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Abstract—The increasing urbanization in developing countries
calls for more efficient and safer transportation systems. A
key technique used to enhance such efficiency and/or safety
is to utilize running of computer vision algorithms to identify
obstructions that may come up, and notify vehicles in real-
time. Such real-time detection and notification requires sufficient
computation resources located logically and physically close to
the cameras. While utilization of edge compute devices has been
proposed in the literature, it is unclear how such devices with
heterogeneous processing units can handle real-time detection
while multi-tasking. In this work, we profile the performance
of a few devices with embedded and desktop-quality GPUs,
and show that the performance while multi-tasking can be
modeled as a submodular function. We utilize this observation
to model load-balancing of camera videos as an instance of
a submodular welfare problem, and solve it using a greedy
algorithm. Our extensive trace-driven simulations show that our
technique outperforms the baseline by over 40%.

I. INTRODUCTION

With increasing urbanization in developing countries, a critical
problem that has emerged is the rise in the number of traffic
accidents. With weaker infrastructures and vehicles with lower
safety features, developing countries generally have roads that
are more vulnerable to traffic accidents. For example, the num-
ber of fatalities per capita is three times higher in Africa than in
the European Union [1]. Recent studies [1], [2] show that this
is due to (i) lower enforcement of speed limits as compared
to that in developed countries, (ii) simultaneous utilization
of road space by non-motorized entities, such as bicycles,
pedestrians and animals, and (iii) presence of potholes and
unexpected obstructions. Current solutions to these problems
involve substantial investment in traffic enforcement, which is
usually done manually and is expensive in practice.

To mitigate this problem of traffic accidents, a number
of studies have proposed for monitoring of city traffic by
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extensive deployment of cameras. Currently, low-cost cameras
costing around $25 can take video streams at a resolution
of 1080p [3], which is sufficient to monitor traffic. An auto-
mated system of enforcing traffic rules faces two challenges.
First, running the machine learning models to identify the
obstructions is compute-intensive. This challenge is significant
because of the large number of cameras involved, and limited
availability of GPU memory. For example, the Indian city
of Hyderabad already has installed over 500,000 cameras to
monitor traffic [4]. Currently running a single instance of one
of the most common computer vision algorithms, YOLO [5],
requires over 1GB of GPU memory per video. The largest
GPU server currently available commercially, nVidia A100,
only has 80GB of GPU memory. Thus, managing the video
processing requirements for a city like Hyderabad would
require 6250 such GPU servers, costing around $312, 000,
which is clearly not affordable.

A prominent solution to resolve this challenge is to utilize
distributed video analytics [6], [7]. Such distributed video
analytics utilizes deployment of multiple compute devices
closer to the cameras in locations such as cell towers. This
reduces the amount of data needed to be sent to the cloud
server. Many modern edge devices, such as Jetson Nano [8]
and Jetson AGX [9], usually contain a heterogeneous mix of
CPUs and GPUs. Since the number of cameras is usually larger
than the number of deployed edge devices, execution of video
analytics needs to happen in parallel. A key challenge of such
parallel execution is to provide reliable latency while utilizing
such edge devices.

Providing such reliable latency is challenging for a number
of reasons. First, the wireless network used to send the data
has a significant probability of losing the packets [10]. Second,
multi-tasking on an edge device with heterogeneous processors
of GPUs and CPUs leads to additional uncertainty in execution
time. The problem of multi-tasking on edge devices while
providing reliable latency is further exacerbated by the fact
that unlike server GPUs, edge device GPUs do not have the
scope of allocating resources via virtualization [11].

In this work, we first use a statistical measurement of the
wireless channels to identify the latency required for reliable
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Fig. 1: An illustration of the multi-tasking typically seen in
edge devices to process the video frames coming in from traffic
surveillance cameras.

delivery of video packets. We then schedule the videos of
the different cameras on the edge devices. The goal of this
scheduling is to maximize the overall processing throughput.
However, such scheduling is challenging as the execution
time on parallel execution of tasks on GPUs needs to be
accurately modeled. The amount of execution time spent when
running parallel jobs on GPUs is known to be non-linear [12].
Maximizing the throughput in such a general case is a non-
convex problem, making it difficult to solve.

We further handle the non-linear execution time using a
major observation. We observe that the throughput of edge
devices on running multiple tasks in parallel, is submodular
in nature. In other words, there is a diminishing return in terms
of throughput with increase in the number of videos processed
in parallel. This enables us to model the scheduling of videos
as a submodular welfare problem [13]. For submodular welfare
problems, a greedy allocation of tasks leads to a 0.5 approxi-
mation algorithm. We leverage this observation to design our
approximation algorithm to handle this problem.

We evaluate our approaches via extensive trace-driven sim-
ulations. Our traces consist of instances of actual execution of
YOLO-v5 [14] on the edge device Jetson Nano. We also have
the locations of the cell towers and the traffic intersections
of San Francisco city. Using this data, we compare the
performance of our algorithm with other baseline techniques.
Our simulations show that our greedy algorithm outperforms
the baseline techniques.

Our contributions may be summarized as follows:
• We observe that the throughput of edge devices with

GPUs for video processing follows a submodular prop-
erty.

• Using the submodular observation, we model the load
balancing problem on edge devices as a submodular
welfare problem, and use a greedy algorithm to solve.

• We evaluate our approach on traffic data traces of San
Francisco city using a Jetson Nano, and show that our

technique is effective in practice.
The rest of this paper is organized as follows. Section II
describes the problem statement, and formally models it. Sec-
tion III explains the greedy approach. Section IV describes our
implementation along with experimental details. Related work
is discussed in Section V, and finally, Section VI concludes
the paper with suggestions for future work.

II. FORMAL MODEL

We consider the following problem. Our goal is to automati-
cally identify Vulnerable Road Users (VRU), whose presence
on roads and highways has the potential to cause chaos and
disruption. As illustrated in Fig. 1, we assume that stretches
of the highway are under the jurisdiction of an edge server,
which is being served by multiple cameras positioned at
specific spots off the highway. The cameras capture video
feeds of the highway and transmit them periodically to one or
more edge servers, where the feeds are analyzed. The result
of the analysis could highlight the presence of obstacles on
the road that could potentially hinder motorists. Examples of
such obstructions could include accidents, potholes, children
playing on the road, animals, etc. Note that identifying such
VRUs could potentially require their identification by observ-
ing video streams from multiple cameras.

The video streams are sent to an edge device connected
to the cell towers over a cellular network. After the video
feeds are analyzed, the presence of any such VRU is then
detected. The information on the VRUs is then transmitted
to oncoming vehicles that could be affected by the presence
of the VRUs. The determination of which are the “affected”
vehicles is made by the edge server in real time based on
locations and trajectories of the vehicles which it detects, and
which are approaching the VRU in question.

The total latency to alert the vehicles is, therefore, the sum
of the following components:

1) The network latency taken to send the video feeds to the
edge device

2) The processing time required to analyze the video on the
edge device, which has GPUs in it

3) The time required for cloud processing (if necessary).
If there is a complex video query, requiring coordination
among multiple video feeds, and at least one of the videos
is executing on a different edge device, then the output
is sent to the cloud. The cloud server in turn alerts the
closest edge device.

4) The latency incurred when the edge device sends alerts
to one or more vehicles about the danger ahead.

Note that such an hierarchical edge/cloud model of traffic
surveillance has been utilized by prior works [15].

A. A Formal Model of the Vehicle Monitoring System

Camera and Edge Devices: Let C be the set of cameras
used to monitor the roads, and D be the set of edge devices.
A single edge device Dj ∈ D receives videos transmitted
from one or more cameras, denoted by the subset Tj ⊆ C.
These received videos are then processed by the edge devices



to identify any obstructions on the roads by running a ma-
chine learning model. If the required identification requires
additional cooperation from multiple edge devices, then the
output is sent to the cloud server.

Once the obstructions are identified after completing the
processing, warning messages are transmitted from the edge
devices to the vehicles. Since the videos of every camera must
be processed on some edge device, we have ∪|C|

j=1Tj = C, i.e.
each camera must be reachable to some edge. We assume that
the warning messages are sent through a separate reliable pro-
tocol such as URLLC [16], as it requires very low throughput
but provides high reliability.

Video Transmission: We note that videos are transmitted from
the set of cameras Tj to the edge device Dj ,∀Dj ∈ D.
This video transmission naturally happens over a wireless
network through discrete packets of data. Since this is a safety
critical application, the wireless network must provide some
reliability guarantees. Since wireless networks are inherently
lossy in nature, only stochastic guarantees are possible [17].
Such guarantees are usually characterized by ϵij , where ϵij is
the probability of losing each packet from camera Ci to edge
device Dj . We also assume that the wireless network channels
are independent in nature, i.e. transmissions in one channel
do not affect the value of ϵij for any other channels. This is
in general true for cases where data is sent using frequency-
division multiplexing, as in cellular networks.

We now model the total time to receive a video frame. As
in most video streaming systems, a single frame is said to be
received only when all its packets reach the edge device. Since
we assume that the wireless network channels are independent
of one another, the time tpij to transmit a packet is constant for
a given camera Ci ∈ C and edge device Dj ∈ D. If a packet
is lost, the camera has to retransmit it. We denote the total
time required to transmit the packet by T p

ij . Note that since
the wireless network is stochastic in nature, T p

ij is a random
variable. Running the ML model is possible only after every
packet is received, i.e. only after T p

ij time has elapsed after
video transmission.

Execution of ML Model: Once the video frames are received,
the edge device runs the ML model to identify any obstruc-
tions. We assume that running the machine learning model
takes time tcij depending on the parameters set in the camera,
and the compute capability of the edge device. Note that this
execution time tcij is a function of Tj , since executing other
models adds an overhead to the overall execution cycle.

B. Our Problem Formulation

Our broad goal is to assign the processing of each camera
Ci ∈ C to edge device Dj ∈ D. As mentioned above, the
wireless network is inherently stochastic in nature. Thus, we
allocate sufficient time so that the video reaches with a high
probability, defined by 1− δ, where we set δ = 0.05. We say
that a single segment is successfully delivered if a total of ks
packets are transmitted with probability 1− δ. If the random
variable Yij denotes the number of successful transmissions,

the probability of success is denoted by P (Yij = ks). Thus,
our constraint is given by:

P (Yij = ks) ≥ 1− δ (1)

Note that Yij is a random variable denoting the number of
attempts, where the total number of transmission attempts is
equal to zij . Thus, the total time allocated for transmission is
given by:

T p
ij = zijt

b
ij , (2)

where tbij denotes the actual time to transmit a packet.
Let xij be a decision variable such that xij = 1(0) if data

of camera Ci is (not) processed on edge device Dj . The total
time to process the data also includes the time to send alerts
tmj , which we assume is a constant. Then, the total time T s

i

to process the data of Ci is given by:

T s
i = xij

n∑
j=1

T p
ij + tcij + tmj . (3)

Note that since videos from every camera must execute on
some edge device, we have:

|D|∑
j=0

xij = 1, ∀Ci ∈ C. (4)

Our objective is to maximize the overall throughput, which
is the reciprocal of the total latency. Formally, we define this
objective as:

Minimize
m∑
i=1

T s
i . (5)

Constraints (1)–(4) and the objective function in Expression
(5) together formally define our problem as a case of stochastic
optimization. In the next section, we discuss our solution to
solve this problem.

III. OUR SOLUTION TO THE OPTIMIZATION PROBLEM

We solve the stochastic optimization problem defined in the
previous section in two steps. In the first step, we reduce the
stochastic form to a standard deterministic form. In the next
step, we make some additional observations, which enable us
to propose an approximate algorithm.

A. Reduction to Deterministic Form

We first look at the stochastic constraint. We note that the
random variable Yij only depends on two parameters – the
quality of channel ϵij and the number of packets that need
to be successfully transmitted, ks. Suppose we set a variable
zij as the number of transmission attempts. Note that each of
these transmission attempts are independent of each other, and
are successful with the probability 1 − ϵij . This gives us the
following observation:

Observation 1. The random variable zij follows the negative
binomial distribution with parameters ks and 1−ϵij , i.e. Zij ∼
NB(ks, 1− ϵij).



We note that as long as the variable zij ≥ Zij , the stochastic
constraint is satisfied. This event can be written as:

∞∑
k=0

P (zij ≥ ks + k) = 1− F (zij) = I1−ϵij (ks + 1, ks), (6)

where the function I1−ϵij represents the Cumulative Distribu-
tion Function (CDF) of the binomial distribution, also known
as regularized incomplete beta function [18].

B. Algorithm to Solve the Simplified Deterministic Problem

We first note that we now have a non-linear objective with
a set of linear partition constraints. This is a form of non-
linear bin packing problem [19], which is known to be NP-
Hard. Thus, as we show in the following discussion, we design
a greedy algorithm to solve this problem. Because of some
additional properties of the objective, we also show that this
greedy algorithm provides an approximate result.

Our solution depends on a couple of key observations about
the objective function. Intuitively, if a scheduler sends the
jobs (video streams) to a particular GPU, then increasing the
number of jobs should never reduce the total number of frames
processed per unit time. When the number of jobs is relatively
low (say 1 or 2), it is also possible to exploit more parallelism
leading to more number of frames processed per unit time. If
the number of jobs is higher, then the scheduler uses time-
sharing of jobs to ensure that the number of frames processed
per unit time does not fall. This gives us the following
observation:

Observation 2. The function 1/T s
i is monotone in nature, i.e.

adding any element Cj to Ti can never reduce the value of
1/T s

i . Formally,

1

T s
i (Ti ∪ Cj)

≥ 1

(Ti)
(7)

Our next observation is that although it is possible to increase
the number of frames processed per unit time, the amount of
improvement achieved gradually diminishes with an increase
in the number of jobs. This is also intuitive, as initially the
processor lies under-utilized, and so there is more scope of
jobs running in parallel. As the scope of running parallel
jobs reduces, the amount of improvement also reduces. At
some point, there is no more improvement possible, and at
this point, the GPU scheduler stops sending jobs for parallel
processing, but sends them in sequential batches. This property
of diminishing returns is called submodularity. We therefore
observe the following:

Observation 3. The function 1/T s
i is submodular in nature,

i.e. for Ti ⊆ Tk, and Cj /∈ Tk, we have:

1

(Ts
i ∪ Cj)

− 1

Ts
i

≥ 1

(Ts
k ∪ Cj)

− 1

Ts
k

(8)

It is well-known that functions which are monotone and sub-
modular have constant-factor approximations for the problem
of maximization with matroid constraints [13]. The key idea
behind the algorithm is as follows. Each camera device is

Algorithm 1 Algorithm to select the edge devices where the
videos should be sent for processing.
INPUT: Values T s

i ,∀i = 1, . . . , |C|,
OUTPUT: xij ,∀i = 1, . . . , |C|, j = 1, . . . , |D|

1: xij ← 0, i, j
2: F← ϕ
3: Compute Tij(Ci),∀i, j {Compute latency of network and

execution of each individual camera to all edge devices}
4: S← Tij ,∀i, j in ascending order
5: for i = 1 to |C| do
6: k ← argminj Tij

7: xik ← 1
8: return x

allocated to the edge device on which its execution would
run the fastest. This goes on, until each camera’s video is
scheduled. Note that this already takes into account the packet
losses due to the uncertainties in the wireless network. The
algorithm, formally defined in Algorithm 1, is therefore a
greedy one, where we assign each job to the edge device
that has the lowest latency one-by-one. From [13], we get
the following theorem:

Theorem 1. Algorithm 1 gives an approximation ratio of 0.5,
i.e. it gives an objective value not less than 0.5 times the
optimal.

We now analyze the time complexity of Algorithm 1. We
first note that for each camera, it computes the time taken
to execute the video stream on all possible reachable edge
devices. We denote the number of reachable devices of a
camera Cj by dj . The time taken to execute can be computed
in constant time. Thus, the total time taken to iterate over all
cameras is |C| ×

∑
j dj ≤ |C|3, which is equal to O(|C|3).

IV. EXPERIMENTAL EVALUATION

Evaluation Setup: We perform trace-driven simulation,
where we first find the traces by running YOLO-v5 [14] on
a Jetson Nano. We use the Python multithreading library
available by default to create multiple threads and process the
videos in parallel. We use the time command to record the
amount of time taken to run the entire program. We perform
the experiments on two different datasets. The first dataset,
called San Francisco, consists of cell towers in a part of San
Francisco city along with the road intersections. We show
the location of the roads and cellular towers in Figure 2.
The second dataset, called City Flow Grid, uses the tool City
Flow [20] to synthetically generate a grid of roads. We then
add random cell towers to be able to simulate the presence
of traffic.

Baseline Techniques: We compare our approach with two
baseline techniques. The first technique, referred to as
“Random”, sends the videos to any random edge device that
is reachable from the camera. The second technique, referred



Fig. 2: Configuration of San Francisco
grid

Fig. 3: Result on San Francisco dataset Fig. 4: Result on City Flow grid
dataset

to as “Minimum Process”, sends the videos to the closest
edge device, i.e. the one that has the minimum network
latency. We choose these techniques as baselines as they are
the most intuitive techniques.

Performance of our Algorithms: We note in Figure 3 and
Figure 4 that our technique has significantly lower latency
than the baseline approaches. For example, our approach has
a median latency of 0.35s, whereas the “Minimum Process”
has a latency of 0.61s (an improvement of 42.7%) on the
San Francisco dataset. Similarly, on the city flow grid dataset,
the latency values seen are equal to 0.78s and 0.97s (an
improvement of 19.6%) for our approach and “Minimum
Process” respectively. This shows that utilizing our approach
gives a major reduction in latency.

We further note that our approach also leads to a major
reduction in both the variance and the number of outliers. This
is because, the load balancing seen in our approach leads to
the presence of fewer edge devices with very high number of
jobs. Thus, apart from reducing the median latency, we also
see a major improvement in the reliability of processing. This
is very crucial in our application, as it is essential to send alert
messages with high reliability.

V. RELATED WORK

A number of recent works have focused on traffic surveillance.
We classify these works into two categories. The first category
of works focus on filtering the data sent to edge devices,
whereas other works focus on scheduling tasks on the edge.

Data Filtering: A number of works reduce the latency by
implementing light-weight filtering techniques on the camera
or a compute device connected to the camera. For example,
Vigil [21] implements a lightweight computer vision technique
and removes frames with no activity. Chameleon [22] picks the
optimal configuration of videos to send, such as resolution,
bitrate and frames per second to avoid sending redundant
data. The work [23] presents a method for dynamic bandwidth
allocation for edge-based real-time video analytics. DDS [24]
shows a technique of fetching only the required parts of the
video at high resolution, while allowing other parts at a lower
resolution. Reducto [25] utilizes a few lightweight computer

vision techniques such as presence of motion within an area
and along the edges to filter out unnecessary frames. Smart-
Filter [26] has the same objective, but with a simpler approach
of using a binary classifier. These studies complement our
approach of scheduling tasks on edge devices.

Scheduling of Computer Vision Workloads on Edge: The
requirement of real-time traffic surveillance and autonomous
vehicles has spawned a significant amount of research on
running computer vision workloads with low latency. For
example, VideoStorm [27] identifies the latency requirement
of the queries and schedules them accordingly. DeepRT [28]
schedules convolutional neural networks on GPU machines.
However, unlike our work, the focus of both VideoStorm
and DeepRT are on scheduling for server-quality GPUs.
VideoEdge [29] improves upon VideoStorm by incorporating
hierarchical edge devices. Llama [30] similarly tunes the
video analytics pipeline to optimize cost and reduce both
bandwidth and compute resource usages. However, the impact
of multitasking on edge GPUs is not considered by either
VideoStorm or VideoEdge. The work [31] uses a technique
of prioritizing areas of the video for processing that have
more stringent real-time constraints. These works complement
our approach of multi-tasking the running of computer vision
workloads on edge devices.

VI. CONCLUSION

In this work, we solve the problem of scheduling computer
vision based traffic surveillance on edge devices connected
to cell towers. Unlike prior works, we assume that the edge
devices contain GPUs as they are commercially available.
Since such edge GPUs do not have hardware virtualization
or support for inbuilt parallelism, multitasking is used to
run multiple jobs concurrently. We first observe that the
execution time follows a submodular pattern, and utilize this
observation to design a greedy approximation algorithm. We
then evaluate this algorithm with a few reasonable baselines
via both synthetic and real data and show that our algorithm
performs much better in practice.
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