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Motivation and Background 



The Need for 

Traffic Surveillance

There is a widespread need 

to reduce the prevalence of 

traffic accidents



The Need for Traffic Surveillance

Lower enforcement of speed limits Simultaneous utilization Unexpected obstructions

Traffic surveillance via cameras is seen as a solution



Working of Camera-based Traffic Surveillance

Requires huge amount of computation, as large number of cameras are deployed in modern cities

VideosVideos

• Requires running computer vision techniques
• In real-time only if specialized hardware (GPU’s/NPU’s) are available



Distributed deployment of edge computes nodes can 

handle such heavy computation

Distributed deployment of edge computes nodes can handle such heavy computation
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Problem Statement and 
Formal Model



Identifying the Edge Node for each 

Camera Video can be modelled as 

an assignment problem, where each 

camera is “assigned” to an edge 

device in a way that maximises the 

throughput while providing 

stochastic guarantees
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Formal Model

01 Tp
The network latency taken to send the 

video feeds (Stochastic)

02 Tc
GPU processing time – execution of the 

ML model.

Additionally, it includes Cloud processing 

time (if necessary)

03 Tm
The latency incurred when the edge 

device sends alerts



Challenges  How to identify the right edge node for each 
camera?

 How to consider the workload on each edge 
device while taking such a decision?

o No proper support for virtualization in edge GPUs

 Can we use this system for a safety-critical 
application?



Observations and 
Proposed Solution



Observations

The number of attempts needed to successfully transmit video packets to the edge 

device is a random variable that follows negative binomial distribution

• This provides lower limit for the number of attempts ensuring stochastic 

guarantees and simplified the stochastic problem to a deterministic form

• Additionally, this makes our objective a form of nonlinear bin packing problem, 

which is known to be NP Hard.



Observations

Overall

Throughput

Overall

Throughput

Number of cameras assigned to an 

edge device

Number of cameras assigned to an 

edge device

Monotone Submodular



Submodular and Monotone 

Objectives can be Maximized Using 

a Greedy Algorithm

This algorithm gives an approximation ratio of 0.5

Choose any unassigned camera 

Compute latency to every edge device

Choose the edge device with minimum 

latency sum and assign to that

Are there any unassigned cameras left?

Return the assigned pairs

YES

NO



Experimental Evaluation



Experimental Evaluation

Trace-driven 

simulation

We first find the 

traces by running 

YOLO-v5 on a 

Jetson Nano using a 

traffic surveillance 

dataset

Multithreading

</>

We use the Python 

multithreading 

library available by 

default to create 

multiple threads 

and process the

videos in parallel. 

Time stamp 

generation

We use the time 

command to record 

the amount of time 

taken to run the 

entire program.

Scheduling

We run our greedy 

assignment 

algorithm and 

compare the results 

with several 

baseline algorithms 

San Francisco 

Dataset

We generate the 

results for the first 

dataset, called San 

Francisco, consists 

of cell towers in a 

part of San 

Francisco city along 

with the road 

intersections

City Flow Grid

Dataset

We repeat the steps 

for the second 

dataset, called City 

Flow Grid, uses the 

tool City Flow to 

synthetically 

generate a grid of 

roads. 



Experimental Evaluation



Results and Conclusion



Results – San Francisco Dataset

01 Min Latency First
Our greedy algorithm

02 Random
Sends the videos to any random edge 

device that is reachable from the camera

03 Min Process First
Sends the videos to the closest edge 

device, i.e. the one that has the minimum 

network latency

Our approach has a median latency of 0.35s, whereas the “Minimum Process” has a latency of 

0.61s (an improvement of 42.7%) on the San Francisco dataset.



Results – City Flow Grid 

On the city flow grid dataset, the latency values seen are equal to 0.78s and 0.97s (an 

improvement of 19.6%) for our approach and “Minimum Process” respectively. 

01 Min Latency First
Our greedy algorithm

02 Random
Sends the videos to any random edge 

device that is reachable from the camera

03 Min Process First
Sends the videos to the closest edge 

device, i.e. the one that has the minimum 

network latency



Conclusion 1
We solve the problem of scheduling computer vision-based 

traffic surveillance on edge devices connected to cell towers

2
We observe that the execution time follows a monotone 

and submodular pattern and utilize this observation to 

design a greedy approximation algorithm.

3
We then evaluate this algorithm with a few reasonable 

baselines via both synthetic and real data and show that our 

algorithm performs much better in practice.
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