locations from
the Lumos dataset [34]. For each server, the coverage radius
is defined as a random value in the range of 100-200m. All
the cameras and servers are assumed to be 4GB and 8GB
processing units, respectively. Yolo-v5 models nano (n) and
small (s) are assumed to be pre-loaded on each of the cameras.
For the videos, we use the DETRAC data-set, which consists
of 20 videos [7]. Each camera is randomly assigned a video
from this set. Videos are split into segments of 0.5s each,
and using ffmpeg these segments are split into 4 tiles. We
run the 5 yolo-v5 models (n, s, m, l and x) [5] on each of
the tiled videos and record the accuracy value with 0.55 as
the accuracy threshold. We also run the yolo-v5 models on a
desktop with nVidia RTX 2080Ti GPU, and record the time
taken and memory consumed to run each of the CV models
on it (TABLE I). We confirmed that the execution time of
the CV models on a GPU is independent of the content of the
videos. We consider GPU memory capacities of 4GB and 8GB
respectively. We conduct all experiments on a machine with
AMD Ryzen5 processor with 125 GB RAM. We solve the
LP and ILP formulations using the Python PULP library [35].
We assume that each camera segment generates 4 tiles. For
each tile Ti, the set of CV model(s) which satisfy the accuracy
threshold define the set δi. The number of slots is fixed as 167
(number of segments/chunks of 0.5s of the longest video).
For each slot, we record (a) the number of tiles assigned
in a segment by the ILP, approximation algorithm (RR) and
the baselines; (b) the Execution Time (ET) incurred by these
approaches to produce a solution; and (c) the average accuracy
for tile allocation made by each approach.

C. Comparison of Performance

Comparison of Tiles Assigned: Figure 3 depicts the result of
varying the memory capacity of the edge servers from 4GB
to 8GB, in steps of 2GB, with the memory capacity of the
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Fig. 3: Average number of tiles assigned in a segment

cameras fixed at 4GB. The number of tiles assigned using
Algorithm 2 is close to the ILP solution for each configuration.
When the memory capacity increases from 4GB to 6GB,
the number of tiles assigned using Algorithm 2 does not
necessarily increase, however, when the memory capacity of
the edge servers is increased to 8GB, then it is able to assign
all the tiles. This is because, when the memory capacity of the
edge servers is 8GB, all models can be loaded simultaneously
on each server (refer Table I) and hence any model required
by a tile is available on some nearby edge server.
Comparison of Average Accuracy: Figure 4 shows the
average accuracy over 167 slots for ILP, Algorithm 2 and
the baselines. For the first two cases, when all servers have
4GB and 6GB memory capacities, the average accuracy for
Algorithm 2 is close to that of ILP. When all servers have
8GB memory capacity, Algorithm 2 has slightly better average
accuracy than ILP in some situations, as both of these ap-
proaches successfully assign all the tiles however, the models
to which a tile is assigned differ in their solutions. Compared
to baselines, average accuracy of Algorithm 2 is close to
Baseline B-LA. Baseline B-HA gives a solution with maxi-
mum average accuracy, whereas B-CAM gives a solution with
average accuracy lower than the accuracy threshold (0.55).
Comparison on number of segments: Table II shows the
number of segments (out of the total 167) for which different
approaches were able to give a solution within a specified
response time specified in Column 2 (time to produce a
solution + time to process the set of assigned tiles). The
time to process the assigned tiles is fixed to L = 16s
for all cases as in prior systems like Chameleon [28], the
execution time varies with the number of cameras. Algorithm
2 is able to give a solution, in time, in at least 96% slots.
Although the ILP technically gives a feasible solution, its
execution time becomes very high, leading to fewer number
of instances completing in time. Among the baselines, none
of the techniques except B-CAM finish most of the executions
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Fig. 4: Average Accuracy over 167 segments

Cam.
Resp.
Time
(s)

GPU
Mem.
(GB)

ILP RR B-
RMS

B-
HA

B-
LA

B-
CAM

125 28s
4GB 145 167 79 0 2 167
6GB 135 167 52 0 1 167
8GB 132 167 0 1 7 167

150 33s
4GB 90 167 52 0 1 167
6GB 143 167 12 0 0 167
8GB 128 167 1 0 3 167

175 41s
4GB 101 167 116 51 53 167
6GB 135 167 167 127 158 167
8GB 144 167 126 65 112 167

200 50s
4GB 131 163 1 0 0 167
6GB 150 161 1 0 0 167
8GB 162 167 2 0 0 167

TABLE II: Number of segments completed in time

on time. Although B-CAM finishes them on time always, this
comes at the cost of accuracy, as discussed earlier.

VI. CONCLUSION

We address the problem of model selection and tile allocation
in the context of video processing for roadside surveillance.
We formulate an ILP instance for solving the same and
further propose a linear relaxation randomized rounding based
approximation algorithm. We further conduct trace-driven sim-
ulation on an open-source traffic surveillance dataset, and show
via extensive experiments that our algorithm gives accuracy
close to the ILP. We believe that our proposal of processing at
tile level granularity using edge servers for roadside surveil-
lance will have important practical utilizations going forward.
As future work, we wish to explore learning based approaches
for model selection and tile allocation.
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for small object detection,” in 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2019. doi:
10.1109/CVPRW.2019.00084 pp. 582–591.

[12] S. Park, A. Bhattacharya, Z. Yang, S. R. Das, and D. Samaras,
“Mosaic: Advancing user quality of experience in 360-degree video
streaming with machine learning,” IEEE Transactions on Network
and Service Management, vol. 18(1), pp. 1000–1015, 2021. doi:
10.1109/TNSM.2021.3053183

[13] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[14] M. Goemans, “Chernoff bounds, and some applications,” February 2015.
[15] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,

M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video
datasets with low latency and low cost,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018. doi:
10.48550/arXiv.1801.03493 pp. 269–286.

[16] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
Delay-Tolerance,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), Boston, MA, Mar. 2017, pp.
377–392.

[17] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams using
hierarchical clusters,” in Proceedings of IEEE/ACM Symposium on Edge
Computing (SEC), 2018. doi: 10.1109/SEC.2018.00016 pp. 115–131.

[18] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint con-
figuration adaptation and bandwidth allocation for edge-based real-time
video analytics,” in IEEE INFOCOM – IEEE Conference on Computer

Communications, 2020. doi: 10.1109/INFOCOM41043.2020.9155524
pp. 257–266.

[19] C. Zhou, M. Xiao, and Y. Liu, “Clustile: Toward minimizing band-
width in 360-degree video streaming,” in IEEE INFOCOM – - IEEE
Conference on Computer Communications, 2018. doi: 10.1109/INFO-
COM.2018.8486282 pp. 962–970.

[20] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,” in
MobiCom, 2018. doi: 10.1145/3241539.3241565 p. 99–114.

[21] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri,
“Hetero-edge: Orchestration of real-time vision applications on hetero-
geneous edge clouds,” in IEEE INFOCOM – IEEE Conference on Com-
puter Communications, 2019. doi: 10.1109/INFOCOM.2019.8737478
pp. 1270–1278.

[22] E. Liu, L. Zheng, Q. He, B. Xu, and G. Zhang, “Criticality-
awareness edge user allocation for public safety,” IEEE Transactions
on Services Computing, vol. 16, no. 1, pp. 221–234, 2023. doi:
10.1109/TSC.2021.3131348

[23] S. P. Panda, K. Ray, and A. Banerjee, “Dynamic edge user allocation
with user specified qos preferences,” in ICSOC, 2020. doi: 10.1007/978-
3-030-65310-1 15 pp. 187–197.

[24] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 3, pp. 1529–
1541, 2021. doi: 10.1109/TETC.2019.2902661

[25] C. Tang, C. Zhu, N. Zhang, M. Guizani, and J. J. P. C. Rodrigues, “Sdn-
assisted mobile edge computing for collaborative computation offloading
in industrial internet of things,” IEEE Internet of Things Journal, vol. 9,
no. 23, pp. 24 253–24 263, 2022. doi: 10.1109/JIOT.2022.3190281

[26] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao, F. Qian, and Z.-L. Zhang, “A variegated
look at 5g in the wild: Performance, power, and qoe implications,” in
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021. doi:
10.1145/3452296.3472923 p. 610–625.

[27] J. Li and J. Chen, “Passive optical network based mobile backhaul
enabling ultra-low latency for communications among base stations,”
Journal of Optical Communications and Networking, vol. 9, no. 10, pp.
855–863, 2017. doi: 10.1364/JOCN.9.000855

[28] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Sto-
ica, “Chameleon: Scalable adaptation of video analytics,” in Pro-
ceedings of the 2018 ACM SIGCOMM Conference, 2018. doi:
10.1145/3230543.3230574 p. 253–266.

[29] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,”
in Proceedings of the ACM SIGCOMM 2020 Conference, 2020. doi:
10.1145/3387514.3405887 p. 557–570.

[30] G. Dahl and N. Foldnes, “Lp based heuristics for the multiple knapsack
problem with assignment restrictions,” Annals of Operations Research,
vol. 146, no. 1, pp. 91–104, Sep 2006. doi: 10.1007/s10479-006-0048-1

[31] M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi,
“Approximation algorithms for the multiple knapsack problem with
assignment restrictions,” Journal of Combinatorial Optimization, vol. 4,
no. 2, pp. 171–186, Jun 2000. doi: 10.1023/A:1009894503716

[32] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in mec networks with storage,
computation, and communication constraints,” IEEE/ACM Transactions
on Networking, vol. 28, no. 3, pp. 1047–1060, 2020. doi: 10.1109/T-
NET.2020.2980175

[33] L. Gu, Z. Chen, H. Xu, D. Zeng, B. Li, and H. Jin, “Layer-aware col-
laborative microservice deployment toward maximal edge throughput,”
in IEEE INFOCOM 2022 - IEEE Conference on Computer Communi-
cations, 2022. doi: 10.1109/INFOCOM48880.2022.9796670 pp. 71–79.

[34] A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. K. Fezeu,
U. K. Dayalan, S. Verma, P. Ji, T. Li, F. Qian, and Z.-L. Zhang, “Lu-
mos5g: Mapping and predicting commercial mmwave 5g throughput,”
in Proceedings of the ACM Internet Measurement Conference, ser. IMC
’20, 2020. doi: 10.1145/3419394.3423629 p. 176–193.

[35] “Optimization with pulp,” accessed on Feb 10, 2023. [Online].
Available: https://coin-or.github.io/pulp/

https://doi.org/10.1109/TITS.2019.2917560
https://doi.org/10.1109/TITS.2019.2917560
https://doi.org/10.1145/3624478
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TNET.2022.3223412
https://doi.org/10.1109/WSAI51899.2021.9486316
https://doi.org/10.1109/WSAI51899.2021.9486316
https://doi.org/10.1016/j.cviu.2020.102907
https://doi.org/10.1145/3560905.3568527
https://doi.org/10.48550/arXiv.2012.10557
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPRW.2019.00084
https://doi.org/10.1109/CVPRW.2019.00084
https://doi.org/10.1109/TNSM.2021.3053183
https://doi.org/10.1109/TNSM.2021.3053183
https://doi.org/10.48550/arXiv.1801.03493
https://doi.org/10.48550/arXiv.1801.03493
https://doi.org/10.1109/SEC.2018.00016
https://doi.org/10.1109/INFOCOM41043.2020.9155524
https://doi.org/10.1109/INFOCOM.2018.8486282
https://doi.org/10.1109/INFOCOM.2018.8486282
https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1109/INFOCOM.2019.8737478
https://doi.org/10.1109/TSC.2021.3131348
https://doi.org/10.1109/TSC.2021.3131348
https://doi.org/10.1007/978-3-030-65310-1_15
https://doi.org/10.1007/978-3-030-65310-1_15
https://doi.org/10.1109/TETC.2019.2902661
https://doi.org/10.1109/JIOT.2022.3190281
https://doi.org/10.1145/3452296.3472923
https://doi.org/10.1145/3452296.3472923
https://doi.org/10.1364/JOCN.9.000855
https://doi.org/10.1145/3230543.3230574
https://doi.org/10.1145/3230543.3230574
https://doi.org/10.1145/3387514.3405887
https://doi.org/10.1145/3387514.3405887
https://doi.org/10.1007/s10479-006-0048-1
https://doi.org/10.1023/A:1009894503716
https://doi.org/10.1109/TNET.2020.2980175
https://doi.org/10.1109/TNET.2020.2980175
https://doi.org/10.1109/INFOCOM48880.2022.9796670
https://doi.org/10.1145/3419394.3423629
https://coin-or.github.io/pulp/

	Introduction
	Background and Related Work
	Working of Video Surveillance Systems
	Technique of Randomized Rounding
	Related Work

	System Model and Problem Formulation
	Problem Hardness
	ILP Formulation
	The Overall Approach

	Approximation Algorithm
	Experiments
	Baseline Approaches
	Experimental Setup
	Comparison of Performance

	Conclusion
	References

