
Adaptive Streaming of 360-Degree Videos with Reinforcement Learning

Sohee Park†, Minh Hoai†, Arani Bha�acharya§, Samir R. Das†
†Stony Brook University, Stony Brook, NY, USA, § IIIT-Delhi, New Delhi, India

{soheekim, minhhoai}@cs.stonybrook.edu, arani@iiitd.ac.in, samir@cs.stonybrook.edu

Abstract

For bandwidth-efficient streaming of 360-degree videos,

the streaming technique must adapt both to the changing

viewport of the user and variations of the available network

bandwidth. �e state-of-the-art streaming techniques for this

problem a�empt to solve an optimization using simplified

rules that do not adapt very well to the uncertainties related

to the viewport or network. We adopt a 3D-Convolutional

Neural Networks (3DCNN) model to extract spatio-temporal

features of videos and predict the viewport. Given the sequen-

tial decision-making nature of such streaming technique, we

then apply a Reinforcement Learning (RL) based adaptive

streaming approach. We address the challenges of using RL

in this scenario, such as large action space and delayed re-

ward evaluation. Comprehensive evaluations with real net-

work traces show that the proposedmethod outperforms three

tile-based streaming techniques for 360-degree videos. Com-

pared to the tile-based streaming techniques, the average

user-perceived bitrate of the proposed method is 1.3–1.7 times

higher and the average quality of experience of the proposed

method is also 1.6–3.4 times higher. Subjective user studies

further confirm the superiority of the proposed approach.

1. Introduction

Recently, there has been a significant interest in stream-

ing immersive multimedia content, such as 360-degree

videos, over the Internet. �eir popularity on streaming

platforms like YouTube or Facebook is on the rise. A major

challenge of streaming such videos is the amount of video

data to be downloaded. Due to the panoramic nature of

360-degree videos, video data could be an order of mag-

nitude larger than conventional videos to achieve similar

video bit rates [4]. But the viewer only views a small por-

tion (viewport) of the downloaded 360-degree scene. So,

much of the network bandwidth is used up by content that

is not actually viewed. �is amounts to much poorer�al-

ity of Experience (QoE) relative to conventional videos

when there is a network bandwidth constraint. �is is-

sue is compounded when the available network bandwidth

varies over time in an unpredictable fashion as is common

over the Internet [27].

Adaptive video streaming techniques [32, 40, 19] have

addressed the la�er problem by first encoding the video

into multiple chunks of a fixed duration at multiple rates

on the server. �en it delivers the video chunks at a rate

that bestmatches the conditions (for example, player buffer

level, available bandwidth at that time). �e rates here re-

flect different compression levels and thus different view-

ing qualities. �ese techniques basically solve an optimiza-

tion problem that a�empts to maximize the overall QoE

(e.g., be�er video quality and less stalls) under the band-

width constraint. Since the decision on the video qual-

ity must be made in advance of the actual download, the

network bandwidth needs to be estimated. A�empting to

download a higher quality than the network can support

may lead to stalls. Such adaptive streaming is now widely

adopted for streaming regular videos over the Internet [32].

Recent work has extended this for 360-degree videos by

combining with viewport prediction [7, 10, 28, 38, 26, 42,

15], where an independent technique predicts the user’s

viewport in advance by observing the viewer behavior

(head tracking) and prior static analysis of the video. �is

prediction is used to download a part of the 360-degree

scene, pu�ing more emphasis on the part the user is likely

to view. �is is achieved by dividing the scene into tiles and

then choosing what tiles to download and in what quality

for each video segment.

Overall, such viewport-adaptive tiled streaming for 360-

degree content must run a complex optimization in real

time in presence of multiple uncertainties. It strives to im-

prove video QoE that depends onmultiple parameters such

as video quality (or encoding bit rate) and stall behavior. It

must make decisions what to download and in what en-

coding quality, under uncertainties such as network band-

width and user viewport. Decisions made at any instant

impact the state of the downloading client and also future

QoE. Choosing what and when to download is a sequen-

tial decision-making process, and it is very much amenable

to Reinforcement Learning (RL) [34]. Exploiting RL for

adaptive streaming of 360-degree videos is the focus of this

1839

work. Ourwork is inspired by recent RL-basedmethods for

conventional video streaming [23, 31] and multi-camera

image acquisition [35].

However, applying RL to 360-degree tiled video stream-

ing is not straightforward. First, the state and action spaces

are large. For example, if we use typical values such as 24

tiles and 6 video encoding quality levels, the search space

becomes (6+1)24, while there are only 6 choices for a reg-
ular video. To address this problem we take the approach

of deciding on and downloading one tile at a time instead

of trying to make a decision for all tiles at once. �is has

the added benefit of a more frequent sampling of available

network bandwidth, leading to a be�er bandwidth estimate

and shorter adaptation cycle. But there is another chal-

lenge: the reward signal for the RL agent is not available

immediately a�er the agent takes an action. �is is because

the reward is defined based on the QoE, which cannot be

evaluated until all the necessary tiles for playing a video

segment have been downloaded.

Our contribution in this work is developing an RL for-

mulation that addresses the above challenges. We learn a

streaming policy that decides sequentially the tile and tile

quality to download and the policy can be trained with

delayed rewards. Our evaluations show that the use of

RL in this fashion provides a much more agile streaming

technique that adapts well to the changing network and

user viewport. �is provides a significant step-up from

the state-of-the-art in 360-degree video streaming litera-

ture [10, 16, 28, 38, 26], where simplified/fixed rules are

used without any learning component. In the work closest

to ours, DRL360 [42], RL is indeed used but this study does

not address the large action space challenge. Instead, it set-

tles for downloading all tiles outside the predicted viewport

in the lowest video quality, while downloading predicted

viewport in just one encoding quality matching the avail-

able network capacity. When the viewport prediction is

inaccurate, this leads to a high quality variance with the

viewport.

Overall, we explicitly consider the need for stream-

ing different video tiles with different bitrates and for re-

downloading tiles at a higher encoding quality if the net-

work condition allows. We propose a formulation with

a manageable action space and a short adaptation cycle

that works with delayed reward signals. In a compre-

hensive evaluation with other techniques, we show that

our method quantitatively outperforms the state-of-the-

art methods. We also perform user studies to evaluate

our methods qualitatively and tie quantitative measures to

users’ perception.

2. Adaptive Streaming and Related Work

Adaptive Streaming. For adaptive streaming, a 360-

degree video is divided across both time and space. Across

time, the video is split into multiple chunks of fixed dura-

tion, called segments, similar to conventional video stream-

ing. Across space, each segment is split into multiple tiles.

�is is done a�er a projection from the 3D sphere to a 2D

plane, e.g., equirectangular projection [25, 17]. �us, the

<segment, tile> tuple is the unit of encoding, storage, and

network communication. Each <segment, tile> tuple is

encoded in multiple quality levels (i.e., encoding bitrates)

at the video server.

In general, tiles are smaller than the viewport (the field

of view of the user), so multiple tiles are needed to cover

the viewport. �e video content needs to be downloaded

in advance of playback. �us, at the time of download, the

viewport of the segment being downloaded is unknown

andmust be predicted. �e prediction is modeled as a prob-

ability distribution over all possible tiles [10, 26]. Given this

prediction as an input, our task is to select the tiles along

with their bit rates for the next segment to be fetched sub-

ject to the network constraint. �e network capacity here is

the same as available bandwidth. �is can vary over time

and but can bemeasured (sampled) by noting the download

speed. Overestimating the network capacity may lead to

stalls as the segment may not yet to be completely down-

loaded at the time of playback. Underestimating the ca-

pacity, in turn, will have a smooth playback, but at a lower

video quality than possible. Inaccurate viewport prediction

also leads to similar issues—tiles may be missing at play-

back or have poor video quality. Overall, this is fundamen-

tally an optimization problem: maximizing the user’s qual-

ity of experience aggregated over time, subject to network

capacity constraints. �is optimization is to be addressed

using an appropriate adaptive bit rate (ABR) algorithm.

RelatedWork. ML techniques have been used to improve

video streaming but most prior methods are based on su-

pervised or unsupervised learning [40, 33, 6, 38, 15, 26]. In

this work, we propose to use RL instead, which is more ap-

propriate for adaptive stream given the need for optimal

sequential decisions [34]. A number of recent studies use

RL that uses different features and learn the best strategy to

fetch video tiles. Q-based RL to learn the fetching strategy

has been proposed in [9]. However, this works well only if

the network follows a Markovian property. To resolve this,

Pensieve [23] andD-Dash [13] propose using RL to learn an

effective streaming strategy. However, these approaches

do not scale well for tile-based 360 video streaming. �e

work closest to our work is DRL360 [42]. However, unlike

our work, DRL360 does not support different bitrates for

predicted viewport tiles. Rest of the tiles are assigned with

the lowest encoding quality level.

1840

Prior Statistical Analysis of Video

Neural Network: Viewport Prediction

3DCNN

3DCNN

Saliency

Map

Motion

Map

Headtracking

Saliency

Map
Saliency

Map

Motion

Map
Motion

Map

Video Player

Tile Size

Database

MPD Handler

Tile Handler

Buffer

RL Agent: Rate Selection

HTTP Request

HTTP Response

NW Throughput / Download Time

Video HTTP Server

Multiple

bitrates

360 °

Projection

360 °
180 °

Encoding

Packaging

Pre-Processing of VideoRate Adaptation for Tiled 360-degree Video

Reward

Figure 1: Overview of our system design. RL Agent runs at the Video Player. It uses the output of Viewport Predictionmodule

and other status (Buffer, Network) to choose tile rates. �en the player downloads tiles from the Video Server.

Other studies has also used RL to improve perceptual

QoE of video streaming. HotDASH uses RL to improve the

QoE by prefetching temporally high priority segment for

conventional video streaming [31]. Another study called

Qarc uses deep neural networks to improve the perceptual

quality of experience of streaming videos [18]. �ese stud-

ies are orthogonal to our technique, and can be combined

with our technique to further improve the quality of expe-

rience of end users.

Using existing adaptive video streaming ecosystem, one

tile is downloaded at a time for 360-degree tiled video

streaming. However, the existing approaches [42, 28, 26,

10, 14, 37] select the video quality levels of all the tiles of

the same segment all at once, based on bandwidth estima-

tion made at the time of this rate selection. When the tiles

are actually downloaded, this estimation can change yet

the techniques do not allow for any further adaptation.

More recent works [36, 12, 21, 30] uses RL for video

streaming but limited in adaptiveness. For example, [30]

uses RL to direct viewers to points of interest which are

predefined by the content producer instead of streaming

based on true user’s viewpoint. [21] also uses RL to select

a rate for a predicted FoV but it groups tiles into a fixed

number of regions (I FoVs) and RL agents select rates for

those groups. Our results already show that ATRIA out-

performs a technique that groups tiles into 4 levels. [12]

has sequential decision making for tiles, similar to ATRIA,

but uses lower performance RL technique [36].

3. Proposed Approach

We use deep RL to learn a streaming policy that can

adapt to the predicted behavior of a viewer and the dy-

namics of the network conditions. We name the result-

ing streaming policy ATRIA (Adaptive sTreaming using

ReInforcement leArning). Figure 1 illustrates the pipeline

of our proposed system. ATRIA assumes that a video for

streaming has been divided into smaller spatiotemporal

subvolumes (Section 2) and hosted at the video server. �e

core of ATRIA is an artificial agent (RL agent in Figure 1)

that determines the downloading order and the download-

ing bitrate for each subvolume. Using viewport prediction,

network conditions and other status, the agent follows se-

quential decision process to maximize the sum of rewards,

where the rewards are defined on the quality of viewing

experience. In the following, we describe the main compo-

nents of our RL formulation, including the state represen-

tation, the reward function, and action space.

3.1. State Representation

�e state is designed to represent various characteris-

tics of video segments, network conditions, and expected

viewer’s behavior. �e state st at time t contains:

• [τt−1, τt−2, . . . , τt−n]: downlink throughputs mea-

sured for the previous tile downloads, where n is the

number of past downloads considered.

• [δt−1, δt−2, . . . , δt−n]: download times taken for the

previous n downloads.

• [s1, s2, . . . , sK]: sizes of tiles in K different qualities

(encoding bitrates).

• [p1, p2, . . . , pN]: the probabilities that the tiles will be
viewed, where N is number of tiles.

• [q1, q2, . . . , qN]: qi is the quality level selected for ith

tile of segment being downloaded. qi = 0 if the tile

has not been downloaded yet.

• [b1, b2, . . . , bN]: quality levels of the tiles of the previ-
ously downloaded segment. bi = 0 for tiles that were
not downloaded.

• ct: number of segments remaining at the time of

downloading this segment.

• αt: video player buffer size in seconds of playback.

i.e. the duration of the video segments that have been

downloaded but waiting in the buffer to be played.

�ese input features for the state representation are also

depicted in Figure 2.

1841

State

Past throughput

Past download time

Tile Sizes in different

qualities

Video player buffer size

Number of Segments remaining

Past segment qualities

1DCNN

1DCNN

1DCNN

Tj , qj

.

.

.

Agent

Reward ri

+bitrates - rebuffering – smoothness - missed

Current segment tile

probabilities

Immediate Reward

Reward

per

Segment

Current segment tile

qualities

1DCNN

1DCNN

1DCNN

T1 , q1

T1 , q2

TN , qN

.

.

.

.

Figure 2: High-level network architecture of ATRIA.

3.2. Action Space

We consider two action spaces, leading to adaptive

streaming methods: ATRIA and ATRIA-2.

ATRIA: Adaptive tile ordering. �e RL network selects

the tiles to download and their download quality for each

action. Tiles are allowed to be downloadedmore than once,

e.g., first with low encoding quality and subsequently with

higher encoding quality when network capacity gets bet-

ter. Some tiles can be skipped (never downloaded). We let

the agent learn what is the best action in each step that

maximizes the accumulated rewards. �e action at at time

t is a pair of positive integers (a1t , a
2

t). �e first quantity a1t
is the ID of the tile that should be downloaded, and a2t is

the chosen encoding quality level for downloading. In this

work, the policy function πθ is a deep neural network with

learnable parameter set θ. �e input to the network is the

state representation vectors as in Section 3.1. �e last layer

of the network is a so�max layer, and the output of the net-

work is a probability vector of size N(K + 1), where N is

the number of tiles and K is the number of video quality

levels. �e tile ID a1t and the download quality a2t are de-

termined together, not sequentially or independently. We

illustrate this in Figure 2.

ATRIA-2: Fixed tile ordering. �is policy is similar to

ATRIA, but downloads the tiles sequentially in a fixed order,

i.e., tiles 1, 2, . . . , N in that order. At each step, the tile to

download is already determined, and the policy only needs

to determine the bitrate quality to download. It is also pos-

sible for the policy to decide not to download a tile. �ere-

fore, at each action at at time t, there areK+1 action space,
whereK is number of different video bitrates offered. �is

significantly reduces the action spaces compared to ATRIA

action space. ATRIA-2 also learns a probabilistic policy: at

time t, given the state st, action at is selected with a prob-

ability value given by the function πθ(at|st). In this work,

the policy function πθ is a deep neural network with learn-

able parameter set θ. �e input to the network is the state

representation vectors as in Section 3.1. Figure 2 also il-

lustrates ATRIA-2 except for the last layer of action space.

Table 1 compares the design approaches of ATRIA, ATRIA-

2, and a regular method (selects the qualities for N tiles).

Regular ATRIA ATRIA-2

Space Size (K + 1)N N(K + 1) K + 1

Action (a1
t
, .., aN

t
) (a1

t
, a2

t
) at

ai
t
= 0..K a1

t
= 1..N , a2

t
= 0..K at = 0..K

Table 1: Summary of ATRIA& ATRIA-2 design approaches.

3.3. Reward Function

�e reward function is defined based on the quality of

viewer experience, which is high when the video bitrate

is high, the rebuffering time is small, and the playback is

smooth (both spatially and temporally).

Viewer Perceived Video Bitrate. We define viewer per-

ceived video bitrate as the sum of qualities of tiles that

overlaps with the viewport, i.e., tiles that the user actu-

ally views. Tiles that are downloaded but not viewed do

not count toward the user perceived video bitrate. We as-

sume all viewed tiles contributes to the quality of experi-

ence equally. Mathematically, for the ith video segment,

the perceived bitrate Bi during playback is given by:

Bi =

N∑

j=1

βijoij , (1)

where βij is the bitrate of tile j of segment i, and oij = 1
if tile j overlaps with the viewport, and 0 otherwise.

Rebuffering. If the playback buffer has depleted but the

next video segment has not been downloaded completely,

playback stalls and the viewer experiences rebuffering.

We measure the rebuffering duration for each tile j being

downloaded. We define the rebuffering duration during the

download of a segment as the sum of rebuffering duration

for each tile for this segment:

Di =

N∑

j=1

dij , (2)

where dij is the rebuffering duration of downloading tile j
of segment i.

�ality Smoothness Across Segments. Similar to con-

ventional video streaming, quality fluctuation between the

segments also degrades the QoE. We model the quality

smoothness between segments as the difference of user

perceived video bitrates of two consecutive segments. Let

Bi represents the user perceived video bitrate of the ith

segment. �e smoothness measure is defined as:

Si = |Bi −Bi−1|, for i ≥ 2. (3)

�ality SmoothnessWithin Viewport. Unlike conven-

tional video streaming, user might view the scene with dif-

ferent levels of qualities in tiled 360-degree video stream-

ing. �is is inevitable, unless the system downloads all tiles

1842

in the same quality level. We measure this quality smooth-

ness within a viewport as a variance among the tiles that

overlaps with viewport:

Ui = StdDev {βij |oij = 1} (4)

Penalty for repeating/missing tiles. ATRIA allows a tile

to be re-downloaded with a different encoding quality if

the network condition allows. Rationally, a tile should not

be re-downloaded with a lower quality than what has been

downloaded, so we penalize this undesirable action by giv-

ing an immediate reward of −1.
If the policy does not select tiles that overlap with the

viewport (i.e., missing titles) for segment i, we also assign

a negative reward.

Zi = −

N∑

j=1

oijRij(k) δ(qij = 0), (5)

where Rij(k) is the bitrate of tile j of segment i at quality
level k. qij is the quality level downloaded for the tile j
of segment i; qij is 0 if the title is not downloaded. δ(·) is
the delta function; δ(x) = 1 if x is true and 0 otherwise.

k is set to be the average quality level of the viewed tiles:

k = round((
∑N

j=1
oijqij)/(

∑N

j=1
oij)).

User Perceived �ality of Experience (QoE). Follow-

ing [40, 23] and also [28, 26, 42], the total user perceived

QoE is defined as the sum of user perceived bitrates, re-

buffering, and smoothness for all M video segments:

QoE =

M∑

i=1

(Bi − µ1Di − µ2Si − µ3Ui). (6)

where the µ1, µ2, and µ3 are constants modeling contribu-

tions of rebuffering and quality smoothness on the QoE.

Reward. We define the reward ri for a video segment

i based on the perceived QoE for this segment and the

penalty for having repeating or missing tiles.

ri = Bi − µ1Di − µ2Si − µ3Ui + Zi, (7)

�e reward is defined for each video segment, collectively

for all tiles a�er they have been downloaded and viewed.

�is reward is not defined for an individual download step,

and this corresponds to having delayed rewards.

3.4. Network Architecture and Policy Learning

Network Architecture. Figure 2 shows the high level ar-

chitecture of the actor network. �e critic network has the

same architecture, except for the linear neuron output. All

non-output layers are the same architecture at the actor

and the critic network. We use 1D CNNs to encode the

history of past values, including throughputmeasurements

and download times. We also use 1D CNNs to encode tile

features such as probabilities, file sizes, and selected qual-

ities. �e filter size is 4 and number of filters is 128. For

the number of remaining segments ct and the buffer size

αt, we use a 128-dim fully connected layer with RELU ac-

tivation. �e outputs of these layers of actor network are

connected to a hidden layer with 128 units, followed by the

so�max layer.

Policy Learning. To learn a streaming policy, we use A3C

[24], a state-of-the-art RL method. A3C is a policy gradient

method [11] that asynchronously trains two agents (both

are neural networks): an actor and a critic. Each agent

has its own copy of the environment. �e actor agent is

the policy function for video streaming: in ATRIA, it takes

the state as input and decides the tile to download and the

download quality (a1t , a
2

t) while in ATRIA-2, it decides the

download quality at. �e critic agent is trained to estimate

the value of the state, called value function. It evaluates

how good the policy is by estimating the expected total re-

ward for a given state s and and the policy πθ . We use the

Temporal Differencemethod [11] to train the critic network.

We use TensorFlow [2] and TFLearn [3] to implement

neural network for both training and testing. �e discount

factor γ is set to 0.99. We configure the entropy parameter

weight to encourage the agent to explore and to exploit its

knowledge about the state space and environment. Both

ATRIA and ATRIA-2 converges. We observe that ATRIA-2

converges faster.

4. Experiments

We compare our methods quantitatively and quali-

tatively with three state-of-the-art 360-degree tile-based

video streaming algorithms: Mosaic [26], Flare [28], and

DRL360 [42]. �ese methods represent the entire gamut of

relevant approaches for bit rate adaptation for 360-degree

video streaming, and they have been shown to achieve

higher QoE than conventional non-tile video streaming

methods. �e methods are evaluated on testing environ-

ments that emulate real network conditions.

4.1. Experiment settings

Emulated streaming environments. We use ten videos

for training and evaluating various streaming algorithms.

Each video is one-minute long and encoded with six differ-

ent bit rates: 0.512, 2, 5, 10, 15, and 20 Mbps. Each video is

split temporally in two-second segments. Each video is ac-

companied with head tracking data from 50 viewers [22].

�e head tracking data is used as the ground truth to eval-

uate the viewing experience of a viewer, not as the input

to any streaming algorithm.

For each pair of video and the head tracking data, we

1843

10 5 0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 5.13

ATRIA | avg 4.23
DRL360 | avg 2.34
Mosaic | avg 2.48
Flare | avg 1.58

(a) Average QoE (8,1,2).

10 5 0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 5.71

ATRIA | avg 4.58
DRL360 | avg 2.52
Mosaic | avg 2.58
Flare | avg 1.68

(b) Average QoE (4,1,2).

10 5 0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 9.35

ATRIA | avg 8.00
DRL360 | avg 4.94
Mosaic | avg 3.23
Flare | avg 2.33

(c) Average QoE (1,1,1).

0 5000 10000 15000 20000 25000 30000
User Perceived Video Bitrates (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ATRIA-2 | avg 9178.0

ATRIA | avg 9415.0
DRL360 | avg 7147.6
Mosaic | avg 6098.8
Flare | avg 5487.1

(d) User perceived bitrates.

0 20 40 60 80 100
Rebuffering Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ATRIA-2 | avg 2.43
ATRIA | avg 2.95
DRL360 | avg 3.68
Mosaic | avg 1.29
Flare | avg 1.34

(e) Rebuffering.

0 5000 10000 15000 20000 25000
Smoothness Variance in Video Bitrates (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F ATRIA-2 | avg 2145.0
ATRIA | avg 2830.6
DRL360 | avg 2434.8
Mosaic | avg 2279.4
Flare | avg 2728.1

(f) Smoothness across segments.

0 1000 2000 3000 4000 5000
Smoothness Variance in Video Bitrates (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ATRIA-2 | avg 758.7
ATRIA | avg 941.1
DRL360 | avg 889.9
Mosaic | avg 569.0
Flare | avg 482.5

(g) Smoothness within viewport.

0 1 2 3 4 5 6
User Perceived Quality Levels

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ATRIA-2 | avg 4.08
ATRIA | avg 3.81
DRL360 | avg 2.75
Mosaic | avg 2.80
Flare | avg 3.02

(h) User perceived quality levels.

Figure 3: Comparison of ATRIA and ATRIA-2 with other baseline techniques using CDFs of various metrics: (a)-(c) average

QoE (µ1, µ2, µ3), (d) user perceived bitrate, (e) rebuffering ratio, (f) temporal smoothness, (g) viewport smoothness, (h) user

perceived video quality levels. A point (x, y) on a performance curve means that the metric has a value ≤ x for a fraction

y of the times.

can emulate different streaming conditions and calculate

the quality of experience. �e emulated environments are

based on about 300 real network traces of public datasets:

broadband dataset [1] and a mobile dataset [29]. We lin-

early increase the bandwidth to reflect prevalent Internet

connection speed [5]. We use a large corpus of real net-

work traces for training and a different set of network

traces for testing. In all experiments reported in this pa-

per, the training and testing network environments are

separate. �is amount to 135,000 video steaming sessions

(equivalent to 2,250 hrs, 3 months).

Viewport Prediction. Predicting where a viewer will at-

tend to is an active area of research, e.g., [26, 41, 39]. In this

work, we use the viewport prediction network developed

by [26]. �is is a 3DCNN network that uses the I3D net-

work for human action recognition [8]. �e inputs to the

network are: a saliency map, a motion map and the user’s

head tracking history dataset [10]. �e outputs are the

probabilities for the tiles to be viewed by the user. �e pre-

diction accuracy is 91–92% for the prediction lead time of

one second, and 88% for the lead time of two seconds [26].

�e overhead for running the viewport prediction net-

work and the RL policy are less than 0.6ms and 0.1ms re-

spectively. �e overhead for encoding video tiles is pro-

portional to the number of tiles, and we use the 4×6 tiling
as in previous work [14, 26, 28]. Because the viewport pre-

diction network and the RL policy are trained off-line, the

overhead of the inference on the client is small, and the

proposed solution is feasible to run even on a smartphone.

4.2. Quantitative Comparison Results

We randomly split the ten videos into two disjoint train-

ing and testing subsets, each with five videos. Additionally,

the network traces used for emulating the network condi-

tions for training data are not used for testing.

�ality of Experience. In computer networking and

multimedia community, it is challenging to quantify the

quality of experience. �ere is no rigorous formulation to

compute a numerical score for the experience of an user

based on measurable values such as perceived bitrates and

rebuffering time. Following [40, 23], we experiment with

multiple values of the QoE parameters µ1, µ2, and µ3 de-

fined in Eq. (6). Specifically, the ranges of these parameters

are set to 1–8, 1–4, and 1–4 respectively. �e reward func-

tion is defined accordingly, based on the QoE parameters.

Figure 3a, 3b, and 3c plot the QoE distributions of dif-

ferent streaming methods for three different QoE parame-

ter se�ings. As can be seen, both ATRIA and ATRIA-2 have

significantly higher QoE than other methods for all param-

eter se�ings in consideration. In terms of average QoE, our

methods are 1.6 to 3.4 times be�er than Mosaic, DRL360,

and Flare. We perform experiments with different QoE pa-

rameter se�ings and observe similar results, but the plots

cannot be shown here due to the space limit.

Individual QoE Metrics. We also analyze the perfor-

mance of individual QoE metrics of difference techniques.

Figure 3d shows the average bitrate perceived by viewers

for different algorithms, where a higher bitrate is more de-

sirable. On average, the bitrate of ATRIA (and similarly for

ATRIA-2) is 1.3, 1.5, and 1.7 times higher than the bitrates

of DRL360, Mosaic, and Flare respectively.

1844

2.5 3.0 3.5 4.0 4.5 5.0
Video Quality Levels

3.5

4.0

4.5

5.0

5.5

6.0

Qo
E

ATRIA-2
No current rate
No buffer size
No Throughput Info
No Delays
No Filesize
No remain
No Prob
No Past rate

Figure 4: Ablation study for the importance of individual

feature types. �e QoE and video quality values decrease

if any input feature is not used.

Figure 3e shows the ratio of rebuffering for different

streaming techniques, where a lower ratio indicates a bet-

ter QoE. All streaming methods have a similar buffering

duration, which is about 1–4% of the video duration or 0.6–

2.4 seconds of 60-second video. �e quality variance is an-

other important indicator for the QoE, which measures the

smoothness of the video quality over time (lower is bet-

ter). Figure 3f shows the standard deviation across seg-

ments of a video. We note that ATRIA-2 and DRL360 have

similar quality variance values. Figure 3g plots the quality

variation within the viewport. While ATRIA and ATRIA-2

are not the best in terms of smoothness metric, they have

higher bitrates and overall QoE values. ATRIA-2 has higher

QoE than ATRIA because ATRIA allows re-downloading of

tiles to maximize the reward (i.e., previously downloaded

tile is not used). �e addition of a simple rule (the order of

tile to download) helps the agent learn faster while ensur-

ing that agent explores different actions and exploits what

it has learned.

4.3. Ablation Studies

As described in Section 3.1, the state representation of

our RL streaming algorithms incorporates eight types of

features. We evaluate the impact of each feature type by

excluding it from the state representation. Figure 4 plots

the resulting video quality and QoE values for ATRIA-2.

Removing any feature type would reduce both video qual-

ity and the overall QoE. �e most important feature is the

viewport prediction probabilities.

4.4. Generalization Ability

In all experiments described above, we have evaluated

the performance of all methods on the test videos that are

different from the videos used for training. But for many

situations, videos at a streaming server will be watched by

multiple viewers, and it not unpractical to use those videos

to train a customized streaming algorithm. �us one might

wonder if there is any performance gap for streaming a

0 5 10 15 20 25
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

m
ul

at
iv

e
pr

ob
ab

ilit
y

ATRIA (Train Video) | avg 4.00
ATRIA (Test Video) | avg 4.46
ATRIA-2 (Train Video) | avg 5.06
ATRIA-2 (Test Video) | avg 5.19

Figure 5: Comparing the average QoE values for streaming

videos used and not used in the training of the RL policies

for adaptive streaming.

Figure 6: QoE values for streaming different videos. In this

experiment, only Video0 is used for training the adaptive

streaming algorithms ATRIA and ATRIA-2.

video that is among the training set and a video that is out-

side the training set.

Figure 5 compares the average QoE for streaming videos

used in training and the average QoE for streaming videos

not used in training. Interestingly, the two performance

curves are similar, suggesting that it is unnecessary to train

ATRIA on any specific video and that ATRIA can gener-

alize well on unseen videos. �is is understandable be-

cause ATRIA makes the streaming decision based on the

predicted user behavior, the network conditions, and the

state of the buffer, not the content of the video. Notably, in

all experiments, the training and testing environments are

independent, emulated based on disjoint sets of real net-

work traces.

Given the good generalization ability of ATRIA, we ex-

periment with an extreme situationwhereATRIA is trained

with a single video, Video0. We compute the QoE for

streaming Video0 and other videos, and the results are

shown in Figure 6. ATRIA obtains higher QoEs on Video4

and Video8 than on the training video Video0. �is further

confirms the good generalization ability of ATRIA. Figure 6

also compares the performance of ATRIA with other state-

of-the-art streaming algorithms. As can be seen, ATRIA

outperforms these algorithms, even when it is trained with

a single video.

1845

(a) Coaster using ATRIA-2 (b) Coaster using DRL360 (c) Game using ATRIA-2 (d) Game using DRL360

Figure 7: Frame captures of video session for two videos each with ATRIA-2 and DRL360. Video frames at (b) and (d) show

that parts of the viewport have poor image quality (yellow rectangular areas) for DRL360.

Figure 8: Average user ratings for seven quality categories.

4.5. Subjective Evaluation: User Study

We also compare the actual quality of experience with

an user study. We follow the recommendations for sub-

jective video quality assessment methods for multimedia ap-

plications in [20]. We use a recommended method, called

Absolute Category Rating (ACR) to evaluate different al-

gorithms and to rank the video system performance and

quality levels [20]. Each user participant is presented with

test sequences, one at a time with five different methods

in randomized order. �e participant is asked to evaluate

the overall quality of each video, in a five-level scale: 5-

Excellent, 4-Good, 3-Fair, 2-Poor, 1-Bad. �e participant

is also asked to evaluate the quality of: image color, com-

pression quality, borders, image continuity, and movement

continuity. Unless all tiles are downloaded in a same com-

pression quality level, the user could view a scene with dif-

ferent quality levels. �e participant is asked if they notice

any discontinuity within a viewport and asked to rate in a

five-level scale: 5-Imperceptible, 4-Perceptible but not an-

noying, 3-Slightly annoying, 2-Annoying, and 1-Very An-

noying. �e higher the rating is, the be�er image continu-

ity within the viewport is observed.

We recruit fourteen participants (11male, 4 female, from

10–50 year old) for our user study. Each participant views

ten videos with five different methods (ATRIA, ATRIA-2,

Flare, Mosaic, DRL360) for a total of 50 videos.

Figure 7 shows some frames presented to the partici-

pants in the user study. As can be seen, the frames from the

DRL360 (Figure 7b and 7d) have much lower quality than

the frames from ATRIA-2 (Figure 7a and 7c), especially in-

side the yellow rectangular regions.

Figure 8 shows the average user ratings for several qual-

ity categories for five streaming methods. In terms of

Overall �ality, both ATRIA-2 and ATRIA exhibit supe-

rior performance compared with other methods. ATRIA-

2 is consistently rated highest in all evaluation categories.

ATRIA has higher Overall �ality, Image Color, and Im-

age �ality than Flare, Mosaic, and DRL360. Recall from

Figure 3d,ATRIA has the highest average user perceived bi-

trate. However, the smoothness variance across segments

and within the viewport is higher than that of Flare (Fig-

ure 3f and 3g). �is explains why ATRIA has lower ratings

than Flare in terms of Image Continuity, Movement Conti-

nuity, and Viewport Continuity.

5. Conclusions

We have presented two methods for adaptive stream-

ing of 360-degree videos. Unlike prior works that use

pre-determined rules for rate adaptation, our methods are

based on deep reinforcement learning, and they can dy-

namically determine which tiles to download at what qual-

ities and when, depending on the network conditions. We

have evaluated our methods in realistic se�ings that em-

ulate the real network conditions. We have compared

our methods against state-of-the-art 360-degree tiled video

streaming techniques, and showed that our methods out-

perform the othermethods by a factor of 1.6–3.4 in terms of

average QoE and a factor of 1.3–1.7 in terms of perceived

bitrates. We have also performed a subjective user study

and found that our methods have the highest overall rat-

ings among all methods. Further improvement can be ob-

tained by increasing the smoothness within the viewport,

and it will be a good direction for future work.

Acknowledgments

�is research was partially supported by Intelibs, Inc.
Minh Hoai was supported by NSF Award IIS-1763981. �e
authors acknowledge the time and effort of the volunteer
user study participants.

1846

References

[1] Federal communications commission. 2016. raw data - mea-

suring broadband america. (2016). Technical report.

[2] TensorFlow. https://www.tensorflow.org,

2018.

[3] FFmpeg. https://ffmpeg.org/, 2019.

[4] Shahryar Afzal, Jiasi Chen, and KK Ramakrishnan. Char-

acterization of 360-degree videos. In Workshop on VR/AR

Network. ACM, 2017.

[5] Akamai. Akamai’s: 2018 State of the Internet / Connectivity

Report . 2018.

[6] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay

Rao, Jessica Chen, Ethan Katz-Basse�, Bruno Ribeiro, Jibin

Zhan, and Hui Zhang. Oboe: auto-tuning video ABR al-

gorithms to network conditions. In Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Com-

munication. ACM, 2018.

[7] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli,

and Xin Liu. Shooting a moving target: Motion-prediction-

based transmission for 360-degree videos. In Big Data (Big

Data), IEEE International Conference on. IEEE, 2016.

[8] Joao Carreira and Andrew Zisserman. �o vadis, action

recognition? a new model and the kinetics dataset. In

IEEE Conference on Computer Vision and Pa�ern Recognition

(CVPR). IEEE, 2017.

[9] Federico Chiario�i, Stefano D’Aronco, Laura Toni, and Pas-

cal Frossard. Online learning adaptation strategy for DASH

clients. In International Conference on Multimedia Systems,

2016.

[10] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang,

Kuan-Ta Chen, and Cheng-Hsin Hsu. Fixation prediction

for 360 video streaming in head-mounted virtual reality. In

Proceedings of the 27th Workshop on Network and Operating

Systems Support for Digital Audio and Video. ACM, 2017.

[11] Vincent Franccois-Lavet, Peter Henderson, Riashat Islam,

Marc G Bellemare, Joelle Pineau, et al. An introduction to

deep reinforcement learning. Foundations and Trends® in

Machine Learning, 11(3-4), 2018.

[12] Jun Fu, Xiaoming Chen, Zhizheng Zhang, Shilin Wu, and

Zhibo Chen. 360SRL: A sequential reinforcement learning

approach for ABR tile-based 360 video streaming. In IEEE

International Conference on Multimedia and Expo (ICME).

IEEE, 2019.

[13] M. Gadaleta, F. Chiario�i, M. Rossi, and A. Zanella. D-

DASH: A deep q-learning framework for DASH video

streaming. IEEE Transactions on Cognitive Communications

and Networking, 3(4), Dec 2017.

[14] Mario Graf, Christian Timmerer, and Christopher Mueller.

Towards bandwidth efficient adaptive streaming of omnidi-

rectional video over h�p: Design, implementation, and eval-

uation. In Proceedings of the 8th ACM onMultimedia Systems

Conference. ACM, 2017.

[15] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming

Guo, and Junchen Jiang. Pano: Optimizing 360 video

streaming with a be�er understanding of quality percep-

tion. In Proceedings of the ACM Special Interest Group on

Data Communication. 2019.

[16] Jian He, Mubashir Adnan �reshi, Lili Qiu, Jin Li, Feng Li,

and Lei Han. Rubiks: Practical 360-degree streaming for

smartphones. In Proceedings of the 16th Annual Interna-

tional Conference on Mobile Systems, Applications, and Ser-

vices. ACM, 2018.

[17] Mohammad Hosseini and Viswanathan Swaminathan.

Adaptive 360 VR video streaming: Divide and conquer. In

Multimedia (ISM), IEEE International Symposium on. IEEE,

2016.

[18] Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng

Sun. Qarc: Video quality aware rate control for real-

time video streaming based on deep reinforcement learning.

arXiv:1805.02482, 2018.

[19] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Ma�hew

Trunnell, and Mark Watson. A buffer-based approach to

rate adaptation: Evidence from a large video streaming ser-

vice. ACM SIGCOMM Computer Communication Review,

44(4), 2015.

[20] P ITU-T RECOMMENDATION. Subjective video quality

assessment methods for multimedia applications. Interna-

tional telecommunication union, 1999.

[21] Nuowen Kan, Junni Zou, Kexin Tang, Chenglin Li, Ning Liu,

and Hongkai Xiong. Deep reinforcement learning-based

rate adaptation for adaptive 360-degree video streaming. In

IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2019.

[22] Wen-Chih Lo, Ching-Ling Fan, Jean Lee, Chun-Ying Huang,

Kuan-Ta Chen, and Cheng-Hsin Hsu. 360 video viewing

dataset in head-mounted virtual reality. In Proceedings of

the 8th ACM on Multimedia Systems Conference. ACM, 2017.

[23] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.

Neural adaptive video streaming with pensieve. In Proceed-

ings of the Conference of the ACM Special Interest Group on

Data Communication. ACM, 2017.

[24] VolodymyrMnih, Adria Puigdomenech Badia, Mehdi Mirza,

Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In International conference on ma-

chine learning, 2016.

[25] Omar A Niamut, Emmanuel �omas, Lucia D’Acunto, Cyril

Concolato, Franck Denoual, and Seong Yong Lim. MPEG

DASH SRD: spatial relationship description. In Proceedings

of the 7th International Conference on Multimedia Systems.

ACM, 2016.

[26] Sohee Park, Arani Bha�acharya, Zhibo Yang, Mallesham

Dasari, Samir R Das, and Dimitris Samaras. Advancing user

quality of experience in 360-degree video streaming. In IFIP

Networking Conference (IFIP Networking). IEEE, 2019.

[27] Sohee Kim Park, Arani Bha�acharya, Mallesham Dasari,

and Samir R Das. Understanding user perceived video qual-

ity using multipath TCP over wireless network. In IEEE 39th

Sarnoff Symposium. IEEE, 2018.

[28] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakr-

ishnan. Flare: Practical viewport-adaptive 360-degree video

streaming for mobile devices. In Proceedings of MobiCom.

ACM, 2018.

1847

[29] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pral

Halvorsen. Commute path bandwidth traces from 3G net-

works: analysis and applications. In Proceedings of the 4th

ACM Multimedia Systems Conference. ACM, 2013.

[30] Lucile Sassatelli, Marco Winckler, �omas Fisichella, and

Ramon Aparicio. User-adaptive editing for 360 degree video

streaming with deep reinforcement learning. In Proceed-

ings of the 27th ACM International Conference onMultimedia,

2019.

[31] S. Sengupta, N. Ganguly, S. Chakraborty, and P. De. Hot-

DASH: Hotspot aware adaptive video streaming using deep

reinforcement learning. In ICNP, 2018.

[32] Iraj Sodagar. �e MPEG-DASH standard for multimedia

streaming over the internet. IEEE multimedia, 18(4), 2011.

[33] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin,

Nanshu Wang, Tao Liu, and Bruno Sinopoli. Cs2p: Improv-

ing video bitrate selection and adaptation with data-driven

throughput prediction. In Proceedings of the ACM SIGCOMM

Conference, 2016.

[34] Richard S. Su�on and Andrew G. Barto. Reinforcement

Learning: An Introduction. MIT Press, Cambridge, MA, USA,

2
nd edition, 2018.

[35] Boyu Wang, Lihan Huang, and Minh Hoai. Active vision

for early recognition of human actions. In Proceedings of the

IEEE Conference on Computer Vision and Pa�ern Recognition,

2020.

[36] Gongwei Xiao, Xu Chen, Muhong Wu, and Zhi Zhou. Deep

reinforcement learning-driven intelligent panoramic video

bitrate adaptation. In Proceedings of the ACM Turing Cele-

bration Conference-China, 2019.

[37] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and

Zongming Guo. 360ProbDASH: Improving QoE of 360 video

streaming using tile-based HTTP adaptive streaming. In

Proceedings of the ACM on Multimedia Conference. ACM,

2017.

[38] Lan Xie, Xinggong Zhang, and Zongming Guo. CLS: A

cross-user learning based system for improving QoE in 360-

degree video adaptive streaming. In 2018 ACM Multimedia

Conference on Multimedia Conference. ACM, 2018.

[39] Zhibo Yang, LihanHuang, Yupei Chen, ZijunWei, Seoyoung

Ahn, Gregory Zelinsky, Dimitris Samaras, and Minh Hoai.

Predicting goal-directed human a�ention using inverse re-

inforcement learning. In Proceedings of the IEEE Conference

on Computer Vision and Pa�ern Recognition, 2020.

[40] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinop-

oli. A control-theoretic approach for dynamic adaptive

video streaming over h�p. ACM SIGCOMM Computer Com-

munication Review, 45(4), 2015.

[41] Gregory Zelinsky, Zhibo Yang, Lihan Huang, Yupei Chen,

Seoyoung Ahn, ZijunWei, Hossein Adeli, Dimitris Samaras,

and Minh Hoai. Benchmarking gaze prediction for categor-

ical visual search. In CVPR Workshop - Mutual Benefits of

Cognitive and Computer Vision, 2019.

[42] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin Liu,

Lingyang Song, andXiaoMing Li. DRL360: 360-degree video

streaming with deep reinforcement learning. In Proceedings

of IEEE Infocom. IEEE, 2019.

1848

