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Abstract—The increase in cost and usage of RF spectrum
has made it increasingly necessary to monitor its usage and
protect it from unauthorized use. A number of prior studies
have designed algorithms to localize unauthorized transmitters
using crowdsourced sensors. To reduce the cost of crowdsourcing,
these studies select the most relevant sensors a priori to localize
such transmitters. In this work, we instead argue for online
selection to localize such transmitters. Online selection can lead
to more accurate localization using limited number of sensors,
as compared to selecting sensors a priori, albeit at the cost of
higher latency. To account for the trade-off between accuracy
and latency, we add a constraint on the number of selection
rounds. For the case where the number of rounds is equal to
the number of selected sensors, we propose a heuristic based
on Thompson Sampling and show using trace-driven simulation
that it provides 23% better accuracy compared to a number of
proposed baseline algorithms. For restricted number of rounds,
we show that using conventional parallel version of the modified
Thompson Sampling which selects equal number of sensors in
each round results in a substantial reduction in accuracy. To this
end, we propose a strategy of selecting decreasing number of
sensors in subsequent rounds of the modified Parallel Thompson
Sampling. Our evaluation shows that the proposed heuristic leads
to only 3% reduction in accuracy in contrast to 22% using
modified Parallel Thompson Sampling, when we select 50 sensors
in 20 rounds.

I. INTRODUCTION

As spectrum has become more expensive, understanding its
usage patterns to better regulate its usage is getting important.
A key technique used by most spectrum monitoring systems
is to deploy a distributed set of sensors by crowdsourcing [1]–
[7]. Analysis of the received signals from the distributed set
of sensors can be used to detect and/or localize the wireless
transmitters, including unauthorized ones. A number of such
studies have been recently proposed, showing the feasibility
of localizing unauthorized transmitters by deploying low-
cost spectrum sensors [8], [9]. A major problem with such
crowdsourced sensor deployment is that running them costs
energy. Spectrum sensors consume energy as well as incur
data cost as the sensor’s output is sent to a cloud center for
further processing [10], [11]. In some cases, users might also
have to be given incentives to keep the sensors running [5], [8].
Thus, running these sensors continuously can quickly add to
the overhead of monitoring spectrum. A technique for reducing
the overhead cost is needed to manage this running cost.

Recent studies propose to reduce the costs by selecting
the most relevant sensors [11], [12]. Such selection takes
into account the fact that the sensors are noisy in nature,
and then formulate sensor selection as a modified version of

the stochastic set cover problem [12]. These studies depend
on a hypothesis-driven Bayesian approach for localization,
which can be used without any assumption on propagation
models and is based on prior training of the joint probability
distributions of sensor observations for each hypothesis. A hy-
pothesis represents a potential location or configuration of the
transmitter. Thus, the problem of localizing an unauthorized
transmitter is reduced to finding the most likely hypothesis.
The objective is to maximize accuracy of either detection or
localization while adhering to a budget on the number of
sensors. While this technique can reduce the cost of spectrum
monitoring, it relies on static or a priori selection of sensors.

In contrast, in this paper, in addition to a budget on the
number of sensors, we argue for sequential or online selection
of sensors, which works by activating more number of relevant
sensors by observing the output of a limited number of sensors
that have been activated in previous rounds (illustrated in
Figure 1). We model this problem of online sensor selection as
a Constrained Partially Observable Markov Decision Problem
(CPOMDP). We first deal with the special case where the
number of rounds of selections is equal to the budget. This
special case is closely related to the stochastic multi-armed
bandit problem. In this case, we design a modified form of
Thompson Sampling [13] called Hypotheses-based Thompson
Sampling (HTS) and show that it provides higher accuracy
than the proposed baseline techniques.

While HTS gives a good solution, as we will explain in
§2, the latency in accurately localizing a transmitter scales
linearly with the number of rounds, and therefore selecting
a single sensor in each round incurs high latency. This la-
tency occurs due to the repeated network delays involved
in sequential selection of sensors. To circumvent this, we
impose an additional limit on the number of rounds over which
sensors can be selected. This can reduce the amount of network
delay by querying sensors in parallel. Standard techniques
such as Parallel Thompson Sampling (PTS) select an equal
number of sensors in each round concurrently to handle such
cases [14]. Instead, we show empirically, selecting different
number of sensors in each round can significantly improve the
accuracy of localization. We identify how such improvement in
localization accuracy can be obtained by designing a heuristic
called Asymmetric Modified Thompson Sampling (AMTS)
that assigns budgets to each round.

We implement both HTS and AMTS on problem instances
with large number of hypotheses. The runtimes of both HTS
and AMTS take around 24 ms of time per sensor on av-
erage on an instance with 4096 hypotheses. In contrast, an
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Fig. 1: An illustration of the online sensor selection system.
The numbers alongside the arrows denote the sequence in
which sensors are selected to localize a transmitter. Note that
some sensors are never selected at all.

offline algorithm takes around 18ms, whereas other baseline
techniques such as greedy take over 1s. We compare the
performance of HTS with other baseline techniques, and show
that it outperforms them by at least 22% higher accuracy for
the case of unconstrained number of rounds. On the other hand,
for the case of constrained number of rounds, AMTS outper-
forms hypotheses-based parallel thompson sampling (HPTS),
a straightforward extension of HTS, by up to 19% higher
accuracy.

We summarize our contributions as follows:

• We formulate the problem of online selection of sensors
for localizing a transmitter which turns out to be a
CPOMDP with exponentially large state space. Noting
that POMDP is PSPACE-hard, for which the existence of
an approximate algorithm is not guaranteed, we resort to
proposing heuristic policies.

• We first study the relaxed version of the problem, where
there is no restriction on the number of rounds. For this
case, we show an optimal policy selects a single sensor
in each round. We then design the heuristic HTS which
selects one sensor per round.

• For the general problem, we modify HTS to design the
baseline heuristic HPTS which selects equal number of
sensors per round. To obtain a better performance, we
propose AMTS which selects the number of sensors in
the decreasing order with rounds.

• We evaluate both HTS and AMTS using large-scale trace-
driven simulations, and show that they perform better in
practice than other proposed baseline techniques.

The rest of this paper is organized as follows. We present
the background and motivation of the problem, and formalize
notations in §II. We propose baseline policies and HTS for
the case of no restriction on the number of rounds in §III. We
present AMTS in §IV and evaluate proposed heuristics in §V.
We discuss related work in §VI and conclude in §VII.

II. NOTATION AND PROBLEM STATEMENT

Problem Setting: We have a fixed area that we need to monitor
for the presence/location of an transmission of interest. Such
transmission could be either due to unauthorized utilization of

RF spectrum [9], malfunctioning devices or malicious software
[8].1 Let S denote the set of spectrum sensors deployed
or available (if attached to mobile devices) in the area at
known locations. Each sensor s ∈ S can measure Received
Signal Strength Indicator (RSSI), and when selected, reports
RSSI to a central server, which estimates the location of the
transmitter. We consider that the sensor observations are noisy,
and denote the RSSI of sensor s by a random variable Xs and
an observation received from it by xs. Similarly, for a subset
of sensors T ⊆ S, we use XT to denote the random vector
for RSSI and xT to denote the observation vector from the
sensors.

We represent potential locations of the transmitter of inter-
est by hypotheses H0, H1, . . . ,Hm, where each hypothesis Hi

represents a certain configuration (location and transmit power)
of the transmitter of interest. We use the convention that the
hypothesis H0 corresponds to no transmitter of interest being
present in the area. Since RSSI at a sensor is determined by its
location relative to the transmitter of interest, the observations
are directly related to the true hypothesis. As in other studies
[12], we assume that the following inputs – obtained via a
priori training, data gathering and/or analysis – are available:

• Prior probabilities of the hypotheses, i.e. P0(Hi), for each
hypothesis Hi.

• Joint Probability Distribution (JPD) of sensors’ observa-
tions for each hypothesis. More formally, for the set of
sensors S and a given true hypothesis Hj , we assume
P (XS|Hj) is known. Note that this also gives us the
JPD’s of each subset T ⊆ S.

Given xS and Hi, we consider P (Hi|xS) has Gaussian distri-
bution N(pi,Σ), with mean vector pi and covariance vector
Σ. Prior works have shown that the Gaussian distribution
serves as a good approximation for such data [12]. Note
that the covariance matrix remains same across hypotheses,
since the correlation and noise are properties of the sensors.
The mean vector pi constitutes the mean RSSI values of all
the sensors when Hi is true. We use pi,T to denote subset
of pi corresponding to the mean RSSI values of sensors
from the set T ∈ S. In other words, XT ∼ N(pi,T,ΣT),
where ΣT is the covariance matrix for the sensors from the
set T. For convenience, we use XT ∼ NT (pi,Σ), where
NT (pi,Σ) = N(pi,T,ΣT).

Given the observations xT from a selected set of sensors
T ⊆ S, the posterior probability that hypothesis Hi is true is
obtained using Bayes’ rule:

P (Hi|xS) =
P (xS|Hi)P0(Hi)∑m
j=0 P (xS|Hi)P0(Hj)

(1)

We select the hypothesis using Maximum a Posteriori (MAP)
rule, which states that the hypothesis with the highest value
of the posterior probability is most likely to be true. Formally
given the observation vector xT, the most likely hypothesis H
is given by:

H = arg max
Hi

P (Hi|xS). (2)

1In this work, we assume that only a single transmission of interest is
present in the area. Note that it is possible in our setting to have multiple
other transmitters with known locations. Since separating out the power of
such known transmitters is relatively simple [8], for simplicity we deal with
a single transmitter of interest at an unknown location.



Algorithm 1 Algorithmic framework to select sensors
INPUT: Set of available sensors S, budget B, priors P (H)
OUTPUT: Sequence of sensors T1 . . .TK

1: k ← 1
2: while k ≤ K do
3: Select budget Bk for current stage, where Bk ≤ B
4: Select Tk, where Tk ⊆ S and |Tk| = Bk

5: Observe the values given by Tk to get the random vector
XTk

6: Update P (H|Rk) to P (H|XRk+1)
7: S← S \ Tk

8: B ← B −Bk

9: k ← k + 1
10: end while
11: return T1, . . . ,TK
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Fig. 2: Online selection of 50 sensors in varying number of
rounds using Hypothesis-based Parallel Thompson Sampling.
In each round, we account for the average processing time
of 24ms (observed from our experiments), and assume that
the network transmission delay is 20ms. We consider a fixed
transmission delay of 20 ms per round even if multiple sensors
are selected in a round. This is based on the fact that the data
size of a sensor observation is small and multiple observations
can be sent in parallel to the central server. We note that even
in 20 rounds, the belief of the true hypothesis is on average
less than HTS (50 rounds) by 18%. Note that having a single
round is equivalent to offline sensor selection.

We collectively refer to the set of probability distributions
P (Hi|xS) by the vector P (H|xS). Note that initially, when
no information is available, the prior probability P0(H) is a
constant vector.

Motivation: Our goal is to select the most relevant subset of
sensors T ⊆ S that maximizes the posterior probability of the
true hypothesis. Since selecting and observing each sensor’s
report costs energy and bandwidth [10], [11], we consider that
the total number of sensors that can be selected cannot exceed
a given budget B < |S|. The selection of B sensors can be
performed in K rounds, where K ∈ {1, . . . , B}. There is
an inherent trade-off between accuracy of localization (will
be defined in a short while) and latency in detecting the
transmission of interest which can be tuned by the choice of
K. Note that the latency arises due to the delays involved with
network transmission of the RSSI values and the processing
required at the central server for computing the posterior
probabilities. If all B sensors are selected in one round, i.e. if
K = 1, then we will have low latency, but also lower accuracy.
On the other hand, if we select B sensors in B rounds, i.e.
if K = B, then we will have high latency, but much higher
accuracy. The improvement in accuracy in this case results

from exploiting the observations from the sensors in previous
rounds for selecting the “best” sensors in the current round.
We show this tradeoff by running multiple trials of the sensor
selection problem in Figure 2 (details of the evaluation are
discussed in §V), using the proposed Hypothesis-based Parallel
Thomson Sampling (HPTS) algorithm. We note that when we
select 50 sensors in 50 rounds, HPTS is equivalent to HTS,
and we have an accuracy of 0.93. However, accuracy reduces
to 0.68 when we select 50 sensors in 10 rounds. On the other
hand, a reduction in the number of rounds, by increasing the
number of sensor selected in each round, results in lower
latency. For example, selecting 50 sensors in 50 rounds results
in a latency of 2 s, whereas selecting them in 10 rounds
results in 1.1 s latency. Such low-latency localization can
significantly improve spectrum allocation policies and lead to
better allocation of spectrum in cognitive radio networks [15].

In our problem formulation, we capture the above trade-
off for any given K < B. In kth round, where k ≤ K, let Tk

denote the subset of sensors selected, then

Tk ⊆ S \
k−1⋃
l=0

Tl, (3)

where T0 = φ, the empty set. We define Rk = ∪k−1
l=0 Tl.

Online Policy: An online policy is a series of actions
(π1, . . . , πK), where πk specifies the conditional distribution
for selecting a subset from S \Rπ

k based on the observation
vector xRπ

k
, where Rπ

k is the set of sensors chosen under
π until round k − 1. In the sequel, we suppress π in the
superscript when there is not ambiguity. A generic online
policy is described in Algorithm 1.

Let Hj be the true hypothesis, then the probability, denoted
by P jπk(xTk |xRk

), of observing the vector xTk under a policy
π in round k is determined by both P (xTk |Hj) and the
conditional probability Pπk(Tk ⊂ S \ Rk|xRk

) specified by
πk for selecting the set Tk ⊂ S \Rk. Formally,

P jπk(xTk |xRk
) = Pπk(Tk ⊂ S \Rk|xRk

)P (xTk |Hj). (4)

Using conditional probabilities, we obtain the probability of
observing xRk

under π, when Hj is the true hypothesis, as
follows:

P jπ(xT) =

K∏
k=1

P jπk(xTk |xRk
). (5)

The expected accuracy of a given policy π is measured
using the function g(π), given by

g(π) =

m∑
j=0

ExT∼P jπ(xT)[P (Hj |xT)]P0(Hj). (6)

To understand function g(π), consider that the prior prob-
abilities for the hypotheses follow uniform distribution, i.e.
P0(Hj = 1/(m + 1)), for all j. In this case, g(π) quantifies
the average over the expected posterior probabilities of the
hypothesis, where the expectation for each hypothesis involves
the JPD of that hypothesis. In other words, for a given true
hypothesis, we want the expected posterior probability of that
hypothesis to be maximized by a policy so that the MAP
algorithm outputs that hypothesis as the most likely hypothesis



on an average. However, since the true hypothesis is not known
we aim to maximize the summation of the expected posterior
probabilities of the hypotheses (sum of the individual posterior
probabilities weighted by the prior probabilities) which is given
by g(π)2.

Given B and K, we are interested in computing a π that
solves the following problem:

Maximize
π

g(π)

s.t. | ∪Kk=1 T
π
k | = B.

(7)

Note that the constraint in (7) embodies both constraints on the
number of rounds and the total number of sensors selected. The
number of rounds is constrained due to the amount of latency
that is allowed, whereas the number of sensors is constrained
by the available budget. Let g∗ denote the optimum expected
accuracy for (7).

Problem (7) can be formulated as a Constrained Partially
Observable Markov Decision Problem (CPOMDP) with a state
space that is exponentially large as it comprises of all possible
realizations xT for all T ⊂ S such that |T| ≤ B. Given
that solving a POMDP is PSPACE hard [16], the existence
of an approximation algorithm is not guaranteed. Therefore,
we resort to using a heuristics based on Thompson Sampling.
It is worth noting that, a special case of our problem, where
only one sensor needs to be selected, i.e. B = 1 (and allowing
selection of a sensor multiple times), is related to the Multi-
Armed Bandit (MAB) problem setting. However, extending
the existing performance guarantees of Thompson Sampling –
provided for MAB with respect to a regret function (cf. [17])–
for (7) is a challenging and open problem.

III. POLICY FOR UNCONSTRAINED NUMBER OF ROUNDS

We first relax the constraint on the number of rounds, i.e.
assume that K = B and explore different strategies to solve
the relaxed problem below.

Maximize
π

g(π)

s.t. | ∪Bk=1 T
π
l | = B.

(8)

Once we obtain a strategy for the relaxed problem, we then
build on the solution of the relaxed problem to design a
solution for the constrained problem.

A. Comparison of Sequential and Offine Policies

We first prove a few properties of our objective g(π) that
allows us to propose a solution of the relaxed problem. We
note that, any offline algorithm which chooses a set R ⊆ S –
such that |R| = B – in one shot cannot achieve an expected
accuracy greater than g∗. To see this, the solution R provided
by an offline algorithm is one feasible solution for (7). In
particular, for this case, we have T1 = R and Tk = {} for
all 2 ≤ k ≤ K, and the expected accuracy is given by

g({T1}) =

m∑
j=0

P (Hj |RK)P0(Hj).

2Note that other objective functions could also be potentially used, but we
have left their utilization for future work.

Since the offline algorithm does not use observations, the prior
probabilities are simply P0(Hj). The above argument asserts
that an optimal offline solution can be achieved by an online
algorithm. In the following proposition, we present a stronger
statement that an optimal online policy belongs to the set of
policies where a policy selects one sensor in each round, i.e.
|Tk| = 1, ∀1 ≤ k ≤ B. We formalize this notion in the
following theorem:

Proposition 1. For the relaxed problem (8), there exists an
optimal online policy that selects one sensor in each round,
i.e. |Tk| = 1, ∀1 ≤ k ≤ B.

Proof: Let π̂ be an optimal online policy that chooses
more than one sensor in a round and achieves g∗ = g(π̂). We
argue that, using π̂ one can construct an online policy π∗ which
selects one sensor per round and also achieves g∗. To see this,
the expected accuracies under two policies are equal if their
conditional probabilities (defined in (5)) are equal. Now, for
some hypothesis Hj and set T (with |T | = B), the conditional
probability under π̂ is given by

P jπ̂(xT) =

r∏
k=1

P jπ̂k(xTk |xRk
).

Since more than one sensor is selected in some round, say
k̂, we have r < B. To simplify the argument, we further
assume that π̂ selected one sensor in all rounds except in
round k̂, where it selected n sensors. We assign the same
conditional probabilities P jπ̂k(.) to the policy π∗ except in
rounds k̂ + 1 to k̂ + n − 1; in these rounds, π∗ chooses
(randomly) one sensor per round from the selected set in round
k̂ using conditional probability P jπ̂k̂(xTk̂

|xRk̂
). In other words,

π∗ will be selecting with probability one sensor in rounds
k̂ + 1 to k̂ + n − 1 from the same selected set (from round
k̂). Thus, by construction, P jπ∗(xT) will be equal to P jπ̂(xT).
This construction can be similarly done for other cases where
π̂ selects more than one sensor in multiple rounds. Since π∗
has same conditional probabilities as π̂, the result is proven.

B. Choices of Policies

Intuitively, selecting one sensor per round reveals relatively
more information thus leading to make better selection of the
sensors which is also asserted by Proposition 1. Therefore, we
resort to policies that select one sensor per round. Furthermore,
owing to the fact that a special case of our problem is related to
MAB problem, we borrow some of the strategies used to solve
an MAB problem, and discuss how they can be utilized for our
problem. In the following, we describe different policies.

Greedy Policy: As a baseline comparison, we propose the
following greedy policy. At round k, given the observation
vector xRk

, the policy takes action πk which chooses exactly
one sensor c, i.e.

Pπk(Tk = {c}|xRk
) = 1;Pπk(Tk = {d}|xRk

) = 0,∀ d ∈ S\{c},
(9)

where

c = arg max
s∈S\Rk

m∑
j=0

P (Hj |xRk
)[Exs∼Ns(pj ,Σ)[P (Hj |xRk∪xs)]],

(10)



The sensor c is the one that increases the expected probability
of the true hypothesis the most, where the expectation is with
respect to the current beliefs of the hypotheses.

Although using the greedy policy is intuitive, it has a major
drawback. The policy only looks at the mean improvement
in accuracy. Since we only have imperfect knowledge about
the position of the transmitters, there is also a variance of
improvement in the posterior probability of the true hypothesis.
The greedy policy ignores this variance and only chooses the
sensor with the highest mean improvement. It is possible that
with better knowledge of the transmitter location, the variance
of the gain might reduce, and the sensor’s actual gain turns
out to be lower than that of some other sensor. In other words,
the greedy algorithm relies excessively on the current beliefs
without accounting for the the variance.

ε-Greedy Policy: One method that can be used to circumvent
the disadvantage of greedy policy is to use a method called
ε-greedy. In ε-greedy, we choose the sensor given by greedy
policy with probability 1 − ε, and choose a sensor randomly
with probability ε. Note that we never choose any sensor
from Rk that has been selected in previous round. The action
πk under ε-greedy uses the following conditional distribution
given xRk

.

Pπk(Tk = {c}|xRk
) = 1− ε,

Pπk(Tk = {d}|xRk
) =

ε

|S \Rk ∪ {c}|
,∀d ∈ S \Rk ∪ {c},

(11)
where c is as defined in (10). Choosing a sensor randomly
allows us to explore alternative hypotheses, whereas choosing
a sensor greedily allows us to exploit our available information.
This policy can circumvent the disadvantage of choosing the
greedy sensor, and performs better in practice (experimentally
shown in §V). The key drawback of this technique is that the
value of ε needs to be carefully tuned, since a careful balance
between greedy and random policy is needed. Next, we present
the proposed HTS policy.

Hypotheses-based Thompson Sampling (HTS): The stan-
dard Thompson Sampling (cf. [17]) looks at the distribution of
rewards of each possible action. From each of these distribu-
tions, it draws a sample and selects the action corresponding
to the distribution from which the highest reward is drawn.
However, computing the distributions of the rewards for each
action is compute-intensive, since the distributions are corre-
lated with the distributions of the hypotheses.

To handle this problem, we modify Thompson Sampling
in the following way. Instead of computing the distribution
of rewards, we take a realization xRk

of the sensors Rk that
are selected before round k. This gives us the probabilities of
each hypothesis, as perceived by the policy at kth round, i.e.
P (Hj |xRk

),∀j = 0, . . . ,m. Since the transmitter might be at
any one of the m+ 1 locations, we randomly draw a sample
H from the categorical distribution [P (Hj |xRk

)], and compute
the improvement in posterior probability if H were true. We
pick the sensor c that increases the posterior probability of H
the most. Mathematically, this action is defined as:

c = arg max
s∈S\Rk

Exs∼N(pj ,Σ)[P (H|xRk ∪ xs)] (12)

This provides a natural exploration-exploitation tradeoff,
since the hypothesis with the highest prior probability is
selected more frequently, but the other less likely hypotheses
are not completely ignored. Moreover, this technique has a
much lower time complexity than all the other techniques, as
it does not require computation of the mean or variance across
all the hypotheses. We call this modified form of Thompson
Sampling as HTS. We have experimentally observed that HTS
provides the best result, when there is no constraint on the
number of rounds, compared to all the three policies, and thus
we utilize HTS for the rest of this paper.

Time Complexity: We note that the greedy and ε-greedy
techniques require a total of m computations of the expected
improvement in posterior probability for each sensor s. The
posterior probability in Bayes’ rule can be computed by
a single multiplication, and thus can be done in constant
time. Thus, the greedy and ε-greedy techniques take O(m|S|)
number of computations for a single round. Since there are
a total of K number of rounds, the time complexity of these
algorithms is equal to O(Km|S|).

On the other hand, HTS requires only O(|S|) computations
of the posterior probability in a single round, since it requires
computation of for a single Hi in a particular round. Since
it draws a single hypothesis H, and drawing from a cate-
gorical distribution takes constant time, a single round takes
O(|S|) computations. Repeating this across K rounds results
in O(K|S|) time complexity, which is much lower than greedy
and ε-greedy strategies.

Remark: An alternative approach to balance between ex-
ploration and exploitation is to take into account both mean
and variance of posterior probability, using a technique called
Upper Confidence Bound (UCB) [18]. The mean and variance
can be taken into account by computing a weighted sum, as
shown in the following equation:

c = arg max
s∈S

m∑
j=0

P (Hj |xRk
)[Exs∼Ns(pj ,Σ)[P (Hj |xRk∪xs))]

+ λσxs∼Ns(pj ,Σ)[P (Hj |xRk ∪ xs)]], (13)

where λ is a weighing parameter. We choose the sensor c that
has the highest value of the weighted sum.

However, computing the standard deviation of P (Hj |xRk
∪

xs) is challenging. This is because the standard deviation
depends on the joint probability distribution of the hypotheses.
It is difficult to estimate how these probabilities are correlated.
While it is possible to estimate these correlations by Monte
Carlo simulations, this is too time consuming to be practical.
Thus, we do not utilize this technique in this work.

IV. POLICY FOR CONSTRAINED NUMBER OF ROUNDS

If we have limited number of rounds, where K < B, then
we need to select more than one sensor in at least one round.
In this case, we rewrite the probability of realizing some xTk
under policy π as:

Pπk(Tk⊂S \Rk|xRk) (14)

=

B−|Rk|∑
Bk=1

Pπk(Bk)Pπk(Tk⊂S \Rk, |Tk|=Bk|xRk).



Algorithm 2 HPTS
INPUT: Set of available sensors S, budget B, priors P (H)
OUTPUT: Sequence of sensors T1 . . .TK

1: k ← 1
2: while k ≤ K do
3: Bk = bB/Kc . Allocating equal budgets (Step (1))
4: Tk = φ
5: while |Tk| ≤ Bk do
6: Select a hypothesis H using priors {P (Hj |xRk )}
7: c = argmaxs∈S\Rk\Tk Exs∼N(pj ,Σ)[P (H|xRk ∪xs)] .

Select sensors (Step (2))
8: Tk ← Tk ∪ {c}
9: end while

10: end while
return T1, . . . ,TK

Thus, an action πk can be seen as taking two distinct decisions.
The first is to choose the budget for the round Bk, and the
second is to choose Tk ⊆ S, where |Tk| = Bk.

Baseline Solution: The simplest feasible solution is to
modify Hypotheses-based Thompson Sampling (HTS) to select
sensors in batches, where the batch sizes remain equal across
rounds. We refer to this policy by HPTS and is described in
Algorithm 2. As we will see in §5, HPTS does not perform
well when the number of rounds is smaller. This is because
allocating equal number of sensors in Step 1 of Algorithms 2
is not optimal. In the rest of this section, we modify Step (1) to
design a better performing heuristic. Let π̄ be any policy that
selects different number of sensors in different rounds using
HTS. To be precise, we define π̄ same as in Algorithm 2,
except for Step (1). We now formulate the number of sensors
selected in each step as an optimization problem under π̄.

We consider static assignment of budgets, i.e. in round k,
the policy π̄ assigns a fixed Bk for the number of sensors to be
selected in round k. under π̄, given Bk for round k, the sensors
are selected according to Step (2) of Algorithm 2, and therefore
the choice that is left to be made is the sequence of budgets
{Bk} that maximizes the expected accuracy. To get a solution
to this optimization problem, we first make note of a trivial
property of expected accuracy: selecting additional sensors can
only increase the expected accuracy, and not reduce it. This
implies that the summation of the sequence {Bk} should be
equal to B number of sensors (and not any fewer) over the K
rounds.

We now make a second empirical observation. If {Bk} =
[B1, . . . , BK ], then selecting additional sensors in round r
gives a higher value of g than by selecting the same number
of additional sensors in round r′, where r < r′. Formally, we
denote g(π̄, {Bk}) as the policy where the sequence {Bk} is
used as the budget in each round, while the method of selecting
sensors in each round remains same. Then, we have:

g(π̄, [B1, . . . , Br + a, . . . BK ])

≥ g(π̄, [B1, . . . , Br′ + a, . . . BK ]), where r < r′. (15)

Intuitively, this is true because the marginal gain in g(·) re-
duces with an increase in the number of rounds. Thus, choosing
more sensors in the early rounds leads to a higher overall value
of g(π̄,B). This observation holds for any sub-sequence Ba

of any length. Applying this observation recursively, we note

Algorithm 3 Asymmetric Modified Thompson Sampling
(AMTS) to select sensors
INPUT: Set of available sensors S, budget B, priors P (H)
OUTPUT: Sequence of sensors T1 . . .TK

1: k ← 1
2: B1 ← B/2
3: BK ← 1
4: d← Br−B1

K
5: while k ≤ K do
6: Bk ← B1 − d× (k− 1)
7: Tk ← φ
8: while b ≤ Bk do
9: Pick H with probabilities
P (H0|xRk

), . . . P (Hm|xRk
)

10: Choose c with the maximum gain of H
11: Tk ← Tk ∪ c
12: b← b+ 1
13: end while
14: Observe values given by Tk to get the random vector

xTk
15: Update P (H|xRk

) to P (H|XRk+1
) using Bayes rule

16: k ← k + 1
17: end while
18: return T1, . . . ,TK

that the sequence of decreasing number of sensors provides
higher g(π̄, [B1, . . . , BK ]) and therefore, we choose:

B1 ≥ B2 ≥ . . . ≥ BK (16)

Heuristic to Select Number of Sensors Per Round: Ex-
pression (16) provides a set of solutions to our optimization
problem. Based on this expression, we use the following
assignment for the sequence. We set B1 = bB/2c, BK = 1,
and set the subsequence to an arithmetic progression (AP). The
common difference of the AP is equal to B−2

2(K−1) . This gives
us the following budget for each round:

Bk = bB/2c − (k − 1)
B − 2

2(K − 1)
(17)

Equation (17) defines a sequence to assign budgets to each
round. This sequence defines the heuristic, and is used in
place of step (1) of HPTS. Note that other sequences satisfying
the criteria are possible, but we empirically observe that this
heuristic performs the best (detailed comparisons are discussed
in §VB).

Asymmetric Modified Thompson Sampling (AMTS): We
call the algorithm obtained by modifying HPTS as Asymmetric
Modified Thompson Sampling (AMTS), because of the asym-
metric selection of sensors. We present the algorithm obtained
by combining the two modifications in Algorithm 3. In Lines
2-3 we set the budget corresponding to first round B1 to bB/2c
and the budget corresponding to last round BK to 1. We then
compute the common difference of the arithmetic progression.
For each round, we set the number of sensors according to
an arithmetic progression (Line 6). We start with an empty
subset Tk for round k (Line 7). Until the budget for the round
is exhausted, we pick some hypothesis H drawn from the
priors P (H0|xRk

), . . . , P (Hm|xRk
) (Line 9). It then selects
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Fig. 3: Performance of HT, Greedy and ε-Greedy methods
when the number of rounds is unlimited.
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Fig. 4: Performance of HTS, Greedy and ε-Greedy in terms of
execution time with a budget of 50 sensors.

c using the formula shown in Equation (12), and adds it to Tk

(Lines 10-11). In this way, we keep selecting sensors for the
round until the budget gets exhausted. Once the budget Bk gets
exhausted, we observe the values or the output of the selected
sensors Tk, and compute the posterior probabilities. We repeat
this process for each round, and finally return the sequence of
sensors selected in each round. Thus, AMTS selects sensors
in batches, depending on the number of available rounds.

V. EVALUATION

Setting: We generate large-scale datasets using Longley-Rice
propagation model using the tool SPLAT! [19]. SPLAT! is a
widely used tool that uses landscape data from satellites as
input to model the propagation of RF propagation of signals
from cell phone towers. We take an area of 80× 80 m2, and
divide it into 6400 grid cells, each of area 1m2. We ensure
that the area has landscape features like hills to ensure that
there are cases with non-line-of-sight data. We then simulate
the presence of a transmitter in each of the individual grid
cell, where the transmitter is at a height of 30m in each case.
The transmitters transmit signals at different powers randomly
selected in the range 25 to 35 dBm. We place a total of
500 sensors within this area, with the sensors all distributed
randomly with uniform distribution.

We obtain the means of the JPD’s by using the power
values reported by SPLAT!. To obtain the standard deviations,
we first obtain the datasets that are publicly available [20] and
obtain the standard deviation in that dataset.

We implement each of the policies/algorithms in python
3.7. Since the algorithms are compute-intensive, we make
extensive use of numpy and cupy to vectorize the compute-
intensive operations. We run the simulations on an Intel Core

i9-9900K CPU and nVidia Titan GPU. As discussed below, our
algorithms run in the order of seconds in this environment.

A. Unconstrained Number of Rounds

We first evaluate the performance of HTS when the number
of rounds is not constrained. In Section 3, we discussed a total
of four common techniques – greedy, UCB, ε-greedy and HTS.
We evaluate the performance of all these techniques, except
UCB. We exclude UCB because we observed that its execution
time is too slow for it to be feasible in practice, as running a
single instance of the problem takes around 30 minutes. We
run experiments with the budgeted number of sensors ranging
from 1 to 100, and observe the value of g(π) in each case. We
simulate this for a total of 1000 instances, and then report the
mean value.

Accuracy: Figure 3 shows the performance of these tech-
niques. For the ε-greedy approach, we start with an ε value of
0.1 and then gradually reduces it linearly in steps of 0.01 with
an increase in the number of selected sensors. We empirically
observe that this tuning of ε provides the best performance of ε-
greedy. We observe that HTS outperforms greedy by 22%, and
ε-greedy by 20% for a budget of 60. The key reason why HTS
does well is that it naturally balances the trade-off between
exploration and exploitation. While ε-greedy performs better
than greedy, this improvement is only up to 5%. This validates
our choice of using HTS for online sensor selection.

Execution Time: We also look at the execution times of
these approaches (Figure 4). Since the sensor selection is
performed online, having a low execution time is critical. We
observe that TS takes the least amount of time among the
online approaches. HTS takes only around 1.52s to execute,
compared to 105s for greedy and 100s for ε-greedy. Thus, HTS
is 69 and 66 times faster than greedy and ε-greedy approaches.
HTS is much faster because, as discussed in §3, it has a lower
time complexity than the other techniques by a factor of m or
the number of hypotheses. Since m is typically a large value
(equal to 6400 in our experiment), this leads to a substantial
reduction in execution time. We also note that HTS is only
around 1.7 times slower than the pure offline selection. This
shows that utilizing HTS is practical in a realistic scenario.

B. Constrained Number of Rounds

Comparison of AMTS and HPTS: We now evaluate the per-
formance of the algorithms with constrained number of rounds.
We compare the performance of our algorithm AMTS, with
the baseline hypotheses-based Parallel Thompson Thompson
(HPTS) as well as additional possible sequences. The other
sequences include “Increasing”, where the reverse sequence
of AMTS is used, and “Decreasing-Extreme”, where the max-
imum number of sensors possible are selected in the first round
itself. Figure 5 compares the accuracy of these techniques for
budgets of 30, 50 and 70. We also show the performance for 5,
10 and 20 rounds. We note that AMTS outperforms HPTS by
0.19, 0.10 and 0.09 for budgets of 30, 50 and 70 respectively,
when the number of rounds is equal to 20. We further observe
that the accuracy of AMTS keeps increasing with an increase
in the number of rounds, with the improvement of AMTS equal
to 0.07 between rounds 20 and 5 for a budget of 30. While
AMTS performs slightly worse than “Decreasing-Extreme” in
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and “Decreasing-Extreme”, where the maximum number of sensors are selected in the first round.

a couple of cases and HPTS in a single case, these differences
are less than 0.02, and thus are well within the margin of
error. Thus, AMTS improves performance substantially when
the budget is relatively low, whereas the number of rounds is
equal to 20.

VI. RELATED WORK

Crowdsourced Transmitter Localization: A number of stud-
ies have looked into the problem of crowdsourced trans-
mitter localization and/or detection [1], [2], [8], [11], [21].
For example, [2] and [1] use cheap RTL-SDR sensors to
localize transmitters, and benchmarks different algorithms for
such localization. The work [21] proposes using UAV’s or
unmanned cars as spectrum policy enforcement agents and
map this problem to a form of traveling salesman problem
to reduce the amount of traveling involved. DeepMTL [7]
and [6] utilize deep learning techniques to localize multiple
transmitters. Like our work, SPLOT [8], [11] and [12] also
focus on selecting the most relevant sensors. However, they
all select the sensors offline to reduce latency of localization.
In contrast, we map the problem of online selection that high-
lights the relationship between stochastic multi-armed bandit
and online selection. SpecWatch [22] performs online selection
of the channel band to be monitored, while assuming that the
sensors are selected a priori. The work [23] also proposes
online localization and shares the same objective of using the
budgeted number of sensors, but utilizes the complementary
approach of localization via Gaussian Process Regression. To
the best of our knowledge, this is the first work that modifies
Thompson Sampling to localize transmitters.

Online Feature Selection: A number of works in the machine
learning literature study the problem of online feature selection
[24]–[26]. For example, [25] propose using mutual information
as a metric to select sensors to learn a Gaussian process.
However, they also show that in case of noisy sensors, there
are no performance guarantees. [26] show that performance
guarantees using a greedy algorithm are possible only if the
noise is limited. A number of other works also consider such
selection as a case of ”Value of Information” maximization
problem [27]. We do not utilize these techniques because our
objective function does not satisfy the criteria to get such
performance guarantees owing to noisy sensors. We show in
our experiments that our technique significantly outperforms
the greedy algorithm.

Stochastic Multi-armed Bandits: There has been a lot of
interest recently in stochastic multi-armed bandits (MAB) [28].

A number of techniques to solve MAB problems have been
explored, including epsilon-greedy [28], Upper Confidence
Bound [29] and Thompson Sampling. We have primarily
focused on Thompson Sampling because of its low complexity
and high accuracy. Thompson Sampling was first proposed
in 1933 [13] and has recently drawn attention because of
its good performance [30]. A recent study [14] proposed
using Parallel Thompson Sampling (PTS) to speed up standard
Thompson Sampling. Our algorithm modifies it to build a
more accurate online sensor selection algorithm. A few recent
works also deal with constrained bandits [31]. However, these
studies currently do not utilize Thompson Sampling, instead
preferring to use linear programming-based approaches, which
are slower in practice. Finally, [32] deals with budgeted
Thompson Sampling, but does not deal with concurrency. Our
algorithm Asymmetric Modified Thompson Sampling (AMTS)
uses these ideas to design a more accurate online sensor
selection approach.

VII. CONCLUSION

We have formulated an online sensor selection for transmit-
ter localization using a hypothesis-driven approach. In addition
to limiting the number of sensors B that can be selected, we
have considered a limit on the number of rounds K for select-
ing and acquiring the sensor observations to strike a trade-off
between the expected accuracy and latency in detecting the
presence of the transmitter. For the relaxed problem where
K = B, the proposed HTS algorithm selects one sensor (per
round), which increases the expected accuracy of a hypothesis
that is chosen using the prior probability distribution at the
start of the round. For the case where the number of rounds
K < B, we have proposed the heuristic AMTS which
chooses multiple sensors (per round) with decreasing number
of sensors per round. We validated our approach using trace-
driven simulation, and showed that both HTS outperforms the
baseline greedy and ε-greedy techniques by 22% and 20%
respectively. For limited rounds, AMTS also outperforms our
baseline HPTS by up to 20%. Moreover, both HTS and AMTS
run in the order of seconds, making it feasible to do online
selection.
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