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Abstract—We address the problem of localizing an (unautho-
rized) transmitter using a distributed set of sensors. Our focus is
on developing techniques that perform the transmitter localiza-
tion in an efficient manner, wherein the efficiency is defined in
terms of the number of sensors used to localize. Localization of
unauthorized transmitters is an important problem which arises
in many important applications, e.g., in patrolling of shared
spectrum systems for any unauthorized users. Localization of
transmitters is generally done based on observations from a de-
ployed set of sensors with limited resources, thus it is imperative
to design techniques that minimize the sensors’ energy resources.

In this paper, we design greedy approximation algorithms
for the optimization problem of selecting a given number of
sensors in order to maximize an appropriately defined objective
function of localization accuracy. The obvious greedy algorithm
delivers a constant-factor approximation only for the special case
of two hypotheses (potential locations). For the general case of
multiple hypotheses, we design a greedy algorithm based on
an appropriate auxiliary objective function—and show that it
delivers a provably approximate solution for the general case.
We develop techniques to significantly reduce the time complexity
of the designed algorithms by incorporating certain observations
and reasonable assumptions. We evaluate our techniques over
multiple simulation platforms, including an indoor as well as
an outdoor testbed, and demonstrate the effectiveness of our
designed techniques—our techniques easily outperform prior and
other approaches by up to 50-60% in large-scale simulations and
up to 16% in small-scale testbeds.

I. INTRODUCTION

Wireless transmitter localization via analysis of the received

signal from multiple receivers or sensors is an important

problem. While the problem has been widely explored, it

exposes new challenges in many emerging applications due

to the constraints of the application. In this work, we are

specifically interested in a distributed monitoring system where

a set of distributed RF sensors are tasked to detect and

localize transmitters. These transmitters could be of various

type. For example, in certain spectrum allocation scenarios,

unknown primary transmitters need to be detected/localized,

or in spectrum patrolling scenarios, unauthorized transmitters

need to be detected/localized [1]. Recent work has explored

new approaches for such monitoring where the RF sensors

are crowdsourced, perhaps using various low-cost spectrum

sensing platforms [2], [3]. The crowdsourcing deploys a large

number of sensors. Fine grained spectrum sensing is imple-

mented by creating suitable incentive mechanisms [4], [2].

Crowdsourcing makes the sensing cost-conscious. The cost

here could be incentivization cost, cost of power, backhaul

bandwidth on the part of the spectrum owner or the opportu-

nity cost – being low-cost platform, the sensors may be able to

only sense smaller spectrum bands at a time. Thus, involving

only a small number of sensors or sensors with low overall

cost budget (for a suitable cost model) for sufficiently accurate

localization performance is critical. Prior work that discusses

sensor selection in this context only presents heuristics without

any performance guarantees [2].

We do not use geometric approaches which rely on hard-to-

model mapping of received power to distance. Instead, we use

a hypothesis-driven, Bayesian approach for localization [5].

We focus on the optimization problem of selecting a certain

number of sensors from among the deployed sensors such

that an appropriately defined objective of localization accuracy

is maximized. This optimization problem can also be used

to solve the dual problem of selecting a minimum number

of sensors (or sensors with the minimum total cost budget)

to ensure at least a given localization accuracy. We adopt

the framework of a hypothesis-driven localization approach

wherein each hypothesis represents a configuration (location,

power, etc.) of the potential transmitters and then the local-

ization is equivalent to determining the most-likely prevailing

hypothesis. See Figure 1. The hypothesis-driven framework

does not require an assumption of a propagation model,

and works for arbitrary signal propagation characteristics.

The framework does, however, require prior training to build

joint probability distributions of observation vectors for each

hypothesis.

Our Contributions. In the above hypothesis-based frame-

work, we develop an overall approach that enables selection

of sensors that are most relevant to localize transmitters.

In particular, we develop algorithms that aim to maximize

localization accuracy for a given budget of number of sensors

to be used for localization. More specifically, we make the

following contributions in the paper.

1) We design a greedy algorithm (GA) that selects sen-

sors iteratively to maximize the objective function of

localization accuracy, under the constraint of number of

sensors selected. We prove that GA yields a constant-

factor approximate solution for the special case of the

problem wherein there are only two hypotheses.

2) For the general case of more than two hypotheses, we

design an alternate greedy scheme (called AGA) based on

maximizing an auxiliary objective function. We prove that

AGA delivers a solution that has (i) an auxiliary objective
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Fig. 1: Hypothesis-driven localization. The figure shows the simple
case of localizing a single transmitter with fixed power; thus, there is
a hypothesis created for each potential location. Observations from
deployed sensors are analyzed to determine the most likely prevailing
hypothesis (and thus, location).

value within a constant factor of the optimal auxiliary

objective value, as well as (ii) a localization error within

a certain factor of the optimal localization error.

3) We optimize the time complexity of our developed al-

gorithms by a substantial factor, based on certain ob-

servations and reasonable assumptions. In addition, we

generalize our techniques to more practical and useful

settings.

4) We evaluate the performance of the developed algorithms

over multiple evaluation platforms: (1) large-scale simula-

tion using synthetically generated data using established

signal propagation models (with 100 sensors and 1600

hypothesis with each hypothesis of area 100m×100m),

and (2) publicly available experimental data trace col-

lected over an indoor WiFi network with 44 sensors

(with 43 sensors and 44 hypotheses, with each hypothesis

of area 1m × 1m), and (3) our own data collection

using 18 outdoor software radio sensors in the 915 MHz

band with a custom transmitter (with 18 sensors and 100

hypotheses, with each hypothesis of area 3.2m×3.2m).

In each of these cases, the sensors collect RSSI data for

each location of the transmitter. Results show that our

techniques outperform other state-of-the-art algorithm [2]

up to a factor of 50-60% in the large-scale simulation, and

up to a factor of 16% on the indoor WiFi network and

our own outdoor network.

A preliminary version of this paper has been accepted for

publication at IEEE Infocom 2020 [6]. This version of the

paper describes additional results about the performance of the

algorithm, and it provides more details about the experiments.

It also contains proofs of multiple lemmas and theorems that

had been omitted from the preliminary version.

II. BACKGROUND AND MOTIVATION

Problem Setting. The overall setting of the transmitter lo-

calization problem is as follows. Consider a geographic area,

with a number of spectrum sensors deployed or available (if

attached to mobile devices) at known locations. At any instant,

one or more transmitters are allowed to transmit signals

(on a common frequency). Each deployed/available spectrum

sensor senses and processes the aggregate received signal, and

reports appropriate metric (i.e., total received power or signal

strength) to a central server which estimates the location of

the transmitter(s) using the maximum-likelihood hypothesis

algorithm as described below. The overall objective of our

paper is to develop techniques to select an optimal subset of

sensors in order to accurately localize any present transmitters.

Though our developed techniques naturally extend to the case

of multiple transmitters, for simplicity, we assume at most a

single transmitter present at any instant. We start with defining

basic notations used throughout the paper.

Hypotheses, Observations, and Inputs. We discretize the

given space into locations l1, l2, . . . , and transmit power

of a potential transmitter is similarly discretized into levels

p1, p2, . . .. We represent potential “configurations” of the pos-

sible transmitter by hypotheses H0, H1, . . . , Hm, where each

hypothesis Hi represents a configuration (li, pi) of location li
and transmit power pi of a potential transmitter (see Figure 1).

We use the convention that hypothesis H0 corresponds to no

transmitter being present. Localizing any potential transmitter

is thus equivalent to determining the prevailing hypothesis. To

do this, we use observations from a set of deployed sensors.

We denote the observation vector of a subset of sensors T by

xT (we usually drop the subscript T, as it is clear from the

context). In our setting, a sensor observation can be any type of

reading that may be indicative of the transmitter’s location. In

this work, we focus on RSSI, as this is a very common measure

and this also allows for direct comparison with other prior

works. In principle, any other parameter, such as ToA or AoA,

is possible but not very relevant in a crowdsourced setting as

they typically need more complex hardware to measure.

Inputs. For a given set of sensors deployed over an area, we

assume the following available inputs, obtained via a priori

training, data gathering and/or analysis1:

• Prior probabilities of the hypotheses, i.e. P (Hi), for each

hypothesis Hi. Since we do not assume any propagation

model, the probabilities of hypotheses at adjacent loca-

tions may arbitrarily vary. Our technique, therefore, can

naturally model the presence of radio obstructions, such

as buildings, terrain and vegetation.

• Joint probability distribution (JPD) of sensors’ obser-

vations for each hypothesis. More formally, for each

hypothesis Hj , we assume P (xS |Hj) to be known for

each observation xS for the entire set S of deployed

sensor. Note that this also gives us the JPD’s of each

subset T ⊆ S.

Maximum a Posteriori Localization (MAP) Algorithm. We

use Bayes’ rule to compute the likelihood probability of each

hypothesis, from a given observation vector xT for a subset

of sensors T:

P (Hi|xT) =
P (xT|Hi)P (Hi)∑m

j=0
P (xT|Hj)P (Hj)

(1)

We select the hypothesis that has the highest probability,

for given observations of a set of sensors. Formally, the

1In our prior work [7], we discuss novel interpolation techniques to
minimize such training cost.
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MAP algorithm returns the hypotheses based on the following

equation:

arg
m

max
i=0

P (Hi|xT) (2)

The above MAP algorithm to determine the prevailing hy-

pothesis is known to be optimal [8], i.e., it yields minimum

probability of (misclassification) error under the zero-one cost

function. The above hypothesis-based approach to localization

works for arbitrary signal propagation characteristics, and in

particular, obviates the need to assume a propagation model.

However, it does incur a one-time training cost to obtain the

JPDs, which can be optimized via independent techniques [9].

The above approach based on fingerprints has already been

used for localization [10].

Selection of Sensors for Localization. As mentioned above,

in a typical setting, spectrum sensors may be deployed at pre-

determined locations or available at certain locations (if part of

mobile devices) to sense unauthorized signals and thus localize

any unauthorized transmitters. Two immediate problems of

interest in this context are: where to deploy given a number of

sensors, and once deployed/available, which subset of sensors

to select for localization. The latter problem of selection of

sensors is motivated by the fact that, in most realistic settings,

the sensors (or their mobile devices) are not tethered to AC

power outlets and hence have limited energy resources.

Moreover, spectrum sensors also incur cost in transmitting

sensing data to the fusion/cloud center [11]. Thus, it is critical

to optimize resources and costs incurred in localization of

unauthorized transmitters, e.g., via the selection of an optimal

set of sensors. Note that the sensor-selection problem can also

be used to effectively deploy a given number of sensors, by

assuming sensors available at all potential locations.

III. OPTIMAL SENSOR SELECTION FOR INTRUDER

LOCALIZATION

In this section, we address the problem of sensor selection

for transmitter localization; informally, the problem is to select

an optimal set of B sensors such that the overall probability

of error of localizing a transmitter is minimized, given ap-

propriate JPDs as discussed in the previous section. We start

with formulating the problem in the following subsection. In

following subsection, we present a greedy algorithm for it and

prove that it is guaranteed to deliver an approximation solution

for the special case of two hypotheses. However, as shown, the

greedy algorithm can perform arbitrarily bad for the general

case of multiple hypotheses. Thus, we then modify our algo-

rithm to use an “auxiliary” objective function and show that

the modified algorithm delivers an approximation solution for

the general case of multiple hypotheses albeit with a slightly

worse approximation ratio. Finally, we discuss optimizing the

computation complexity of the designed algorithms, certain

extensions and other issues.

A. LSS Problem Formulation

We start with formally defining the optimization objective

(probability of error or misclassification) for a given subset

of sensors. Then, we formally define the sensor selection

problem, hereto referred to as Localization Sensor Selection

(LSS) problem. Throughout this section, we use hypotheses

H0 to represent the hypotheses with no transmitters present,

and Hi to represent the hypotheses wherein a transmitter is

present in ith configuration.

Probability of Error (Perr(T)). Recall that, for a given

observation vector, the MAP localization algorithm outputs

the hypothesis that has the most likelihood among the given

hypotheses. Thus, MAP can also be looked upon as a classifi-

cation technique. Given a subset of sensors T, we define the

probability of error or misclassification as the probability of

the MAP algorithm outputting a hypothesis different from the

actual ground truth (i.e., prevailing hypothesis). The expected

or overall probability of error is an expectation of the prob-

ability of error over all possible prevailing hypotheses and/or

observation vectors xT from T. Our techniques generalize to

the notion of distance-based localization error, as discussed in

§III-G.

Formally, let MAP(x) be the output of the MAP algorithm on

observation vector x from a given subset of sensors T. Given

Hi as the ground truth and x as the observation vector, the

probability of error Perr(T|Hi,x) can be written as:

Perr(T|Hi,x) = 1[MAP(x) 6= i|Hi], (3)

where 1 is an indicator function which is equal to 1 if the

predicate is true, and 0 otherwise. Since expectation over the

data point of an indicator function is its probability, we take

the expectation over x on both sides to get:

Perr(T|Hi) = P (MAP(x) 6= i|Hi) (4)

Above, the probability is over the random variable x. Now, if

the ground truth hypothesis is also not given, we can compute

an expectation over all possible hypotheses. Thus, the (overall)

probability of error for a given set of sensors T is given by:

Perr(T) =

m−1∑

i=0

P (MAP(x) 6= i|Hi)P (Hi) (5)

Localization Accuracy Function, Oacc(T). To facilitate

a greedy approximation solution, we formulate our sensor

selection as a maximization problem—and thus, define a

corresponding maximization objective. In particular, we define

the localization accuracy Oacc(T) as 1− Perr(T). Based on

the above equation Eqn. 5, we get the expression for Oacc(T)
as:

Oacc(T) = 1− Perr(T) =

m−1∑

i=0

P (MAP(x) = i|Hi)P (Hi)

(6)

Localization Sensor Selection (LSS) Problem. Consider a

geographic area with a set of sensors S deployed. Given a

set of hypotheses and JPD’s, as defined in previous section,

the OSS problem is to select a subset T ⊆ S of sensors

with minimum probability of error Perr(T) (or maximum

localization accuracy Oacc(T)), under the constraint that |T|
is at most a given budget B. Formally, the formulation is:

Maximize Oacc(T) subject to |T| ≤ B. (7)
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Fig. 2: Distribution of the received power from a transmitter at an
RTL-SDR sensor, and the Gaussian fit (green line) of the observed
distribution. The transmitter and the sensor are kept in the corridor
of a large building at the same height, 10m apart from each other.
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Fig. 3: Classification of a data point between two Gaussians using a
threshold.

The above formulation implicitly assumes a uniform cost for

each sensor; we generalize our techniques to handle non-

uniform sensor costs (see §III-G).

We show that the above LSS problem is NP-hard, via

reduction from the well-known maximum-coverage problem

(Appendix A). Thus, we develop approximation algorithms

below; in particular, our focus is on developing greedy ap-

proximation algorithms. The key challenge lies in showing

that the objective function satisfies certain desired properties

that ensure the approximability of the algorithm.

B. Transmitter and Sensor Model

We now formally define the assumptions that would allow

us to ensure the approximability of our algorithm. First, we

assume that the joint probability distribution (JPD) follow

a joint Gaussian distribution with the means (pi,Σ) for all

hypotheses Hi, ∀i = 0, . . . ,m − 1. We empirically verify

these assumptions using our own sensor in the wild (as

shown in Figure 2). These assumptions have also been made

by multiple prior studies [12], [13]. The covariance matrix

remains same across hypotheses, since the correlation and

noise are properties of the sensors. The means pi can be

different, as different power values are received by the sensors

depending on the location of the transmitter.

C. Properties of MAP Algorithm

To explain our sensor selection algorithm, we first need to

explain a few properties of MAP algorithm. Assume that there

are two hypotheses Hi and Hj , with distributions (pi, σ
2)

and (pj , σ
2) as well as priors P (Hi) and P (Hj) respectively,

where pi, pj ∈ R. Without loss of generality, we assume

that pi < pj . In this case, given a data point X , the MAP

algorithm works by comparing it with a fixed threshold ST

(shown in Figure 3). If X ≤ ST , then MAP classifies X as

Hi, i.e. MAP (X) = i, otherwise it classifies X as Hj , i.e.

MAP (X) = j. Note that because this is a stochastic decision,

there will always be some probability of classification error,

depending on the value of ST . The MAP algorithm uses the

threshold value of ST =
pi+pj

2
, and it is well-known that this

value of ST provides the lowest probability of classification

error. Formally, we write this as:

X
Hj

≷
Hi

pi + pj
2

+ log
P (Hi)

P (Hj)
(8)

We now explain the case for multidimensional distributions,

where Hi and Hj are given by (pi,Σ) and (pj ,Σ) respectively

(pi,pj ∈ R,Σ ∈ R × R). In this case, the classification

of a given data vector can be done by comparing with a

hyperplane. However, this problem of classification between

distributions with multiple dimensions can be reduced to

classification between distributions with single dimensions,

using the following theorem:

Theorem 1. Given the hypotheses Hi ∼ N(pi,Σ) and Hj ∼
N(pj ,Σ), a data vector x = [x1 . . . xn] can be classified by

applying the following threshold test:

xTΣ−1(pj −pi)
Hj

≷
Hi

1

2
(pi +pj)

TΣ−1(pj −pi)+ log
P (Hi)

P (Hj)
(9)

We prove this in Appendix B. We call the LHS of Eqn

(9) as test statistic T (x). We also show as a corollary of

the theorem that the test statistic itself follows a Gaussian

distribution of N(piΣ
−1(pj −pi), (pj −pi)

TΣ−1(pj −pi))
and N(pjΣ

−1(pj−pi), (pj−pi)
TΣ−1(pj−pi)) if x is from

Hi and Hj respectively. Thus, our problem is now exactly

equivalent to classification using MAP to classify a data point

between two Gaussians with known means and same variance.

D. Greedy Algorithm (GA)

In this subsection, we analyze a simple greedy approach and

show that it delivers a constant-factor approximate solution for

the special case of two hypotheses. In the next subsection, we

present a modified greedy algorithm for the general case of

more than two hypotheses.

Greedy Algorithm (GA): A straightforward algorithm for

the LSS problem is a greedy approach wherein we iteratively

select a single sensor at each stage. At each stage, we select

the sensor that improves the localization accuracy Oacc(T)
the most. The algorithm iterates until the given budget B is

reached. We call this algorithm Greedy Algorithm (GA); see

Algorithm 1 for the pseudo-code.

Constant-Factor Approximation for 2 Hypotheses. The

approximation result of GA depends on two lemmas, which

we prove in the appendix. The first lemma says that addition

of a sensor to a given subset never reduces the value of Oacc:
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Lemma 1. The objective Oacc(T) is monotone in nature, i.e.

if some sensor sk ∈ S \T, then Oacc(T ∪ {sk}) ≥ Oacc(T).

The second lemma says that the amount of increase in

accuracy follows a law of diminishing returns:

Lemma 2. The objective OaccT is submodular in nature, i.e.

if some sensor sk ∈ S \T2, where ∀T1 ⊆ T2 ⊆ S, we have:

Oacc(T1 ∪{sk})−Oacc(T1) ≥ Oacc(T2 ∪{sk})−Oacc(T2)
(10)

Intuitively, these lemmas follow from Theorem 1, where we

showed that the problem of identifying the right hypothesis is

equivalent to classifying between two unidimensional Gaus-

sians. It is well-known that if an objective is monotone and

submodular, then GA gives an approximation result [14], [15].

Thus, the following theorem on the performance of GA now

holds:

Theorem 2. For the special case of two hypotheses, GA gives

a subset T of sensors whose localization accuracy is at least

63% of the optimal.

Algorithm 1 Greedy Algorithm (GA).

INPUT: Set of available sensors S, budget B, objective Oacc

OUTPUT: Subset of sensors T

1: T← φ ⊲ Start with empty subset of sensors
2: while |T| ≤ B do
3: L← Oacc(T)
4: max ← 0
5: for all s ∈ S \T do ⊲ Iterate across all available sensors
6: M = Oacc(T ∪ {s})− L ⊲ Compute gain of sensor
7: if M > max then
8: max ←M ⊲ Pick sensor with highest gain
9: r ← s

10: end if
11: end for
12: T← T ∪ {r} ⊲ Add sensor with highest gain to subset
13: end while
14: return T

Performance of GA for more than two Hypotheses. For

the case of more than two hypotheses, GA no longer provides

a constant-factor approximation. In fact, we can show via a

counter-example that the Oacc() is not submodular for more

than 2 hypotheses. We show this by providing a counter-

example in Appendix C.

E. Auxiliary Greedy Algorithm (AGA)

In the section, we design an approximation algorithm for

the general case of multiple hypotheses based on an auxiliary

objective function. To do so, we first analyze the proof of

Theorem 2 and see why it does not generalize if the number

of hypotheses is greater than 2. This insight helps in defining

an “auxiliary” objective function that is the key to designing

the approximation algorithm for the general case.

Auxiliary Function. Let us consider a special case of MAP

algorithm, viz., MAPij which compares the likelihood of only

two hypothesis Hi and Hj and returns the one with a higher

likelihood. It is easy to formulate the objective function Oacc

in terms of MAPij too. From Equation 6, we easily get:

Oacc(T) =
m−1∑

i=0

P (
⋂

j 6=i

MAPij(x) = i|Hi)P (Hi) (11)

Oacc(T) =

m−1∑

i=0

[1− P (
⋃

j 6=i

MAPij(x) = j|Hi)]P (Hi) (12)

Above, x represents the observation vector for the set of sen-

sors T. For the case of two hypothesis, the above expression

is just
∑1

i=0
[1 − P (MAPij(x) = j|Hi)]P (Hi) where j is

1 if i is 0 and vice-versa; Theorem 2 essential shows that

the term P (MAPij(x) = i|Hi) is submodular. However, for

the case of multiple hypothesis, computing the probability for

a union of events involves product (and sum) of appropriate

probability terms. Note that product of submodular functions

need not be submodular, while sum of submodular functions

is submodular. Thus, we approximate the above Oacc ()

expression as follows, so that it is a sum of submodular

terms. In effect, in defining the auxiliary objective Oaux(),

we estimate the probability of union of events in the above

equation by just taking a summation of the probability of

events, i.e., we ignore the other terms involving subsets of

events. Formally, we define the auxiliary objective Oaux() for

a set of sensors T as:

Oaux(T) = 1−

m−1∑

i=0

∑

j 6=i

P (MAPij(x) = j|Hi)P (Hi) (13)

The above auxiliary objection function is submodular if the

JPDs are Gaussian, as it is a sum of submodular functions

(P (MAPij(x) = i|Hi) is submodular, as per Theorem 2’s

proof). Note that, for a competitive algorithm for the original

LSS problem, we also need to show that maximizing Oaux()
also maximizes the original objective function Oacc().

Auxiliary Greedy Algorithm (AGA). We now modify our

Greedy Algorithm (Algorithm 1) to iteratively maximize the

auxiliary objective Oaux () instead of the original objective

Oacc (). We call this algorithm as Auxiliary Greedy Algorithm

(AGA). From the submodularity of the Oaux () for Gaussian

JPDs, it is easy to see that AGA delivers a solution T s.t.

Oaux (T) is within 63% of the optimal Oaux () possible. The

following lemma states that maximizing Oaux also maximizes

Oacc. See Appendix E for a proof.

Lemma 3. Let T be a subset of sensors already selected by

AGA at some iteration. We claim that Oaux(T) ≤ Oacc(T) ≤
1 − 1

k
(1 − Oaux(T)), where k is a value less than m that

decreases as T grows (i.e., over AGA’s iterations).

We empirically evaluate the value of k defined above in §IV.

The above lemma yields the below theorem, whose proof is

shown in Appendix F.

Theorem 3. For Gaussian JPDs, AGA delivers a subset T of

sensors such that

Perr(T) ≤ 0.37 + 0.63kPerr(OPT),

where k is as defined in the above Lemma and OPT is the

optimal solution.
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F. Optimizing AGA’s Computation Cost

In a straightforward implementation of AGA (akin to Algo-

rithm 1 for GA), Oaux function is computed (using Eqn. (13))

Bn number of times where n is the total number of sen-

sors. Eqn. (13) requires m2 computations of the expectation

P (MAPij(x) = j|Hi), which, for Gaussian distributions,

effectively requires computing the formula shown in Eqn. (11)

of auxiliary material, and thus takes O(B2) time as it involves

matrix multiplication of the observation vector of dimension

B with the covariance matrix of dimension B ×B. Thus, the

overall time complexity of a straightforward implementation

of AGA is O(m2nB3). As mentioned before (and in §II), the

number of hypotheses m can be large due to the large number

of potential transmitter locations and power values; however,

we can reduce the time complexity to O(Bn) as discussed

below, based on some observations and optimizations.

Reducing Number of Comparisons. Consider a sensor s
whose benefit is to be computed in the for loop of Algo-

rithm 1. Below, we show that effectively we only need to

consider a constant number of (Hi, Hj) pairs in Eqn. (13)

when computing s’s benefit, and thus removing the m2 factor

from the time complexity. We implicitly assume a single

transmitter in the below discussion, and later extend our

argument to multiple transmitters. Let us use R to denote the

maximum transmission “range” of the transmitter; formally,

R is such that, beyond R, the probability distribution of the

signal received from the transmitter is similar to the signal

received when there is no transmitter present. We stipulate that

any observation xs at s, P (xs|Hi1) = P (xs|Hi2) for any two

hypotheses Hi1 and Hi2 whose corresponding locations li1
and li2 are more than R distance away from s. The implication

of the above observation is that, for a given sensor s, we can

group all the hypotheses Hi with corresponding location li
more than R distance away from s into one single “super”

hypothesis Hs. Then, if the total number of hypotheses with

corresponding locations within a distance of R from s is

say GR, then the total number of comparisons between pairs

of hypotheses in Eqn. (13) is effectively only (GR + 2)2,

involving GR hypotheses, H0, and Hs. The above brings down

the overall time complexity of AGA to O(G2
RnB

3). Note that

GR is essentially equal to the number of grid locations within

a circle of radius R times the total number of power levels,

and thus, can be considered as constant (does not vary across

problem instances)—which reduces AGA’s time complexity to

O(nB3).

Independent Sensor Observations. If we assume that the

observations across sensors are conditionally independent, the

JPDs can be instead represented by independent probabil-

ity distributions at each sensor location. In this case, the

covariance matrix is purely diagonal, which allows us to

“incrementally” compute the benefit of a sensor from one AGA

iteration to another and thus reduce AGA’s time complexity by

an additional factor of B2—and thus to O(nB). See Appendix

G for details.

G. Generalizations

Weighted (Distance-Based) Objective Function. The proba-

bility of error Perr function penalizes uniformly for each mis-

classification. However, in general, it would be useful to assign

different penalties or weights for different misclassifications.

E.g., Eqn (13) should be generalized to:

O′
aux(T) = 1−

m∑

i=0

∑

j 6=i

wijP (MAPij(x) = j|Hi)P (Hi)

Above, wij is the weight function. We note that our techniques

and proofs of performance guarantees generalize easily to the

above generalized function, irrespective of the weight func-

tion. In particular, weight wij can be the Euclidean distance

between the locations li and lj corresponding to the hypotheses

Hi and Hj . For the general case of multiple transmitters,

where Hi and Hj may represent configuration of multiple

transmitters, a minimum-cost matching based objective can be

used to define the weight wij ; if the number of transmitters

in Hi and Hj are different, then an appropriately penalty for

misses or false-alarms can be added to the weight.

Non-Uniform Sensor Cost. Another generalization of interest

is to allow non-uniform cost for sensors, e.g., to prefer sensors

with more (remaining) battery resources. Here, each sensor s
may have a different cost c(s), and the LSS problem constraint

becomes: total cost of the selected set of sensors must be

less than a given cost budget. For this version of the LSS

problem, our algorithms need to be slightly modified in that

we should pick the sensor that offers the highest improvement

in the objective function per unit cost. To ensure a theoretical

performance guarantee, we also need to use the “knapsack

trick,” i.e., to pick better of the two solutions: one returned

by the modified algorithm, and the other the best one-sensor

solution [16]. It can be shown the overall algorithm still offers

a theoretical performance guarantee for submodular functions,

but the performance ratio is reduced by a multiplicative factor

of 2. The above model is useful when designing a “load-

balanced” strategy to maximize network lifetime of a system—

therein, the sensor-selection algorithm must be run periodically

based on the remaining battery resources.

IV. EVALUATION

In this section, we evaluate the performance of our algo-

rithms developed in the previous sections. We start with a de-

scription of the evaluation platforms used in our experiments.

A. Implementation

Implementation Technique. To evaluate whether AGA can be

feasibly used, we compute the cost of data collection and then

observe the execution time of AGA. The cost of data collection

can be evaluated by the total amount of data collection. It is

possible to collect data either manually (as in our testbed)

or using drones/robots [17]. In our case, since there are m

hypotheses, and propagation is symmetric in nature, we have

collected data from a total of m2/2 grid cells. For each of

these cases, we collect a total of 250 KB of IQ data, and

then perform FFT on the sensors themselves with a bin size
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Fig. 4: Execution time of AGA and baseline techniques both with
and without the optimizations on a (i) CPU and on a (ii) GPU.

of 256 before sending it to the server. Thus, the server only

receives around 1 KB of data per transmitter location per

sensor. The total data that the server collects is therefore,

also equal to m2/2 KB. Computing the joint probability

density functions using this data is trivial, as it involves only

computing the mean and standard deviation of each sensor-

transmitter location paper.

To compute execution time, we implement two distinct

versions of AGA using python. The first version, called AGA-

Basic, does not utilize the optimizations discussed in Section

III-F. The second version, called AGA-OPT, includes these

optimizations. Each version utilizes multiple cores of a CPU

using joblib library [18] to compute the gain of each available

sensor in parallel. It also uses the numpy library to vectorize

operations wherever possible to make execution fast. We run

three different instances of AGA – with 100, 1600 and 4096

hypotheses. Each of these instances have 100 available sensors

and a budget of 20. We execute this on a Core i9-7900X CPU

having a frequency of 3.30GHz and 20 cores.

Implementation on CPU. Figure 4(i) shows the execution

time of these three instances. We note that for small instances,

the execution time is relatively small. For example, for 100 hy-

potheses, AGA-basic only takes 13s to execute. However, this

rises to 28 minutes for 1600 hypotheses and to over 10 hours

for 4096 hypotheses. We also find that for small instances, the

optimizations do not lead to much improvement due to the

overhead of maintaining the data structures. However, there is

a large improvement for 4096 hypotheses, where we get an

execution time of 150 minutes using the optimized version.

Implementation on GPU. Although execution on CPU’s

using our optimizations is feasible, we further note that the

bulk of execution time is spent on matrix operations. This

suggests that execution on a GPU can lead to much better

utilization of data-level parallelism, and further speed up

execution. To evaluate this, we optimize the computation of

the gain of the sensors using numba library [19] to execute

it on a GPU. While using numba library, we ensure that the

computation requests from the GPU for all the sensor gains are

batched into a single request, in order to reduce movement of

data between the CPU and GPU memory. This optimizes the

computation of the sensor gains. We utilize an nVidia GTX

2080Ti GPU having 4352 cores with a processor clock of

1.545 GHz. We then note the execution time for each of the

three instances of both AGA-Basic and AGA-OPT.

Figure 4(ii) shows the execution times on a GPU. We note

that execution is much faster on a GPU than on a CPU. For

example, AGA-OPT now runs in 123s, 130s and 133s for 100,

1600 and 4096 hypotheses respectively. This shows that AGA

can run very fast on a system with GPU, with a speedup of up

to 155 times on the large instances, compared to AGA-Basic.

While this is still slower than the baseline techniques, it is still

feasible to use it in realistic settings.

B. Evaluation Platforms

We use the following three evaluation platforms with vary-

ing fidelity of signal propagation characteristics, to demon-

strate the performance of our techniques.

• Simulation based on synthetic data. To demonstrate the

scalability of our techniques and the sensitivity of our

algorithms to changes in settings, we consider a large

geographic area of 4km by 4km, with signal path-loss values

generated using the SPLAT! application for the Longley-

Rice [20]. We use the noise in the sensor measurements

(measured independently) to generate the required JPDs.

We assume observations to be conditionally independent,

thus representing the JPDs as set of probability distributions,

one for each sensor and intruder configuration pair. Unless

otherwise stated, for this large-scale platform, we use 100m

x 100m grid cells giving 1600 potential locations, randomly

deploy a transmitter at the height of 30m at a random

power between 27-33 dBm which corresponds to roughly

250-750m of transmission range. We randomly deploy 100

spectrum sensors in the area.

• Indoor Data. We use publicly available data [21], which

deploys transmitters and receivers at 44 locations at an

indoor building of an area of 14m×14m. Here, we use 1m x

1m grid cells, thus giving us a total of 196 potential locations

and hypotheses. The transmitters transmit at a frequency of

2.4GHz, with a transmit power of 10mW, and antenna gains

of 1.1 dBi.

• Outdoor Testbed. Finally, to evaluate our techniques in a

more practical outdoor setting, we deploy our own testbed in

a parking area of dimension 32m×32m2. Each grid cell has

size of 3.2m x 3.2m, thus giving us a total of 100 grid cells.

We place a total of 18 sensors on the ground. The sensors

consist of single-board computers such as Raspberry Pi’s

and Odroid-C2’s connected to an RTL-SDR dongle. The

2We have made this dataset publicly available at: https://github.com/
Wings-Lab/IPSN-2020-data.

https://github.com/Wings-Lab/IPSN-2020-data
https://github.com/Wings-Lab/IPSN-2020-data
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Fig. 5: Comparison of various techniques for (i) Localization accuracy
(Oacc ()), and (ii) Weighted localization error, for varying available
budget (number of sensors).

RTL-SDRs use dipole antennas. We collect raw Inphase-

Quadrature (I/Q) samples from the RTL-SDRs [22], while

transmitting data using a USRP-based transmitter from each

grid cell at a height of 1.5m. We perform FFT on the

I/Q samples with a bin size of 256 samples to get the

signal power values, and then utilize the mean and standard

deviation of the power reported for each of the sensors.

Metrics We evaluate the performance of a localization strategy

in terms of two key metrics: (i) Localization accuracy, i.e.,

Oacc(T), and (ii) Weighted localization error, which weights

the misclassification error by the Euclidean distance between

the actual and the predicted location (§III-G).

Compared Algorithms. We implement both of our designed

algorithms, AGA and GA. We also implement two other

techniques for comparison purposes. The first technique, called

Coverage, is the selection heuristic from the recent work [2],

which essentially tries to maximize the “coverage” of the

sensors in a greedy manner.3 We also implement a Random

algorithm which selects the required sensors randomly. We

implement these algorithms in python, with extensive use

of numpy library for vectorized operations. To ensure that

our results are statistically significant, we run each of the

algorithms 100 times; the range of values is plotted in each

of the figures.

C. Simulation Based on Synthetic Data

Varying Budget. Figure 5 shows the performance of our tech-

niques for budgets varying from 1 to 20 sensors. We observe

that AGA and GA easily outperform other two algorithms

in terms of both metrics, with AGA outperforming even GA

quite significantly. For example, AGA outperform Coverage

by up to 39% and 56% for localization accuracy and error

respectively, while outperforming GA by 15% and 50% for

the two metrics respectively.

Varying Number of Hypotheses. We now show the perfor-

mance of our algorithms in terms of localization accuracy,

for varying number of hypotheses. In Figure 6, we plot

three different cases: (i) the default configuration of 100m

by 100m grid cells, (ii) a larger area of 6km by 6km with

100m by 100m grid cells giving 3600 potential locations, and

finally (iii) a configuration with default 4km by 4km area,

3Their approach Metropolis performs worse than their greedy approach
in open areas [2], and hence, not compared. Similarly, [23] selects sensors
to measure only spatial phenomena such as temperature, and thus is not
applicable to our problem.
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Fig. 6: Comparison for con-
figurations with different num-
ber of hypotheses, with a fixed
budget of 10 sensors.
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Fig. 7: Comparison for varying
number of available sensors, with
a fixed budget of 10 sensors.

but smaller 62.5m by 62.5m grid cells. First, we observe that

AGA continues to outperform other techniques significantly

across different cases, with the performance gap between

AGA and others (especially GA) increasing with increase in

number of hypotheses. Also, as expected, with increase in area

and thus number of hypotheses, the accuracy of each of the

algorithms falls, but deterioration in AGA’s accuracy is much

less compared to other techniques. Finally, the performance of

the Coverage algorithm falls significantly when the number of

hypotheses increases. This is because the Coverage algorithm

is designed considering indoor localization and thus works

well for smaller areas. In fact, for the case of smaller grid

cells, the performance of the Coverage algorithm is worse than

that of Random.

Varying Sensor Density. Figure 7 shows the accuracy of lo-

calization for varying sensor density (i.e., number of available

sensors) with a fixed budget of 10 sensors. We note that the

accuracy of localization of AGA significantly improves when

we increase the number of sensors. For example, it increases

by 16% when the number of sensors increases from 50 to 150.

In contrast, the performance of GA and Coverage both actually

reduces by 7%. This is because having with an increase in

sensor density GA and Coverage select sensors that are too

close to one another to be useful. In contrast, AGA has a

submodular objective which leads to an increase in accuracy

whenever the value of the optimal value increases.

Non-Uniform Sensor Costs. We also evaluate performance of

techniques under the setting of sensors with non-uniform cost.

We obtain the costs by computing the energy consumption of

each sensor by varying the number of samples from 32 to

2048 in multiples of 2. We then randomly assign some energy

and corresponding distributions to each sensor. Figure 8 shows

the performance for such heterogenous sensors. As expected,

AGA continues to outperform the other techniques in both

localization error. However, GA performs much worse than

expected in case of heterogeneous sensors.

Empirical Evaluation of k Value. We now evaluate the k
value as defined in Lemma 3. In particular, the performance

guarantee of AGA depends on the value of k, with better

performance guarantee for lower k (ideally, k should be equal

to 1). Figure 9 shows the value of k for varying budget. We

observe that for a very low budget, the value of k is very large,

but it reduces rapidly with increase in budget. In particular, for

budgets of 10 and 15 sensors, the value of k is 1.78 and 1.19
respectively. This shows that AGA’s performance guarantee
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Fig. 8: Comparison of various techniques, for sensors with non-
uniform cost.
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Fig. 10: Comparison with an
optimal algorithm, for small in-
stances of the problem.

as per Theorem 3 reaches its near-best for a moderately small

budget.

Comparison with Optimal in Small Instances. We further

confirm AGA’s performance with respect to optimal, we con-

sider small instances of the problem (with 100 hypotheses)

and compare AGA with an optimal algorithm. The optimal

algorithm uses exhaustive search, which is impossible to

execute over larger instances. See Figure 10. We observe that

AGA and optimal perform near-identically, with the optimal

algorithm yielding at most 0.7% higher localization accuracy

than AGA. Note that GA performs worse than AGA and

optimal even in this case, albeit by a smaller amount than

in cases with larger number of hypotheses. Moreover, even

for such small instances, the optimal algorithm takes at least

an order of magnitude more execution time compared to both

AGA and GA.

D. Evaluation in Indoor and Outdoor Testbeds

Indoor Data. We now evaluate our techniques over a pub-

licly available data-trace taken in an indoor environment, as

described in the previous subsection. See Figure 11. We again

observe similar performance trends as in previous experiments,

for both the performance metrics. The relatively smaller per-

formance gap between AGA and GA is likely due to smaller

a number of hypotheses.

Outdoor Testbed Figure 12 shows the performance of various

algorithms over our outdoor testbed described in the previ-

ous subsection. We observe that AGA again performs the

best among all techniques in both the metrics, with AGA

outperforming Coverage by up to 18%. As in the indoor

testbed, the performance gap between the AGA and GA is

less (close to 1%) compared to the large-scale simulations

due to a small number of hypotheses. Also, unlike in the case

of the simulations, the performance of Coverage algorithm is

significantly better than that of random. This is because the
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Fig. 11: Performance over public indoor data.
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Fig. 12: Performance over outdoor testbed data.

Coverage algorithm is designed in a way that it performs much

better when the experiment is performed over a smaller area.

V. RELATED WORK

Indoor Localization. Indoor localization has been a topic

of interest for a long time [24], [25], [26]. Our technique

for the hypothesis-based framework utilizes the fingerprinting

technique [27] that has been discussed in earlier works.

The work [28] fuses IMU sensors and WiFi RSSI mea-

surements to improve the accuracy of indoor localization.

Similar techniques have been used using sound waves too [29].

Algorithmic techniques to localize a transmitter include using

techniques like multilateration, k-nearest neighbor, bayesian

averaging, multi-layer perceptron, apart from maximum a

posteriori (MAP) estimate. Our work utilizes the objective of

MAP to derive the objective of sensor selection, and does

not study the performance of the other existing localization

approaches. Note that since our work studies the orthogonal

problem of selecting sensors in the context of fingerprint and

MAP-based localization, we do not compare our work with

these approaches.

Sensor Selection for Transmitter Localization. A large

number of works have developed techniques for detecting and

localizing transmitters or intruders that emit radio signals [30],

[10]. Note that the transmitter localization problem is slightly

different from the problem of indoor localization. To the best

of our knowledge, none of these prior works on transmitter

localization either have addressed the optimization problem

addressed in the paper. The closest related works are [1]

and [2] as discussed next. The work [1] focuses on detection of

unauthorized transmitters using low-cost sensors in the context

of shared spectrum systems; they consider the problem of

selection of sensors in this context, and propose a heuristic

with no performance guarantees. The key difference of our

work from theirs is that they focus on detection of transmit-

ters, which is a much simpler problem than localization of

transmitters. In addition, [2] considers selection of sensors for

transmitter localization, but with a objective of maximizing

the “coverage” of the region by the sensors. They present
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heuristics without any performance guarantees. Nevertheless,

we implement their approach and compare with our techniques

(§IV).

Sensor Selection in Sensor Networks. Sensor selection

is a natural problem to address in the context of wireless

sensor networks deployed to detect and/or localize an event

or phenomenon (see [31] for a survey). Many of these works

have leverage the submodularity property to develop greedy

approximation algorithms. The closest work among these is

that of [23] which shows approximability of the greedy ap-

proach for the problem of minimizing uncertainty in estimating

a spatial phenomenon (e.g., temperature). However, in general,

the key difference of our work with these works is our desired

objective function (Oacc or Perr)—and thus, the making the

proof of monotonicity and/or submodularity of the objective

function very different. In our case, we had to even circumvent

the non-submodularity of the objective function Oacc by

considering an appropriate auxiliary objective function.

Online Selection of Sensors. An alternate formulation of our

sensor selection problem could be to select sensors adaptively

based on the observations of previously selected sensors.

This online problem is similar to the adaptive stochastic

optimization problem addressed in other contexts [32], [33],

[34], [35]. However, in online selection, a sensor is selected

based on analysis (which will incur non-trivial latency) of

observations of previous sensors. This makes localization

based on near-simultaneous sensor observations, required to

localize intermittent transmitters, infeasible. Also, note that

online selection needs to be done anew for each localization,

which may be performed very frequently (e.g., every second

or fraction of a second) in many applications, e.g., spectrum

patrolling. Thus, our focus is on offline selection.

VI. DISCUSSIONS

We now discuss some of the assumptions made by our study,

and how essential these assumptions are to detect unauthorized

transmissions in the wild.

Presence of Multiple Transmitters: Our hypothesis-based

techniques naturally generalize to the case of multiple trans-

mitters, if we represent each combination of configurations

of present transmitters by a separate hypothesis. Since the

MAP, GA, and AGA algorithms are formulated in terms

of hypotheses, they generalize naturally to localization of

multiple transmitters. However, the key challenge arises due

to the large number of hypotheses—exponential in the number

of potential transmitters— and thus, the high time complexity

of AGA. In our prior work [7], we develop an efficient

MAP-based technique for localization of multiple transmitters.

Similarly, our sensor-selection algorithms (GA and AGA) can

also be modified to work efficiently for the case of multiple

transmitters as follows.

The key observation is that, for a given hypothesis Hi, the

probability distribution of observations at a sensor s depends

only on the configuration of transmitters in Hi that within a

distance of R of s. I.e., for any observation xs at a sensor

s, P (xs|Hi1) = P (xs|Hi2) for any two hypotheses Hi1 and

Hi2 that have the same configuration (locations and powers)

0 3 6 9 12 15 18
Budget (Number of Sensors)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f L

oc
al

iza
tio

n

AGA
AGA-Interpolated
Coverage-
Interpolated

Fig. 13: Performance of AGA and Coverage algorithms when half
the JPD’s are obtained from empirical measurement, and the other
half is obtained by interpolation.

for transmitters that are within a distance of R of s. The

implication of the above observation(s) is that, for a given s,

we can group the given hypotheses into equivalence classes

based on the configuration of transmitters close to s, and

to compute the benefit of a sensor s with AGA’s iteration,

we only need to compare pairs of equivalence classes (rather

than the original hypotheses, which are exponentially many).

The number of such equivalence classes is easily seen to be

equal to GT
R where GR is the number of locations (grid cells)

within R times the number of power levels, and T is the

maximum number of transmitters possible/allowed within a

range R of s (or any location). Thus, computation of benefit

of s requires consideration of G2T
R pairs of equivalence classes.

If we assume T to be a small constant, then the overall time

complexity of AGA reduces to O(nB3) as before, and to

O(nB) if we assume independence of sensor observations.

In our work, we have assumed the existence of only a

single transmitter in the area under consideration. The ra-

tionale behind this assumption is that in many applications

multiple concurrent transmitters do not exist due to the use

of an effective multiple access protocol that avoids concurrent

transmissions in the same neighborhood. Transmissions from

far-away transmitters can be treated as noise.

Presence of Training Data: Our framework assumes that

training data for each of the hypothesis is available. This

training is usually expensive as it requires a lot of manual

effort. While reducing training effort involved in utilizing

MAP is not the primary focus of this work, we studied the

performance of our techniques when we collected only half the

original training data. We obtained the means of the rest of the

joint probability distributions (JPD’s) by linear interpolation.

We then compared (Figure 13) the performance of AGA and

Coverage algorithms with and without interpolations.

We observe that the performance of the algorithms do

reduce on reducing the amount of training. The reduction

in performance is highest (close to 18% at budget of 7)

when the budgeted sensors is moderately high, but it reduces

(around 8% at budget of 5) with further increases in the

budget. While for clarity we do not show the reduction for

the other techniques, this reduction in performance is observed

for all the techniques, as they all depend on MAP for the final



11

localization. We leave it to future work to investigate better

interpolation techniques to enable more accurate localization.

Knowledge of Selected Sensors by Transmitters: In this

work, we have assumed that the transmitters are unaware of

the sensors that are selected. This is because our work is

evaluated on the prior probabilities of each hypothesis being

equal. If the transmitters are aware of the selected sensors,

in certain types of applications (e.g., spectrum patrolling

problems when the transmitters are unauthorized) they would

try to evade the sensors by appearing at locations that are

less closely monitored. This in turn would gradually change

the prior probabilities, leading to a change in the subset of

selected sensors. Studying the changing dynamics of how the

unauthorized transmitters and selected sensors can react to

changing priors if left for future work.

Validation over Larger Testbed: In this work, we have

validated our algorithms over smaller testbeds and large-scale

simulations. Smaller testbeds do provide a good understanding

of the algorithms involved, as the power of the transmitter is

correspondingly low. Experimental validation by testing over

a larger area is currently difficult, as this requires regulatory

approval to transmit with a larger power in the wild. However,

the propagation models used in our large-scale simulations are

known to be used by cellular service providers [36], and so we

believe they provide us a good insight into the performance

of our algorithms if they are actually deployed.

VII. CONCLUSION

In this work, we have considered the hypothesis-driven

approach for localization of transmitters, and developed tech-

niques to optimize the localization accuracy under a constraint

of limited resources. Our developed techniques have been

shown to yield provably approximate solutions, while also

having low running time. Our work can be instrumental in

maximizing the network lifetime of a spectrum monitoring

and/or patrolling system. Furthermore, we have evaluated our

work using three distinct techniques – large-scale simula-

tion, publicly available dataset and our own testbed. We are

making the source code available to the community at the

URL “https://bitbucket.org/arani89/sensorselection-infocom”.

Our future work focuses on improving our theoretical per-

formance guarantee results, and developing similar sensor

selection approximation algorithms for other localization ap-

proaches that are not hypothesis-driven.
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Petar M. Djurić (M’90–SM’99–F’06) received the
B.S. and M.S. degrees in electrical engineering from
the University of Belgrade, Belgrade, Yugoslavia,
respectively, and the Ph.D. degree in electrical en-
gineering from the University of Rhode Island,
Kingston, RI, USA. He is a SUNY Distinguished
Professor and currently a Chair of the Department of
Electrical and Computer Engineering, Stony Brook
University, Stony Brook, NY, USA. His research has
been in the area of signal and information processing
with primary interests in the theory of machine

learning; Monte Carlo-based methods; signal and information processing over
networks; signal modeling, detection, and estimation; RFID and the IoT. Prof.
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Appendix

APPENDIX A
PROOF OF NP-HARDNESS

Lemma. The Offline Sensor Selection (LSS) problem is NP-
Hard.

Proof: In the maximum coverage problem, we are given a
universe set U = {uk}, and a collection of its subsets, Vk ⊆
U. The objective is to choose at most a budget B number of
Vk’s so that the number of items in their union is maximized.
To map this to LSS, we set U equal to the set of hypotheses
H0 to Hm−1. Also, we have a different Vk for each sk ∈ S.
Let the corresponding sensor observation be denoted by xk.
For each item ui ∈ Vk, we set the value of P (xk|Hi) = 1.
For each item ui ∈ U \Vk, we get P (xk|Hi) = 0. Now, let
Vk = {Hi : P (xk|Hi) = 1}. Thus, we have an LSS problem
instance, with a given joint probability distribution (JPD) for
all sensors, fixed number of hypotheses and a fixed budget B.
Solving this instance returns a fixed subset of sensors T. Since
a single sensor corresponds to a single subset Vk, we select
the subsets corresponding to the selected sensors. Thus, we
can solve an arbitrary maximum coverage problem if LSS is
solvable in polynomial time. This shows that the LSS problem
is NP-Hard.

APPENDIX B
PROOF OF THEOREM 1

Theorem 1. Given the hypotheses Hi ∼ N(pi,Σ) and Hj ∼
N(pj ,Σ), a data vector x = [x1, . . . , x|T|]

T can be classified
by applying the following threshold test:

xTΣ−1(pj −pi)
Hj

≷
Hi

1

2
(pj +pi)

TΣ−1(pj −pi) + log
P (Hi)

P (Hj)
(1)

Proof: We have two hypotheses Hi and Hj . We first
compute the posterior probabilities as follows:

P (Hj |x)

P (Hi|x)
=

P (x|Hj)P (Hj)

P (x|Hi)P (Hi)
[Using Bayes’ Theorem]

=
P (x1, . . . , x|T||Hj)P (Hj)

P (x1, . . . , x|T||Hi)P (Hi)

=
P (Hj)

P (Hi)

exp[− 1

2
(x− pj)

TΣ−1(x− pj)]

exp[− 1

2
(x− pi)TΣ−1(x− pi)]

=
P (Hj)

P (Hi)
exp[−

1

2
(x− pj)

TΣ−1(x− pj)

+
1

2
(x− pi)

TΣ−1(x− pi)]

(2)

We now consider the ratio test:

P (Hj)|x)

P (Hi)|x

Hj

≷
Hi

1 (3)

Taking logarithm on both sides of Eqn. (2), we get:

−
1

2
(x− pj)

TΣ−1(x− pj) +
1

2
(x− pi)

TΣ−1(x− pi)

Hj

≷
Hi

log
P (Hi)

P (Hj)

(4)

which on simplifying gives us:

(x− pi)Σ
−1(x− pi)− (x− pj)

TΣ−1(x− pj)
Hj

≷
Hi

2 log
P (Hi)

P (Hj)

=⇒ xTΣ−1pj + pT
j Σ

−1x− pT
j Σ

−1pj − xTΣ−1pi

− pT
i Σ

−1x+ pT
i Σ

−1pi

Hj

≷
Hi

2 log
P (Hi)

P (Hj)

=⇒ 2xTΣ−1(pj − pi) + pT
i Σ

−1pi − pT
j Σ

−1pj

Hj

≷
Hi

2 log
P (Hi)

P (Hj)

=⇒ xTΣ−1(pj − pi)
Hj

≷
Hi

1

2
(pj + pi)

TΣ−1(pj − pi) + log
P (Hi)

P (Hj)
(5)

This proves our theorem. In the special case of equal priors,
i.e., P (Hi) = P (Hj), Eqn. (5) further simplifies to

xTΣ−1(pj − pi)
Hj

≷
Hi

1

2
(pj + pi)

TΣ−1(pj − pi) (6)

For convenience, we henceforth denote pij = pj − pi.
We call the LHS of Eqn. (1) as test statistic T (x).

Corollary 1. If Hi is true, then T (x) follows the Gaussian dis-
tribution N(pT

i Σ
−1pij ,p

T
ijΣ

−1pij). If Hj is true, then T (x)
follows the Gaussian distribution N(pT

j Σ
−1pij ,p

T
ijΣ

−1pij)

Proof: We first find the mean of T (x). We note that:

E[T (x)] = E[xTΣ−1pij ] = E[x]TΣ−1pij

=

{

pT
i Σ

−1pij , if Hi is true

pT
j Σ

−1pij , if Hj is true

(7)

To find the variance of T (x), we denote the mean of T (x) to
be pk, where k ∈ i, j depending on whether hypotheses Hi

or Hj is true. We also note that the covariance matrix Σ is
symmetric positive definite, i.e., Σ = ΣT .

Var[T (x)] = E[T (x)− E[T (x)]]2

= E[xTΣ−1pij − pT
kΣ

−1pij ]
2

= E[(x− pk)
TΣ−1pij ]

2

= E[pijΣ
−1(x− pk)(x− pk)

TΣ−1pij ]

[as (Σ−1)T = (ΣT )−1 = Σ−1]

= E[pT
ijΣ

−1ΣΣ−1pij ]

= pT
ijΣ

−1pij (8)

Thus, the statement of Corollary 1 follows.



2

APPENDIX C
PROOFS OF LEMMAS 1 AND 2

We first derive an expression of Oacc(T). We note that:

P (MAP(x) = i | Hi)

= P
(

T (x) ≤
1

2
(pj + pi)

TΣ−1(pj − pi) | T (x)

∼ N(pT
i Σ

−1pij ,p
T
ijΣ

−1pij)
)

= P

(

T (x)− pT
i Σ

−1pij
√

pT
ijΣ

−1pij

≤
1

2

√

pT
ijΣ

−1pij

|
T (x)− pT

i Σ
−1pij

√

pT
ijΣ

−1pij

∼ N(0, 1)

)

= P
(

Z ≤
1

2

√

pT
ijΣ

−1pij | Z ∼ N(0, 1)
)

[

introducing new random variable, Z =
T (x)−p

T
i Σ−1

pij
√

p
T
ij

Σ−1pij

]

= Φ(
1

2

√

pT
ijΣ

−1pij) (9)

where Φ is the CDF of standard normal distribution. Also,

P (MAP(x) = j | Hj)

= P
(

T (x) ≥
1

2
(pj + pi)

TΣ−1(pj − pi) | T (x)

∼ N(pT
j Σ

−1pij ,p
T
ijΣ

−1pij)
)

= P

(

T (x)− pT
j Σ

−1pij
√

pT
ijΣ

−1pij

≥ −
1

2

√

pT
ijΣ

−1pij

|
T (x)− pT

j Σ
−1pij

√

pT
ijΣ

−1pij

∼ N(0, 1)

)

= P
(

Z ≤
1

2

√

pT
ijΣ

−1pij | Z ∼ N(0, 1)
)

[

introducing new random variable, Z =
T (x)−p

T
j Σ−1

pij
√

p
T
ij

Σ−1pij

]

= Φ(
1

2

√

pT
ijΣ

−1pij) (10)

This gives us the following expression of Oacc(T):

Oacc(T) = P (MAP(x) = i|Hi)P (Hi)

+ P (MAP(x) = j|Hj)P (Hj)

= Φ(
1

2

√

pT
ijΣ

−1pij)[P (Hi) + P (Hj)]

= Φ(
1

2

√

pT
ijΣ

−1pij) [as P (Hi) + P (Hj) = 1]

(11)

We use this expression of Oacc(T) to get the following
lemmas:

Lemma 1. The objective Oacc(T) is monotone in nature, i.e.
if some sensor sk ∈ S \T, then Oacc(T ∪ {sk}) ≥ Oacc(T).

Proof: We show that the argument of Φ increases when we
add a sensor sk to T. To do this, we first denote the covariance
matrices of T and T∪{sk} by Σ and Σnew respectively. Also,
let:

Σnew =

[

Σ bk
bTk σ2

k

]

(12)

where the vector bk represents the noise correlation between
the sensors sk and si ∀ i ∈ [1, . . . , |T|] and σ2

k is the noise
covariance of the sensor sk. Using Banachiewicz inversion [1],
we get:

Σ−1

new =

[

Σ−1 O
O O

]

+

[

−Σ−1bk
I

]

(σ2

k − bTkΣ
−1bk)

−1
[

−Σ−1bk I
]

(13)

Since Σnew � 0 and Σ � 0, the Schur complement of Σ in
Σnew is also positive semidefinite, i.e.,

Σnew/Σ = (σ2

k − bTΣ−1b) ≥ 0. (14)

With the addition of sensor sk to the subset T, the mean vector

can be rewritten as pnew =
[

pT µk

]T
. Now the argument of

Φ can be computed as:

pTnew Σ−1

new pnew

=
[

pT µk

]

[

Σ−1 O
O O

] [

p
µk

]

+ a2k(σ
2

k − bTkΣ
−1bk)

−1

= pT Σ−1 p+ a2k(σ
2

k − bTkΣ
−1bk)

−1 (15)

where the scaler ak is given by

ak =
[

pT µk

]

[

−Σ−1bk
I

]

=
[

−Σ−1bk I
]

[

p
µk

]

(16)

From Eqn. (14) and Eqn. (15) , we have

pTnew Σ−1

new pnew ≥ pT Σ−1 p (17)

Thus, adding a dimension to pij can never reduce the
value of pT

ijΣ
−1pij . Since the CDF of the standard normal

distribution Φ is a non-decreasing function in its argument,
Oacc(T) increases on adding sensors to T.

Lemma 2. The objective Oacc(T) is submodular in nature,
i.e. if some sensor sk ∈ S \ T2, where ∀T1 ⊆ T2 ⊆ S, we
have:

Oacc(T1 ∪{sk})−Oacc(T1) ≥ Oacc(T2 ∪{sk})−Oacc(T2)
(18)

Proof: We denote the difference of the values of Oacc as
gain G, and define it as follows:

G(T, sk) = Oacc(T ∪ {sk})−Oacc(T) (19)

Now, let us consider two subsets of S, T1 and T2, where
T1 ⊆ T2. Note that in this case, Oacc(T1) ≤ Oacc(T2) due
to monotonicity. We also note that the double derivative of
Oacc is negative, and that the Oacc function is continuous and
differentiable at all points. Thus, from the nature of φ function,
and the fact that Oacc is monotone, we observe that the gain
G(T1, sk) ≥ G(T2, sk). This proves our theorem.
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APPENDIX D
COUNTER-EXAMPLE TO SHOW THAT ACTUAL OBJECTIVE

IS NOT SUBMODULAR

We consider the case where there are multiple hypotheses,
where each hypothesis Hi(i = 0, . . . ,m) has a multi-variate
Gaussian distribution with its individual mean but the same
covariance. Formally,

Hi : x ∼ N(pi,Σ) (20)

For convenience, we call this setting as Gaussian input with
multiple hypotheses. We now show that in this setting, the
objective Oacc is not submodular.

Lemma. In a setting with multiple hypotheses, Oacc is not
submodular.

Proof: We have the following expression of Oacc:

Oacc =

m−1
∑

i=0

∏

j 6=i

[1− P (MAPij(x) 6= j|Hi)]P (Hi) (21)

Note that since MAPij is the test among the two hypotheses:

Hi : N(pi,Σ) & Hj : N(pj ,Σ) (22)

We first shift the means of both hypotheses so that the mean
of Hi is set to O. This does not affect the probability of
misclassification, since both the means are equally shifted.
Then, Hi and Hj have means of O and pj − pi respectively.
Now, using Lemma 2, we have the value of Oacc as:

Oacc =

m−1
∑

i=0

P (Hi)
∏

j 6=i

φ(
1

2

√

pT
ijΣ

−1pij) (23)

We now show that Oacc is not submodular using a counter-
example. Let there be three hypothesis H0, H1 and H2 with
prior probabilities P (Hi) each equal to 0.33 and two sensors
with the mean vectors [0, 0], [0.75, 0.75] and [0.5, 0.5]. Also
assume that Σ is an identity matrix. A realistic scenario where
this configuration is possible is shown in Figure 1.

We first observe that when no sensors are selected, we
select one among the three hypothesis at random, which will
be correct only with an expected probability of 0.33, i.e.,
Oacc({}) = 0.33. We now show the values of Oacc, which
is also shown visually in Figure 2.

Oacc({s1}) = 0.3571 (24)

Thus, the gain G(s1, {}) = Oacc(sk) − Oacc({}) = 0.023.
Now, we compute the gain of adding the second sensor.
Selecting both sensors, we get the value of Oacc as:

Oacc({s1, s2}) = 0.4041 (25)

Thus, the gain G(s2, {s1}) = Oacc({s1, s2})−Oacc({s1}) =
0.0469. We observe that the gain has gone up from 0.023 to
0.0469 on adding the sensor s2 to our set {s1, s2}. Thus, the
objective Oacc is not submodular.

H2H1

s1

s2

Y

O

Fig. 1: A schematic representation of the configuration of sensors and
hypotheses described in Appendix D. The location corresponding to
hypothesis H1 is closer to the origin as compared to H2, since higher
power is sensed if it is true. Note that H0 is not shown, as it denotes
absence of any transmitter.

APPENDIX E
PROOF OF LEMMA 3

First, we recall from Section 3 that:

Oacc(T) =
m−1
∑

i=0

[1− P (
⋃

j 6=i

MAPij(x) = j|Hi)]P (Hi), and

(26)

Oaux(T) = 1−

m−1
∑

i=0

∑

j 6=i

P (MAPij(x) = j|Hi)P (Hi) (27)

We prove the lemma in three parts.

Oaux(T) ≤ Oacc(T). This directly follows from an applica-
tion of Boole’s inequality [2] which states that the probability
of a union of events is never greater than the sum of the
probabilities of individual events. In particular, by Boole’s
inequality, we have for all i:

P (
⋃

j 6=i

MAPij = j|Hi) ≤
∑

j 6=i

P (MAPij = j|Hi) (28)

Then, by multiplying each by P (Hi), summing over all i,
subtracting each side from 1, and noting that

∑

i P (Hi) = 1,
we get Oaux(T) ≤ Oacc(T) using Eq (26) and Eq (27).

Oacc(T) ≤ 1− 1

k
(1−Oaux(T)). To get this, we utilize the

fact that the probability of a union of events is more than the
probability of each of the individual events. Thus,

P (
⋃

j 6=i

MAPij(x) = j|Hi) ≥ max
j 6=i

{P (MAPij(x) = j|Hi)} ∀i.

We also have the below, as maximum is greater than mean:

max
j 6=i

{P (MAPij(x) = j|Hi)} ≥
1

m

∑

j 6=i

P (MAPij(x) = j|Hi) ∀i,
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Fig. 2: In the configuration shown in Appendix D, we show (a) value of Oacc for different subsets, and (b) increase in value of Oacc.

where 0 ≤ i ≤ m− 1. Now, using Eq (26) and the above two
equations, we get:

Oacc(T) ≤ 1−
1

m

m−1
∑

i=0

∑

j 6=i

P (MAPij(x) = j|Hi)P (Hi)

= 1−
1

m
(1−Oaux(T)).

Value of k reduces with increase in Oacc. We need to show
that:

1−Oaux(T
′)

1−Oacc(T ′)
≤

1−Oaux(T )

1−Oacc(T )
, where T ′ ⊇ T (29)

We show the more general case. For any events, A, B, if their
individual probabilities reduce the ratio of their sum and union
also reduces, i.e.

P (A1) + P (B1)

P (A1 ∪B1)
≥

P (A2) + P (B2)

P (A2 ∪B2)
, (30)

where P (A1) ≥ P (A2) & P (B1) ≥ P (B2)

Let ∆A = P (A1)−P (A2) and ∆B = P (B1)−P (B2). Then,
we have:

P (A2) + P (B2)

P (A2 ∪B2)

=
P (A1)−∆A + P (B1)−∆B

P (A1)−∆A + P (B1)−∆B − (P (A1)−∆A)(P (A2)−∆B)

=
P (A1) + P (B1)−∆

P (A1) + P (B1)−∆− (P (A1)−∆A)(P (B1)−∆B)

=
P (A1) + P (B1)−∆

P (A1 ∪B1)−∆+ (P (B1)∆A + P (A1)∆B −∆A∆B)

≤
P (A1) + P (B1)

P (A1 ∪B1)

Note that the last term in the denominator is a positive
term. This shows that the denominator has increased more, and
the value of the overall fraction has reduced. We can easily
generalize this to more than two events. We note that both
Oacc(T

′) ≥ Oacc(T ), and Oaux(T
′) ≥ Oaux(T ). Thus, Eqn.

(29) follows.

APPENDIX F
PROOF OF THEOREM 3

Let T be AGA solution, and T’ be any solution. We have:

Oaux(T) ≥ 0.63Oaux(T
′)

(1−Oaux(T) ≤ 0.63(1−Oaux(T
′)) + 0.37

(1−Oacc(T) ≤ 0.63k(1−Oacc(T
′) + 0.37

Perr(T) ≤ 0.63kPerr(T
′) + 0.37

We have used Lemma 3 in the third equation above. Let T’
be the solution with optimal Oacc () (and thus, optimal Perr),
and the lemma follows.

APPENDIX G
INDEPENDENT SENSOR OBSERVATIONS

From proof of Theorem 1 and notations defined therein, note
that Oaux can be written as:

Oaux(T) = 1−

m−1
∑

i=0

∑

j 6=i

Q(
1

2

√

pT
ijΣ

−1pij)P (Hi), (31)

where Q(x) = 1 − φ(x) denotes the Q-function [3]. Now,
suppose we wish to compute Oaux(T ∪ {sk}) for a sensor
sk whose observations have a mean of pki for hypothesis Hi

and a variance is σ2

k. Let us denote the value of pijΣ
−1pij in

Eq (31) by qij(T). Then, we have the following recurrence
relation:

Oaux(T ∪ {sk}) = 1−

m−1
∑

i=0

∑

j 6=i

Q
(1

2

√

qij(T ∪ {sk})
)

P (Hi)

= 1−
m−1
∑

i=0

∑

j 6=i

Q
(1

2

√

qij(T) +
(pki − pkj)2

σ2

k

)

P (Hi)

We note that computing qij(T) directly using Eq (31) takes
O(B2) time. However, we can compute qij(T) incrementally
by using the equation

qij(T ∪ {sk}) = qij(T) +
(pki − pkj)

2

σ2

k

in constant time. As computing the Q-function takes constant
time, the above reduced the time complexity by a factor of
O(B2).
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