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Abstract. Mobile Cloud Computing (MCC) frameworks implement mechanisms
for selecting tasks in an application and offloading those tasks for execution on a
cloud server. Task partitioning and task offloading aim to optimize performance
objectives, like lower energy usage on mobile devices, faster application execu-
tion, while operating even in unpredictable environments. Offloading decisions
are influenced by several parameters, like varying degrees of application paral-
lelism, variable network conditions, trade-off between energy saved and time to
completion of an application, and even user-defined objectives. In order to inves-
tigate the impact of these variable parameters on offloading decision, we present
a detailed model of the offloading problem incorporating these parameters. Im-
plementations of offloading mechanisms in MCC frameworks often rely on only
a few of the parameters to reduce system complexity. Using simulation, we ana-
lyze influence of the variable parameters on the offloading decision problem, and
highlight the complex interactions among the parameters.

Keywords: Mobile Cloud, Simulation, Modeling, Resource Optimization, Inte-
ger Linear Programming, Application Offloading, Graph Partitioning

1 Introduction

Mobile Cloud Computing (MCC) presents the opportunity to utilize unlimited resources
of cloud based infrastructure to augment resource constrained mobile devices. Proto-
type implementations of MCC frameworks have demonstrated that offloading compu-
tation can significantly reduce energy consumed to execute an application on a mobile
device [1, 2]. The key principle in MCC is to profile the energy footprint of individual
tasks in an application, and then utilize the information to offload execution of energy
hungry tasks to a cloud server to optimize energy usage on the mobile device. Task
partitioning and task offloading decisions are constrained by several factors, like com-
munication energy to offload the program states to cloud, network latency affecting
application completion time, and tasks, involving sensors, which must be executed na-
tively on the device. There are implementations that trade-off among these constraints
[3, 4]. However, practical operating environment of a MCC framework is more com-
plex due to several variable parameters, like network conditions, runtime workload, and
hardware characteristics.



The key challenge in designing practical MCC frameworks is to adapt to changes
in the operating environment. Variations in network conditions is one of the hardest
to cope with. It has been shown that dynamically adapting offloading decision based
on varying network bandwidth can improve performance [5, 6]. Similarly, Zhang et
al. showed the benefits of dynamically adapting data transmission rate to the cloud
in presence of stochastic wireless channel errors [7]. Application workload is another
source of variability to address while making offloading decisions. Exploiting dynamic
execution patterns of an application can lead to better offloading decisions [8]. Barbera
et al. implemented a tightly coupled device-cloud operating system that can overcome
variations at different levels [9]. Even the diversity in smartphone hardware can lead to
different offloading choices. For example, Lin et al. proposed the use of coprocessors,
like GPUs in handheld devices, to arrive at better offloading decisions than those shown
before [10]. The recurring theme in these works is that dynamic adaptation plays a
crucial role in making better offloading decisions in MCC systems.

We observe that although system implementations have been effective in delivering
performance gains, there is still a lack of in depth understanding of how individual
parameters impact performance, as well as, influence each other. Given the complexity
of these parameters, it is difficult to design controlled experiments in real environments.
Therefore, we propose a simulation model that incorporates the parameters in a single
model. This enables us to understand the interactions among different parameters that
affect the offloading decision problem.

We summarize our contributions in this paper as follows:

– We propose a formal model that incorporates different parameters that influence
the task partitioning and task offloading in MCC systems.

– We analyze how various parameters used in offloading decision affect the perfor-
mance of MCC systems. We report how optimization objectives, viz. energy con-
sumed on a mobile device, and application execution time, are affected by various
parameters, like application and cloud server features, degree of parallelism ex-
ploited and network characteristics.

The rest of this paper is organized as follows. Section 2 discusses the working of
an MCC offloading system. Section 3 explains the formulation. Section 4 shows the
experiments and the corresponding inferences drawn. Section 5 concludes this paper.

2 System Model

In this section, we present the architecture of a mobile cloud computing (MCC) sys-
tem. The models of different components of the system, such as mobile application,
communication network and the cloud system, are based on this architecture.

Fig. 1 shows the architecture of an MCC system. An offloading decision engine
partitions an application into two parts: one that executes on the mobile device, while
the other is migrated to the cloud servers for execution. Communication between the
mobile device and the cloud server uses the wireless interface on the mobile, which can
be 3G, LTE or Wi-Fi enabled. We assume that the application source code resides on



Fig. 1: Execution of Mobile Application using cloud server. One component of the ap-
plication is executed on the mobile device, while the other component is executed on the
cloud server. The offloading decision engine is typically executed on a separate server.

both the mobile device and the cloud server. Thus during execution only the program
states need to be migrated to the cloud.

We assume that mobile applications have multiple threads. We model concurrent
mobile applications using its call graph, which is a Directed Acyclic Graph (DAG)
representing task invocations within the application. Each vertex in the DAG represents
a task of the application, and each edge represents a dependency between two tasks.
The set of tasks in the application is denoted by the vertex set V, while the set of
dependencies is represented by the edge set E. Executing a task vi locally on the mobile
device incurs eloci energy and tloci time cost respectively. The application needs to be
completed within a time deadline D and an energy budget B. Some tasks, called native
tasks, depend on mobile sensors and must always be executed on the mobile device.

Fig. 2 shows an application model where the application has three threads of exe-
cution. Two new threads are spawned at v2. The threads join at v7 and v9 respectively.
Moreover, three of the methods, v1, v4 and v9 are native, i.e. they must be executed on
the mobile device. This DAG model is general in nature, and can be used to model any
mobile application.

The second component of an MCC offloading framework is the wireless network.
Executing two tasks having dependency between them on different platforms (mobile
or cloud) incurs a migration cost. Thus, if there exists an edge (vi, vj) to denote a de-
pendency between tasks ti and tj , then this incurs a migration cost. This is represented



Fig. 2: A general Directed Acyclic Graph (DAG) representing a mobile application.
Methods shaded gray are native, i.e. they must be executed on the mobile device.

V Vertex set of the call graph
E Edge set of the call graph
vi A method in the call graph

(vi, vj) A call invocation of the task vj by vi
tloci Local time execution cost of each method vi
eloci Local energy execution cost of each method vi
emig
ij Energy migration cost of the call invocation (vi, vj)

tmig
ij Time migration cost of the call invocation (vi, vj)

F Speedup of the cloud compared to the mobile device
D Time deadline given to application
B Energy budget given to application

Table 1: Symbols introduced in Section 2

by emig
ij and tmig

ij to represent migration energy and time respectively. We assume that
these costs do not vary once execution of an application begins. This is a standard as-
sumption used by all MCC offloading frameworks.

The third component of an MCC offloading framework is the cloud system. The
cloud system has higher computing resources than the mobile device. We represent the
ratio of the computing speed of the cloud to that of the mobile processor by F . Thus,
the time cost of executing a task ti on the cloud system is equal to tloci /F . Moreover,
execution on the cloud system incurs no computation energy cost on the mobile device.

3 Task Partitioning and Offloading: Formal Model

In this section, we formulate the offloading decision problem of a Mobile Cloud Com-
puting (MCC) system for a mobile application. The task partitioning and offloading
problem is NP-Complete for general concurrent applications [12]. Thus, we develop an
integer-linear programming (ILP) problem to model this problem.

3.1 Problem Formulation

Let xi be a binary decision variable such that:

xi =

{
1 if task vi is executed locally
0 if task vi is executed on the cloud



xi Decision variable denoting execution location of vi
sti Start time of executing the task vi
li Time taken to execute the task vi
σij Decision variable denoting execution precedence
smij Start time of migration of the edge (vi, vj)
λ Scaling factor used in optimization function

Table 2: Variables introduced in Section 3

Since there is a single decision variable to denote the location of execution of each
method, every method in the call graph has to be executed (by choosing either xi = 0
or xi = 1).

Let the start time and execution duration of a task vi be sti and li respectively. Then,
the completion time of a task is sti + li. We know that all tasks must be completed by
the given deadline D. The time required for completing a task locally and on the cloud
are tloci and tloci /F respectively.

Let σij be a binary variable for all pair of tasks ti and tj such that:

σij =

{
1 if vi finishes execution before starting vj
0 otherwise

The variable σij allows us to schedule the execution of tasks that have no dependencies
between them in parallel.

Precedence constraint: We know that for all edges (vi, vj) in the graph, the task
vj has to be executed only after vi has completed. This precedence constraint is repre-
sented using the variable σij .

∀(vi, vj) ∈ E, σij = 1 (1)

The nature of the above precedence constraint is such that if task vi is executed
after task vj , then the opposite cannot be true. To enforce this property of precedence,
we ensure that if for any such pair of tasks, if σij = 1, then σji = 0.

∀vi, vj ∈ V, σij + σji ≤ 1 (2)

Concurrency constraint: First, we consider the case of a single processor on the
mobile device. Thus, if the tasks vi and vj are scheduled by the offloading framework
concurrently, i.e. σij = σji = 0, then at least one of the tasks must be executed on the
cloud. In other words if σij = σji = 0, then at least one among xi and xj must be equal
to 0. On the other hand, if both the tasks are executed locally, i.e. xi = xj = 1, then the
two tasks must have some order between them.

∀vi, vj ∈ V, xi + xj ≤ 1 + σij + σji (3)

We have the following possible cases:

1. Tasks vi and vj have some order between them, i.e. σij + σji = 1. Then, both the
tasks vi and vj may be executed either on the cloud or on the mobile device, and so
xi and xj remain unconstrained.



2. Tasks vi and vj do not have any order between them, i.e. they may or may not be
executed concurrently. If they are scheduled for concurrent execution, then at least
one among vi and vj must be executed on the cloud. In this case it is possible to
have xi = 0, xj = 0; xi = 0, xj = 1 or xi = 1, xj = 0. On the other hand, they
may also be scheduled so that execution of one method commences only after the
other finishes. In this case, the two methods may be executed at any point, i.e. both
xi and xj can have any value, since σij + σji is set to 1.

Extending this for n processors, we note that if (n + 1) threads are scheduled for
parallel execution, then at least one of them must be scheduled for execution on the
cloud. To do so, we now pick all combinations of (n+ 1) methods from the DAG. The
constraint can then be mathematically represented as:

∀vi, ..., vin+1 ∈ Vn+1,

n+1∑
k=1

xik ≤ 1 +
∑

(k,l)∈V2

σikil (4)

For each combination of (n + 1) methods, we ensure that if the number of tasks
being executed concurrently are higher than the number of processors on the mobile
device, then one or more of the tasks are scheduled for execution on the cloud. In that
case, LHS of Equation 4 has a value equal to n+1. Thus, the amount of concurrency too
has to reduce suitably so that the RHS increases in value. It is possible that executing
the tasks sequentially gives a lower objective value. Then, the LHS of Equation 4 has a
lower value.

We note that Equation 3 is a special case of Equation 4 corresponding to the case of
a single mobile processor. This is because, by setting n = 1 in Equation 4, we get:

∀vi1 , vi2 ∈ V× V, xi1 + xi2 ≤ 1 + σi1i2 + σi2i1 (5)

Setting i1 as i and i2 as j in Equation 5, we get Equation 3.
Execution Time constraint: Executing a method vi takes tloci time if done locally

on the mobile device, and tloci /F on the cloud. Before commencing execution, output
from all tasks vj that immediately precede vi, i.e. all possible vj such that (j, i) ∈ E,
have to be migrated to the location where vi is executed. The time required for this
migration must be considered along with the actual execution time. Migrating a task
requires the time needed to bring all the data from its preceding tasks.

∀vi ∈ V, li = xit
loc
i + (1− xi)tloci /F +

∑
(j,i)∈E

|xi − xj |tmig
ij , (6)

where tmig
ij refers to the migration time between the edges (vi, vj). The migration time

depends only on the data transfer dij , which is fixed for a particular edge. Since this
formulation assumes constant bandwidth, the time cost of migration tmig

ij is a constant.
The first two terms of the above constraint refers to the computation time locally and

on the cloud respectively, whereas the last term refers to the time required to migrate
the data dependency. If v2 is executed on the cloud, then x2 = 1 and the constraint
gives computation time as tloc2 /F . Depending on where v1 was executed, migration



cost might also have to be added to the computation cost of v2 to get the total execution
length of v2.

Deadline constraint: The final task v|V| has to complete execution before the given
deadline.

st|V| + l|V| ≤ D (7)

Energy budget constraint: The total energy consumption must not exceed the
energy budget. ∑

i∈V

xie
loc
i +

∑
(i,j)∈E

|xi − xj |emig
ij ≤ B (8)

Start time constraint: If method vj is scheduled to execute after vi (denoted by
σij), then the start time vj is not less than the ending time of task vi. Otherwise, we
do not have any constraint on the start time of vj , stj . In that case, we reduce the right
hand side of the constraint to a negative value to make stj unconstrained. To do so, we
use the largest time value in this formulation, which is the time deadline D.

∀vi, vj ∈ V, stj ≥ sti + li + (σij − 1)D (9)

Finally, there can be two different objectives: minimizing energy consumption and
minimizing execution time. The first objective, minimizing energy consumption, is:

Min
∑
i∈V

xie
loc
i +

∑
(i,j)∈E

|xi − xj |emig
ij (10)

This optimization function includes both migration energy and cost of local execution.
Similarly, the second objective, minimizing execution time can be written as:

Min st|V| + l|V| (11)

Since the ending time already includes the time cost of migration, we do not need to
explicitly add this to the optimization function of time.

Any one objective among energy or time can be chosen by an offloading framework
for optimization. However, it is also possible to optimize both of them together by
applying a suitable scaling factor (λ). The optimization function is then represented as:

Min λ(st|V| + l|V|) + (1− λ)(
∑
i∈V

xie
loc
i +

∑
(i,j)∈E

|xi − xj |emig
ij ) (12)

3.2 Limitations of the Formulation

Our formulation has a few limitations. Firstly, it assumes that network transmissions
succeed eventually. Wireless networks are inherently lossy and have a probability of
failure. We assume that retransmissions at lower layers of network stack hide much of
the transmission failures. Hence, considering the probability of failure in this formula-
tion is not expected to affect the results of our study.

Secondly, we assume that the energy and time costs of each task is fixed on the
mobile device. Thus, we ignore the effect of user input on the energy and time costs.
Since offloading is mostly used for computation-intensive tasks, user input does not
significantly affect execution costs.



4 Simulation Results

In this section, we study the sensitivity of the offloading solutions to various parameters
through separate simulation experiments. These parameters include both changes in the
properties of the applications, and of the overall offloading system. These experiments
demonstrate the impact of parameters on the performance of the offloading system.

4.1 Simulation Settings

The simulation parameters and their values are shown in Table 3. Unless explicitly
mentioned, these are the parameter values used for the experiments. The execution time
for each method was chosen randomly with uniform distribution between 100 ms and
500 ms. The limits were chosen based on the range of values obtained from the trace
log files of real Android applications [13]. Each experiment was repeated 20 times to
ensure that any bias in the values of a particular instance do not affect the overall result.

The energy consumption value for each method was chosen randomly between 1 J
and 20 J following uniform distribution. Most offloading frameworks utilize an energy
model to determine at run-time the energy gain. If the system is heterogeneous and
utilizes frequency scaling, then there is no direct correlation between execution time
and energy consumption [14, 15]. Thus, taking random values of both execution time
and energy consumption for each method is a reasonable assumption.

Parameter Range of Values
Local execution time of each method (tloci ) 100-500 ms

Local energy consumption of each method (eloci ) 1-20 J [14, 15]
Data transferred for migration (dij) 50 - 500 KB [4]

Energy for migration (emig
ij ) 0.007dij + 0.005tmig

ij + 5.9 J [16]
Bandwidth 1 Mbps [4]

Round-trip Time or propagation delay (RTT) 70 ms [4]
Speed of cloud compared to mobile device (F ) 10 [1]

Number of threads spawned from a particular method 0-2
Number of methods in each graph 20

Proportion of native methods in application call graph 30%
Number of experiments performed on each graph 20

Number of processors in mobile device 1
Table 3: Parameters used in simulation. These parameter values are used for all experi-
ments, unless otherwise stated.

The size of data to be migrated during offloading is also required. To obtain the size
of heap objects that have to be migrated, we refer to the work by Yang et al. [4]. The
data transfer size varies between 50 KB and 500 KB.

The energy consumption of the network interface is calculated based on the energy
model described by Balasubramanian et al. for a Wi-Fi interface [17]. In this energy
model, the energy cost of data transfer is obtained as 0.007× dij + 0.005tmig

ij + 5.9J ,
where dij is the number of kilobytes transferred and tmig

ij is the total time required
for migration. This cost includes the energy required to activate the wireless card, and
connecting the device to the access point.



4.2 Performance Evaluation

We study the gains achieved by the use of MCC systems in terms of either energy
consumption or execution time. We measure the gain in energy consumption by taking
the ratio of energy consumption utilizing mobile cloud to that of energy consumption
using local execution of the application:

Gain in energy consumption =
Energy consumption using cloud system

Energy consumption without using cloud system

Similarly, the gain in execution time is given by:

Gain in execution time =
Execution time using cloud system

Execution time without using cloud system

We solve the model derived for concurrent applications in Section 3 in these ex-
periments. Based on the performance results, we can infer that the formulation used to
model MCC systems works correctly.

Fig. 3: Comparison of gain observed in
execution time for ten different random
graphs with increase in scaling factor
(λ) along with the observed deviation
from the mean.

Fig. 4: Comparison of gain observed in
energy consumption for ten different
random graphs with increase in scaling
factor (λ) along with the observed de-
viation from the mean.

The experiments are performed multiple times on different inputs to avoid any sta-
tistical error. We generate 10 graphs where the connectivity of the nodes, representing
the function methods, is chosen randomly. Each graph has 20 nodes. The values of input
parameters for each node, such energy consumed, and data transfer size for migration,
are also varied randomly within the range described in Table 3. The average gains in
execution time and energy consumption are then calculated based on the results derived
from the 10 experiments on the 10 application call graphs generated.

Fig. 3 and 4 show the gains observed in execution time and energy consumption
using our formulation. We note that the deviations observed from the mean are relatively



small (within a range of 0.2). This effectively confirms that the conclusions drawn from
these results remain valid irrespective of the graph layout.

We observe that as the scaling factor (λ) used during optimization (Equation 12)
increases, there is a small increase in gain (around 5%) observed in execution time.
However, this comes at the cost of an increase in energy consumption. Thus, we con-
clude that execution time and energy consumption are conflicting objectives in some
cases. An attempt to reduce the execution time might increase the energy consumption,
and vice-versa.

The observation that execution time and energy consumption are conflicting objec-
tives is explained by noting that a method having low execution time might consume
a lot of energy. Thus, offloading such a method might end up increasing the execution
time but reducing energy consumption. The opposite case, i.e. increasing the energy
consumption but reducing the execution time due to offloading is also possible.

4.3 Impact of Application Variables

We investigate the effects of variabilities in different programs on the performance of
MCC systems. Variabilities in a program could be due to difference in the number of
native function calls, or the degree of parallelism in the code. Both the factors can be
reflected in the graph representation of the program we have shown earlier. We study
the effect of both of these factors on execution time and energy consumption.
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Fig. 5: Effect of increasing the number
of native method in the application on
execution time and energy consump-
tion. Scaling factor in optimization is
set to 0.5, i.e. equal priorities are given
to time and energy optimization.
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Fig. 6: Effect of increasing the maxi-
mum number of threads that can be
spawned by a particular method. Scal-
ing factor in optimization is set to 0.5,
i.e. equal priority is assigned to time
and energy optimization.

Effect of Native Methods: To study the impact of native methods, we gradually
increase the probability of a method being native in the random graph. For each value
of probability, we note the average gains in execution time and energy consumption.



Fig. 5 shows the effect of percentage of native methods on performance. We note
that the increase in the percentage of native methods reduces the gain in both energy
consumption and execution time. Moreover, when all the methods are native, the gains
observed in both execution time and energy consumed are equal to 1.

These observations can be explained by noting that increasing the number of native
methods forces more local execution of the application. This reduces the advantages
of using the cloud. In the extreme case, when all the methods are native methods, then
there is no gain in either energy consumption or execution time. This is expected, since
the application executes locally and cannot take advantage of offloading.

We also observe that when the number of native methods is low, the reduction in
performance with an increase in the number of native methods is non-linear. Thus, a
small increase in the number of native methods leads to a very high drop in performance
in terms of both execution time and energy consumption. This observation could be
important for application developers trying to leverage the benefits of MCC.

This non-linear decrease in performance can be explained by observing that when
the number of native methods is low, it is possible for the method that is spawning the
threads itself to be migrated to the cloud. This avoids separate migration of multiple
threads and therefore, reduces the cost of migration. Thus, very low number of native
methods gives very high gains in both execution time and energy consumption.

Effect of Number of Threads spawned: To study the effect of number of threads
spawned, we increase the maximum outgoing degree of each vertex. We have varied
the maximum degree of each vertex from 1 to 8. We report the average gains for both
execution time and energy consumption.

Fig. 6 shows the effect of increasing the number of threads spawned at each method
of the application graph on performance. We observe that increasing the number of
threads has almost no effect on execution time. However, the energy consumption in-
volved increases with an increase in the number of threads.

To explain these observations, we note that increasing the number of threads in-
creases both time and energy due to migration. However, the time spent on migration
is mitigated by better utilization of parallelism. This effect does not apply to energy
consumption, and so increases with an increase in the number of threads.

4.4 Detailed Study of Model Parameters

In order to understand the effect of individual environment parameters, we select a
single representative graph using the layout shown in Fig. 2. This DAG is general in
nature, and does not make any additional assumptions. It contains multiple threads with
each of the threads spawned from the same method, but joins at different methods.
Moreover, one of the threads also contains a native method. This ensures that all the
different threads have conflicting requirements and thus, the decision problem becomes
harder to solve.

Effect of Scaling Factor (λ): To study how the scaling factor affects the perfor-
mance gains in this graph, we plot the energy and execution time for different values
of the scaling factor. This result indicates how to balance the the two objectives, energy
consumption and execution time, in the optimization objective function. Fig. 7 shows
how varying the scaling factor affect both energy consumption and execution time.
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Fig. 7: Comparison of gain in energy consumption and execution time for different scal-
ing factor values (λ). Round-trip Time (RTT) is used to measure cloud response time.

We observe that as the scaling factor increases, the total gain in execution time also
increases. However, this comes at the cost of lower gains in energy consumption. When
the scaling factor λ is set to 1, i.e. the optimization function considers only execution
time, there is a speedup of 40% in execution time. However, there is no improvement
in energy consumption. The opposite situation is observed when the scaling factor λ is
set to 0. In this case the optimization function considers only energy, and so there is an
improvement in energy consumption. This improvement in energy consumption comes
at the cost of increased execution time as compared to local execution by around 10%.

This observation once again shows that in this graph too, execution time and energy
consumption are conflicting objectives. Aggressively optimizing the execution time in-
creases the energy consumption, and vice-versa. We have already explained the reasons
behind this observation in Section 4.2.

We also observe that the gains in energy consumption and execution time are similar
in all the three sub-figures. This means that the round-trip delay time does not affect the
performance at this bandwidth. This observation can be explained by noting that at a
bandwidth of 1 Mbps, most of the time is spent in transmission. Thus, the propagation
delay is comparatively smaller, and hence does not affect performance.

Moreover, we also note that at a scaling factor of around 0.6, the gains in energy
consumption and execution time are almost equal. This shows that irrespective of the
cloud response time, a scaling factor equal to 0.6 balances both energy consumption
and execution time. We explain this by noting that the conflicting requirements of time
and energy are balanced when the scaling factor is equal to 0.6.

Effect of Speed of Cloud (F ): We vary the speed of cloud (F) as compared to the
mobile device from 1 to 50. For each value of F , we find the gain observed in execution
time. We have studied the execution time for two cases – for very high and moderate
bandwidths. Since speed of cloud does not have any effect on energy consumption, we
have not included it in this study. Thus, the scaling factor (λ) has been set to 1 to ensure
that only execution time is optimized by the system.

Fig. 8 shows the result of increasing the speed of cloud on execution time. We first
note that due to utilization of parallelism, even a cloud system with very low speed gives
an improvement of around 50% in execution time. At a low bandwidth, any improve-
ment in the speed of cloud has very little effect on the total execution time. However, at
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high bandwidths, i.e. when migration time is low, the gain in execution time saturates
at a much higher value of F = 50.

These observations can be explained by the fact that migration consumes more time
than actual execution in case of moderate bandwidth. This explanation is further con-
firmed by the fact that at high bandwidth, much higher improvement in execution time
is observed when the speed of cloud is increased. Further investigations on the effect of
network bandwidth have been discussed later in this section.

Effect of Cloud Response Time: We now study the effect that propagation and
transmission delays have on the total execution time (Fig. 9). We study how varying
the cloud response time at three different bandwidths (1 Mbps, 5 Mbps and 10 Mbps)
affect the execution time. Since the energy consumption remains same irrespective of
the transmission and propagation time, we do not consider it here.

Fig. 9 shows the effect of increase in the propagation delay on execution time at
the three different bandwidths. We observe that, at a low bandwidth of 1 Mbps, any
increase in propagation delay has no effect on the execution time. However, this does
not hold true at high bandwidths. At bandwidth of 10 Mbps, for instance, an increase in
the RTT from 2 ms to 100 ms reduces the execution time by 20%.

This result can be explained by the fact that at high bandwidths, the propagation
delay is higher than the actual transmission time during migration. However, at low
bandwidths, the transmission time is much higher, and so most of the time is taken up
by transmission. Thus, increasing the value of response time has no effect on execution
time at low bandwidths, but has an adverse effect at high bandwidths.

Effect of Parallelism on Execution Time: We now investigate the gain on speedup
with an increase in parallelism. Some offloading frameworks such as MAUI [1] do
not exploit any parallelism in order to have a simpler mathematical formulation. Our
objective is to determine if utilizing parallelism leads to any significant improvement in
overall execution time.
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Fig. 10: Execution speedup measured
with respect to increasing parallelism.
We increased the number of threads
that can run in parallel to measure the
speedup in execution.
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Fig. 11: Execution speedup measured
with respect to increasing number of
processors on the mobile device. λ de-
notes scaling factor used in optimiza-
tion function.

In our first experiment, we increase the parallelism that can be utilized by the overall
(mobile and cloud) system. For example, if the total number of threads is equal to 1, this
implies that at a particular point of time, a total of 1 thread is executed (either locally at
the mobile device or on the cloud). For more than 1 threads, since the mobile device has
a single processor, the rest of the threads must execute on the cloud, if any parallelism
is utilized. Once again, we do not consider the energy consumption. This is because
according to our energy model, the energy consumption does not depend on the amount
of parallelism used.

Fig. 10 shows how increasing the number of threads affects the execution time. In-
creasing the number of threads from 1 to 2 leads to an improvement of 45% in execution
time. However, increasing the number of threads from 2 to 3 only leads to an improve-
ment of 2% in execution time. Further increase in the number of threads leads to no
improvement.

These observations can be explained by noting that our example graph has three
parallel threads. Hence increasing the number of threads to greater than three has no
effect on performance. Moreover, the third thread has a native method which must be
executed locally on the mobile device. Thus, offloading this thread may or may not
lead to any improvement in execution time. Hence the average gain observed when
increasing the number of threads from 2 to 3 is small. However, since two of the threads
do not contain any native methods, increasing the number of threads from 1 to 2 leads
to a large improvement in execution time.

An alternative way of exploiting parallelism is to increase the number of processors
in the mobile device itself. Once again, we study the increase in execution time when
the number of mobile processors is increased. The result of our simulation is shown in
Fig. 11. Our simulation result shows that this has no effect on the execution time. We
explain this by noting that executing a thread on the cloud is usually faster as compared
to local execution. Thus, even if a mobile processor is idle, the offloading framework



chooses to offload methods of a thread instead of scheduling it on the idle processor
for local execution. Hence, increasing the number of processors on the mobile device
shows no improvement in execution time.

5 Conclusion

Mobile cloud computing presents a solution to augment resource constrained mobile
devices, where computationally intensive tasks can be partially offloaded to the cloud
servers. Execution offloading to cloud helps in conserving computation energy on the
mobile device, but consumes network energy to communicate with the cloud. Hence
offloading decision must carefully select tasks to offload to eventually save energy on
the mobile device. The task of offloading becomes more challenging due to the practi-
cal operating environment where there are multiple variable parameters. The effects of
these parameters must be considered while making the offloading decisions.

In this work, we studied the impact of various parameters present in MCC systems
on energy consumption and execution time of mobile applications. We presented a for-
mal model of the offloading decision problem that incorporates various parameters that
appear in real MCC execution environments. We utilize this model to study the impact
of these parameters on the performance optimization objectives, like energy saved, and
reduction in application execution time.
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