
Multitask Scheduling of Computer Vision

Workloads on Edge Graphical Processing Units

Arani Bhattacharya, Paritosh Shukla, Ansuman Banerjee, Saumya Jaipuria,

Nanjangud Narendra, Dhruv Sekhar Garg

Indraprastha Institute of Information
Technology Delhi

Indian Statistical Institute Ericsson Research

Motivation and Background

The Need for

Traffic Surveillance

There is a widespread need

to reduce the prevalence of

traffic accidents

The Need for Traffic Surveillance

Lower enforcement of speed limits Simultaneous utilization Unexpected obstructions

Traffic surveillance via cameras is seen as a solution

Working of Camera-based Traffic Surveillance

Requires huge amount of computation, as large number of cameras are deployed in modern cities

VideosVideos

• Requires running computer vision techniques
• In real-time only if specialized hardware (GPU’s/NPU’s) are available

Distributed deployment of edge computes nodes can

handle such heavy computation

Distributed deployment of edge computes nodes can handle such heavy computation

Edge

Node 1

Edge

Node n

...

Problem Statement and
Formal Model

Identifying the Edge Node for each

Camera Video can be modelled as

an assignment problem, where each

camera is “assigned” to an edge

device in a way that maximises the

throughput while providing

stochastic guarantees

C1

C2

Cn

D1

D2

Dm

.

.

.

.

.

.

C1

C2

C3

C4

D1

D2

Tp

Tc

Tm

Formal Model

01 Tp
The network latency taken to send the

video feeds (Stochastic)

02 Tc
GPU processing time – execution of the

ML model.

Additionally, it includes Cloud processing

time (if necessary)

03 Tm
The latency incurred when the edge

device sends alerts

Challenges How to identify the right edge node for each
camera?

 How to consider the workload on each edge
device while taking such a decision?

o No proper support for virtualization in edge GPUs

 Can we use this system for a safety-critical
application?

Observations and
Proposed Solution

Observations

The number of attempts needed to successfully transmit video packets to the edge

device is a random variable that follows negative binomial distribution

• This provides lower limit for the number of attempts ensuring stochastic

guarantees and simplified the stochastic problem to a deterministic form

• Additionally, this makes our objective a form of nonlinear bin packing problem,

which is known to be NP Hard.

Observations

Overall

Throughput

Overall

Throughput

Number of cameras assigned to an

edge device

Number of cameras assigned to an

edge device

Monotone Submodular

Submodular and Monotone

Objectives can be Maximized Using

a Greedy Algorithm

This algorithm gives an approximation ratio of 0.5

Choose any unassigned camera

Compute latency to every edge device

Choose the edge device with minimum

latency sum and assign to that

Are there any unassigned cameras left?

Return the assigned pairs

YES

NO

Experimental Evaluation

Experimental Evaluation

Trace-driven

simulation

We first find the

traces by running

YOLO-v5 on a

Jetson Nano using a

traffic surveillance

dataset

Multithreading

</>

We use the Python

multithreading

library available by

default to create

multiple threads

and process the

videos in parallel.

Time stamp

generation

We use the time

command to record

the amount of time

taken to run the

entire program.

Scheduling

We run our greedy

assignment

algorithm and

compare the results

with several

baseline algorithms

San Francisco

Dataset

We generate the

results for the first

dataset, called San

Francisco, consists

of cell towers in a

part of San

Francisco city along

with the road

intersections

City Flow Grid

Dataset

We repeat the steps

for the second

dataset, called City

Flow Grid, uses the

tool City Flow to

synthetically

generate a grid of

roads.

Experimental Evaluation

Results and Conclusion

Results – San Francisco Dataset

01 Min Latency First
Our greedy algorithm

02 Random
Sends the videos to any random edge

device that is reachable from the camera

03 Min Process First
Sends the videos to the closest edge

device, i.e. the one that has the minimum

network latency

Our approach has a median latency of 0.35s, whereas the “Minimum Process” has a latency of

0.61s (an improvement of 42.7%) on the San Francisco dataset.

Results – City Flow Grid

On the city flow grid dataset, the latency values seen are equal to 0.78s and 0.97s (an

improvement of 19.6%) for our approach and “Minimum Process” respectively.

01 Min Latency First
Our greedy algorithm

02 Random
Sends the videos to any random edge

device that is reachable from the camera

03 Min Process First
Sends the videos to the closest edge

device, i.e. the one that has the minimum

network latency

Conclusion 1
We solve the problem of scheduling computer vision-based

traffic surveillance on edge devices connected to cell towers

2
We observe that the execution time follows a monotone

and submodular pattern and utilize this observation to

design a greedy approximation algorithm.

3
We then evaluate this algorithm with a few reasonable

baselines via both synthetic and real data and show that our

algorithm performs much better in practice.

	Slide 1: Multitask Scheduling of Computer Vision Workloads on Edge Graphical Processing Units
	Slide 2: Motivation and Background
	Slide 3: The Need for Traffic Surveillance
	Slide 4: The Need for Traffic Surveillance
	Slide 5: Working of Camera-based Traffic Surveillance
	Slide 6: Distributed deployment of edge computes nodes can handle such heavy computation
	Slide 7: Problem Statement and Formal Model
	Slide 8: Identifying the Edge Node for each Camera Video can be modelled as an assignment problem, where each camera is “assigned” to an edge device in a way that maximises the throughput while providing stochastic guarantees
	Slide 9: Formal Model
	Slide 10: Challenges
	Slide 11: Observations and Proposed Solution
	Slide 12: Observations
	Slide 13: Observations
	Slide 14: Submodular and Monotone Objectives can be Maximized Using a Greedy Algorithm This algorithm gives an approximation ratio of 0.5
	Slide 15: Experimental Evaluation
	Slide 16: Experimental Evaluation
	Slide 17: Experimental Evaluation
	Slide 18: Results and Conclusion
	Slide 19: Results – San Francisco Dataset
	Slide 20: Results – City Flow Grid
	Slide 21: Conclusion

