
1

SafeTail: Tail Latency Optimization in Edge Service
Scheduling via Redundancy Management

Jyoti Shokhanda, Utkarsh Pal, Aman Kumar, Soumi Chattopadhyay, Senior Member, IEEE,
Arani Bhattacharya, Member, IEEE

Abstract—Optimizing tail latency while efficiently manag-
ing computational resources is crucial for delivering high-
performance, latency-sensitive services in edge computing.
Emerging applications, such as augmented reality, require low-
latency computing services with high reliability on user de-
vices, which often have limited computational capabilities. Con-
sequently, these devices depend on nearby edge servers for
processing. However, inherent uncertainties in network and
computation latencies—stemming from variability in wireless
networks and fluctuating server loads—make service delivery on
time challenging. Existing approaches often focus on optimizing
median latency but fall short of addressing the specific challenges
of tail latency in edge environments, particularly under uncertain
network and computational conditions. Although some methods
do address tail latency, they typically rely on fixed or excessive
redundancy and lack adaptability to dynamic network conditions,
often being designed for cloud environments rather than the
unique demands of edge computing. In this paper, we introduce
SafeTail, a framework that meets both median and tail response
time targets, with tail latency defined as latency beyond the
90th percentile threshold. SafeTail addresses this challenge by
selectively replicating services across multiple edge servers to
meet target latencies. SafeTail employs a reward-based deep
learning framework to learn optimal placement strategies, bal-
ancing the need to achieve target latencies with minimizing addi-
tional resource usage. Through trace-driven simulations, SafeTail
demonstrated near-optimal performance and outperformed most
baseline strategies across three diverse services.

Index Terms—Tail Latency, Redundant Scheduling, Reward-
based deep learning, Edge Computing.

I. INTRODUCTION

In the realm of edge computing [1], latency-sensitive appli-
cations play a crucial role in providing seamless and high-
quality user experiences. Technologies such as augmented
reality (AR) [2], virtual reality (VR) [3], and real-time video
conferencing demand exceptionally low latency to ensure
responsiveness and fluid interaction [4]. For example, AR
applications used in interactive gaming or navigation require
near-instantaneous processing to align digital overlays with
the real world, while VR experiences depend on minimal
latency to create immersive, lag-free environments. Real-time
video conferencing tools also require rapid data transmission
to maintain clear and uninterrupted communication. These ap-
plications often run on user devices with limited computation
power, relying on nearby edge servers for efficient processing.

Jyoti Shokhanda, Utkarsh Pal, Aman Kumar and Arani Bhattacharya are
affiliated to Indraprastha Institute of Information Technology Delhi, New
Delhi, email: {jyotis, utkarsh20144, aman20279, arani}@iiitd.ac.in.
Soumi Chattopadhyay is with the Department of Computer Science and Engi-
neering, Indian Institute of Technology Indore, India, e-mail: soumi@iiti.ac.in.
Final version of this paper is available at IEEEXplore.

Conversely, some latency-sensitive applications can tolerate
higher median latency but still require stringent control over
tail latency. For instance, in batch processing systems for data
analytics, large-scale data analysis or scientific simulations
may process data in batches and provide results at periodic
intervals rather than in real-time [5]. While the system can
accept higher median latency for routine tasks, it is crucial
to manage tail latency carefully, especially for urgent queries
or emergency analyses. Ensuring that tail latency remains
within acceptable limits is vital for maintaining the system’s
effectiveness and responsiveness during critical instances, as
excessive delays in these scenarios could significantly impact
the application’s performance and reliability. Thus, while
overall throughput and accuracy are paramount, controlling
tail latency is essential to meet the performance requirements
of latency-sensitive applications.

A major difficulty in supporting latency-sensitive appli-
cations is ensuring the timely delivery of services with an
acceptable stable median latency and minimal deviation from
that latency. However, consistently achieving acceptable la-
tency levels remains challenging. Service requests involve
both network and computation latencies, each with inherent
uncertainties that make it difficult to meet target latencies
reliably. Consequently, most existing research focuses on op-
timizing median or mean latencies with edge servers but often
overlooks higher percentiles of latency, such as the 90th, 95th,
and 99th percentiles. These higher percentiles are crucial for
delivering a high-quality user experience in latency-sensitive
applications [6], [7]. Many studies on edge service scheduling
fail to address these tail latencies effectively. The issue of
tail latency is particularly pronounced in edge computing
[8], where both the computation on edge servers and com-
munication over wireless networks are subject to significant
variability. Therefore, addressing high tail latency through
the effective use of edge servers is essential for maintaining
service quality in latency-sensitive applications.

Traditional methods often rely on strong assumptions about
the underlying latency distributions (e.g., assuming a known
statistical model such as Weibull, exponential, Pareto tails, or
normal distribution) [9], [10] and static resource allocation
rules. However, in real-world edge computing environments,
latency patterns are highly dynamic and influenced by hetero-
geneous factors such as fluctuating network conditions, vary-
ing server loads, and service-specific computational demands.
Rigid heuristic-based methods often fail to adapt effectively
under such variability, leading to suboptimal latency perfor-
mance. Prior research has explored task scheduling on edge

https://doi.org/10.1109/TNSM.2025.3587752

2

servers using deep reinforcement learning (DRL) [11]. These
studies demonstrate that DRL can reduce task completion
times by rewarding schedules with lower latency. However,
they focus primarily on standard tasks offloaded from smart-
phones, rather than latency-sensitive tasks. Latency-sensitive
applications impose strict constraints not only on median or
mean latency but also on its entire distribution. Inadequate
handling of these constraints can result in significant safety
issues [12]. Consequently, these studies do not address the
impact of DRL on tail latency.

One of the primary techniques for reducing tail latency
involves introducing redundancy. For instance, a user device
may submit a service to multiple edge servers, allowing it to
utilize the fastest response among them. While this redundancy
improves tail latencies, it can also increase the utilization of
edge computing resources, such as network bandwidth and
costs. Therefore, it is crucial to manage redundancy carefully
to minimize tail latency while controlling resource usage.

However, determining where to place services with con-
trolled redundancy remains complex. As redundancy increases,
the number of potential scheduling options grows exponen-
tially. For a single-end device with 𝑛 available edge servers,
the number of possible schedules is 2𝑛−1, making exhaustive
search impractical for service request execution.

We tackle this challenge by first identifying a target latency
for each service and then designing our reward to minimize
the actual difference from the target. SafeTail, our framework,
uses redundant scheduling combined with a reward-based
deep-learning approach to address tail latency. This method
involves assigning the same service request to multiple edge
servers and enabling the system to learn from experience
and interaction, considering both computation and network
latencies. Unlike methods that rely on fixed redundancy or
focus solely on optimizing one type of latency, SafeTail
dynamically adjusts redundancy based on real-time conditions.
This strategy reduces overall latency by effectively managing
both network and computation latency, allowing the user
device to select the fastest response and thus improving overall
system responsiveness.

Our experiments begin with an in-depth tail latency analysis
of the YOLOv5 object detection service on our own WiFi
network. We observed that network latency is influenced by
factors like the number of active users, while computation
latency is affected by compute resource availability, memory,
and server configuration. These variables introduce uncertainty
in service latency [13], further compounded by varying work-
loads on edge servers and network unpredictability [14].

Our experiments depend on the collection of our own
WiFi network and compute traces. We then assessed the
performance of our reward-based deep learning mechanism
on the median as well as tail latency values for three distinct
services: (i) Object detection using YOLOv5, (ii) Instance
segmentation of images, and (iii) Removal of noise from audio.
These three services are all latency-sensitive, and some of
them are often used in real-time applications such as virtual
reality and video conferencing. We evaluated SafeTail using
trace-driven simulations on a system with five edge servers and
compared its performance against four baseline techniques.

Our findings show that SafeTail effectively reduces both
median and tail latency compared to these baseline methods.
We now summarize our contributions as follows:

(i) We tackle the challenge of reducing service latency
in edge computing, where environmental uncertainties, such
as fluctuating wireless network conditions and varying com-
putational loads, are significantly more pronounced than in
cloud settings. These uncertainties impact both network la-
tency (transmission and propagation delays) and computation
latency. While similar concerns have been explored in cloud
computing, the dynamic and resource-constrained nature of
edge environments demands a more tailored strategy for
latency-sensitive services. SafeTail addresses this by prioritiz-
ing latency reduction particularly tail latency over resource
usage. Rather than aiming for a globally optimal solution,
SafeTail dynamically applies controlled redundancy based on
real-time server conditions to achieve near-optimal latency,
balancing responsiveness with efficient resource utilization.

(ii) We propose a reward-driven deep learning framework
that adaptively manages service redundancy to optimize la-
tency. By dynamically adjusting redundancy based on system
conditions, the framework effectively balances meeting target
latency requirements with minimizing resource consumption.

(iii) We developed a prototype testbed with real-world char-
acteristics and collected execution traces from three distinct
applications: (a) single-shot object detection from images, (b)
instance segmentation of images, and (c) noise removal from
audio under varying network and edge load conditions. Using
these traces for simulation, we demonstrate that our reward-
based deep learning framework significantly optimizes both
median and tail latency.

II. PROBLEM FORMULATION

In this section, we formulate our problem mathematically. Our
framework has the following inputs:

• A set of homogeneous edge servers E = {𝑒1, 𝑒2, . . . , 𝑒𝑛}.
• The dynamic state of each edge server 𝑒𝑖 ∈ E at any

timestep 𝑡 is identified by 5-tuple: (𝜆𝑢(𝑡)
𝑖

, 𝜆
𝑑 (𝑡)
𝑖

,M𝑡
𝑖
,U𝑡

𝑖
, ℓ𝑡

𝑖
),

where 𝜆
𝑢(𝑡)
𝑖

, 𝜆
𝑑 (𝑡)
𝑖

,M𝑡
𝑖
,U𝑡

𝑖
, ℓ𝑡

𝑖
denote the uplink and downlink

bandwidths, memory and CPU utilization, and number of
active users accessing 𝑒𝑖 at timestep 𝑡, respectively. In the
rest of this paper, however, we omit the superscript 𝑡 from
each symbol to represent the values of the above parameters as
experienced by the user when the service is actually requested.

• A user at a specific location with the requirement of edge
servers for the execution of a service 𝑠 𝑗 .

• A user is denoted by a 3-tuple: 𝑈 = (𝐿,Λ𝑢,Λ𝑑), where
𝐿, Λ𝑢,Λ𝑑 represent the location, upload and download band-
widths of the user device, respectively.

• Each service 𝑠 𝑗 is characterized by 3-tuple: (I𝑗 ,O 𝑗 , Γ 𝑗),
where I𝑗 represents a set of input parameters required by the
service, O 𝑗 denotes a set of output parameters generated by
the service after execution, and Γ 𝑗 includes the characteristics
of the input parameters of that influence the computation time
of 𝑠 𝑗 . It may be noted that Γ 𝑗 varies across different services.
The objective of our work is to reduce the overall latency
for the service 𝑠 𝑗 . Before going to discuss the details of our

3

framework, we first explain the key components of latency.
Multiple events are associated with the execution of a service
on an edge server, which actually contributes to latency
computation [15], [16], as discussed below.

• Transfer of service-input: A set of input parameters I𝑗 for
the service 𝑠 𝑗 must be transferred from the user device to the
edge server for execution. This transfer time includes both
transmission and propagation latency. The transfer process
involves three key events: (i) uploading the input file from
the user device, (ii) propagating the file from the user device
to the edge server (represented by a function of edge server
and user location 𝜌𝑖 (𝐿)), and (iii) downloading the input file
to the edge server.

• Execution of service: Once an edge server receives the
input of a service, the service is executed on it. The compu-
tation time C(𝑒𝑖 , 𝑠 𝑗) at 𝑒𝑖 is a function of various parameters
of 𝑠 𝑗 and the dynamic state of the edge server 𝑒𝑖 .

• Transfer of service output: The output parameters O 𝑗 of
the service 𝑠 𝑗 are transferred from the edge server to the user
device, similar to the process of transfer of the service input.
Considering a service is executed in 𝑒𝑖 , service latency is
mathematically defined as follows. The symbols used in Eq.
(1) are defined in brackets after introducing each term above.

L𝑖 =

©­­­­­­­«
𝑆𝑖𝑧𝑒 (I𝑗)

min(𝜆𝑑
𝑖
,Λ𝑢)︸ ︷︷ ︸

uploading

+ 𝜌𝑖 (𝐿)︸ ︷︷ ︸
propagation latency

+
𝑆𝑖𝑧𝑒 (I𝑗)

min(𝜆𝑑
𝑖
,Λ𝑢)︸ ︷︷ ︸

downloading

ª®®®®®®®¬︸ ︷︷ ︸
Transfer of service input

+ C(𝑒𝑖 , 𝑠 𝑗)︸ ︷︷ ︸
Computation latency

+

©­­­­­­«
𝑆𝑖𝑧𝑒 (O 𝑗)

min(𝜆𝑢
𝑖
,Λ𝑑)︸ ︷︷ ︸

uploading

+ 𝜌𝑖 (𝐿)︸ ︷︷ ︸
propagation latency

+
𝑆𝑖𝑧𝑒 (O 𝑗)

min(𝜆𝑢
𝑖
,Λ𝑑)︸ ︷︷ ︸

downloading

ª®®®®®®¬︸ ︷︷ ︸
Transfer of service output

(1)

In this paper, we have the following assumptions:
(i) Capacity-aware admission model: Each edge server can

accept a certain number of requests. Beyond this limit, the
edge server refuses to accept additional services.

(ii) Each edge server adopts a capacity-aware admission
model, allowing only a limited number of concurrent ser-
vice requests. Once a request is admitted, it shares compute
resources with others, and any delay due to contention is
implicitly reflected in the observed execution time. Queueing
delays prior to admission are not explicitly modeled.

(iii) The number of edge servers (𝑛) reachable from a user
is reasonably small, which is most likely fewer than 10 in
number. This is because the network used has a relatively
smaller range, making it realistic to assume that only a small
number of edge servers would be within this range. Today’s
5G networks also support receiving signals from at most 10
cell towers from a user device [17].

In this paper, we address the challenge of long tail latency
in edge computing by introducing controlled redundancy to
improve response times. As a fallback strategy, if a service
request fails to receive a response from the edge server
within a reasonable time, a lightweight version of the service

is executed locally on the user’s device. This local version
ensures bounded latency, as its execution time defines the
maximum tolerable delay. However, due to its reduced ac-
curacy compared to the full version, it is used only when
necessary. Our primary goal remains to obtain responses from
the edge server, where the standard, high-accuracy version of
the service runs.

III. ANALYZING TAIL LATENCY: EMPIRICAL STUDIES

In this section, we first characterize tail latency through
experimental studies by observing it under different edge
computing environments, including variations in compute and
network loads. Here, we select a widely used application in
autonomous systems—object detection using YOLOv5—and
run it on a desktop machine equipped with an Intel Core i7-
11700 processor, 16GB of RAM, and a total of 16 virtual
cores. We disabled the background processes for this experi-
ment. We used the tools stress-ng [18] to generate workload
and task set [19] to vary the number of cores allocated to
the process from the total cores available on the system.
Fig. 1 illustrates the different percentiles of latency and its
various components (i.e., transmission latency, propagation
latency, and computation latency) under varying network and
compute parameters. Unless otherwise specified, we maintain
the RAM at 16GB, the number of cores at 16, and the CPU
background workload at 0%. We then varied a single parameter
for each experiment, where the parameters are: (a) amount of
available RAM, (b) CPU background workload, (c) number
of available cores, and (d) number of devices communicating
over the network. We repeated each experiment 1000 times
and reported the results. We now discuss our empirical findings
concerning tail latency.
Effect of Changes in Available RAM: In this experiment,
we study the behavior of computation latency with respect to
RAM availability. We varied the RAM utilization from 5000
to 11000 MB using stress-ng to generate workloads. Figure
1(a) shows the median and tail computation latencies (at the
90th, 95th, and 99th percentiles) for different levels of RAM
utilization. As indicated in Fig. 1(a), the gap between me-
dian latency and tail latencies increased as RAM availability
decreased. Moreover, higher percentile latencies were more
significantly impacted by lower RAM availability compared
to median latency.
Effect of CPU Background Workload: In this experiment
(refer to Fig. 1(b)), we varied background workload on CPUs
from 20% to 80%, and observed the changes in computation
latency. We found a similar trend in median and tail latencies
for this experiment as well.
Effect of Number of Cores: For this experiment, we varied
the number of available cores from 2 to 16 and studied
the behavior of computation latency (refer to Fig. 1(c)). We
observed that computation latency decreased with an increase
in the number of cores up to a certain threshold (here, up to 8
cores). Beyond this threshold, additional cores did not affect
the computation latency.
Effect of Network Load: We generated network load by
using additional Raspberry Pi nodes that sent data via iPerf 3

4

5000 7000 9000 11000
RAM Utilization by

Background Process (MB)

0

50

100

Ex
ec

ut
io

n
Ti

m
e

(m
s)

50%ile
90%ile

95%ile
99%ile

20 40 60 80
CPU Background Workload(%)

0

200

400

Ex
ec

ut
io

n
Ti

m
e

(m
s)

50%ile
90%ile

95%ile
99%ile

2 4 8 16
Numbers of Available Cores

0

50

100

Ex
ec

ut
io

n
Ti

m
e

(m
s)

50%ile
90%ile

95%ile
99%ile

1 2 3 4
Numbers of Raspi

0

1000

2000

3000

Ne
tw

or
k

La
te

nc
y

in
 (m

s)

50%ile
90%ile

95%ile
99%ile

(a) (b) (c) (d)

Fig. 1. Latency characteristics for the YOLOv5 object detection service: Illustration of variation in latency with changes in (a) RAM utilization by background
processes, (b) CPU background workload, (c) the number of available cores, and (d) the number of Raspberry Pi devices to simulate varying network load.

[20]. We then sent ping probes from our machine to a server
over the same WiFi network to obtain our network latency.
Figure 1(d) shows how network latencies change with varying
computational resources (i.e., the number of Raspberry Pi
nodes). We observed that latency increases only slightly with a
small number of Raspberry Pi nodes (up to 2) but rises rapidly
beyond this threshold. Other observations were consistent with
the first and second experiments.
The Challenge of Optimizing Tail Latency: The above ex-
periments demonstrate that tail latency is unevenly influenced
by various resource parameters. For instance, parameters like
the availability of CPU cores impact both median and tail
latency similarly. In contrast, factors such as RAM availability,
background workload, and network load have a more pro-
nounced effect on tail latency compared to median latency.
Therefore, we design a framework focused on minimizing tail
latency, taking into account the varying sensitivities of these
resource parameters.

To tackle this challenge, we employ several strategies.
First, we use redundant service scheduling to mitigate latency
unpredictability. Second, we develop a placement mechanism
based on reward-based deep learning that learns from the
dynamic state of edge servers to determine where to place the
service. This approach ensures that latency-sensitive services
are not reliant on simplistic scheduling models.

IV. FRAMEWORK AND METHODOLOGY

In this section, we introduce SafeTail, our framework that
utilizes a reward-based deep learning approach inspired by
reinforcement learning. SafeTail is a user-centric service al-
location framework that aims to reduce service latency by
incorporating redundancy into the process. The primary moti-
vation for our work is based on the premise that if one edge
server fails to deliver a service response within the promised
time, other edge servers may still be able to deliver the output
on time. However, replicating the service execution to all
edge servers can lead to increased network congestion and
unnecessary resource utilization. Therefore, our objective in
this paper is to minimize the service latency by determining
the reasonable number of redundancies for a service execution
across various servers, depending on the dynamic state of
the edge servers, without significantly increasing resource
utilization or compromising network traffic. We now discuss
the details of our framework, starting with an introduction to
the concept of redundancy scheduling for a service.

The goal of redundancy scheduling is to duplicate the
execution of a service 𝑠 𝑗 across multiple edge servers. By
selecting a subset of edge servers E𝑡

𝑘
⊆ E at timestep 𝑡, we

intend to minimize latency variability and achieve the fastest
response. The rationale is that if one edge server is heavily
loaded, another might have sufficient resources to execute
the service within an acceptable time limit. This approach
effectively addresses challenges such as uncertain propagation
latencies, long transmission latencies, and variable compu-
tation latencies. The improved latency achieved by SafeTail
through redundancy scheduling is demonstrated using Eq. 2.

L𝑅 = min
𝑒𝑖 ∈E𝑘

(L𝑖) (2)

We now present our framework, SafeTail, which dynamically
adapts redundant scheduling. SafeTail leverages a reward-
based deep learning framework to approximate complex func-
tions and understand the relationships among the dynamic state
of the edge servers at timestep 𝑡, the service requirements, and
the redundant executions that need to be introduced at timestep
𝑡 + 1. The primary idea is to comprehend the dynamic state
of each server and the service requirements to determine the
expected latency for the service when executed on an edge
server and the uncertainty of achieving that latency. Based
on this, SafeTail decides the subset of edge servers needed
to achieve the desired latency. Fig. 2 presents an overview of
our framework. We discuss each component of SafeTail below.
We begin by discussing the state that depicts the dynamic
condition of all edge servers, along with the components of
the service on which SafeTail bases its actions.

Definition 4.1: State: The state of the environment at
timestep 𝑡, denoted by 𝜔𝑡 , is defined by an (𝑛 + 1)-tuple
(Ω𝑡

1,Ω
𝑡
2, . . . ,Ω

𝑡
𝑛,P 𝑗 ,𝑈), where ∀𝑖 = {1, . . . , 𝑛}:

Ω𝑡
𝑖 = (𝜆𝑢(𝑡)

𝑖
, 𝜆

𝑑 (𝑡)
𝑖

, M𝑡
𝑖 , U

𝑡
𝑖 , ℓ

𝑡
𝑖 , 𝜌

𝜇

𝑖
(𝐿)); P 𝑗 = (𝑆𝑖𝑧𝑒 (I𝑗) , 𝑒𝑆𝑖𝑧𝑒 (O 𝑗) , Γ 𝑗)

where the first five elements of Ω𝑡
𝑖

captures the dynamic
state of edge server 𝑒𝑖 at timestep 𝑡. 𝜌

𝜇

𝑖
(𝐿) represents the

median propagation latency from the user device to 𝑒𝑖 . P 𝑗

denotes the properties of the service 𝑠 𝑗 that may influence the
latency. Here, 𝑆𝑖𝑧𝑒(I𝑗) represents the size of I𝑗 and 𝑒𝑆𝑖𝑧𝑒(O 𝑗)
represents the estimated size of O 𝑗 . ■
It is important to note that various parameters in 𝜔𝑡 contribute
to estimating different components of the latency. For instance,
𝜆
𝑢(𝑡)
𝑖

, 𝜆
𝑑 (𝑡)
𝑖

in Ω𝑡
𝑖

and 𝑆𝑖𝑧𝑒(I𝑗), 𝑒𝑆𝑖𝑧𝑒(O 𝑗) in P 𝑗 helps estimate

5

Hidden Layers SafeTail

State

Reward-based Deep Learning Framework

Reward
Rt+1

A t+1

Action

ωt

e1

e1 e2 en

. . .

SafeTail

State
ωt

Action

Reward
Rt+1

User Device

Service

e2

Environment

e1

e2

en

...

(a)

(b)

A1

A2

A3

A2n−1

A t+1

Fig. 2. Overview of (a) SafeTail; (b) Reward-based Deep Learning Framework

the transmission latency, while 𝜌
𝜇

𝑖
(𝐿) in Ω𝑡

𝑖
enables to mea-

sure the propagation latency. Finally, M𝑡
𝑖
,U𝑡

𝑖
, ℓ𝑡

𝑖
in Ω𝑡

𝑖
and Γ 𝑗

in P 𝑗 lead towards approximating the computation latency.
Once our learning network receives the state 𝜔𝑡 at 𝑡, it

determines an appropriate action at (𝑡 +1)𝑡ℎ timestep, denoted
by 𝒜

𝑡+1, by selecting a subset of edge servers for redundancy
scheduling for 𝑠 𝑗 . For 𝑛 edge servers, there are 2𝑛−1 possible
actions, denoted as 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴2𝑛−1}. Each action
𝐴𝑖 ∈ 𝐴 is an element of P(E) \ 𝜙, where P(E) represents
the powerset of E. SafeTail employs an 𝜖-greedy exploration
and exploitation strategy to choose an action.

𝒜
𝑡+1 =


𝑅𝑎𝑛𝑑𝑜𝑚
𝐴𝑖∈𝐴

(𝐴𝑖) with probability 𝜖

arg max
𝐴𝑖∈𝐴

(𝐴𝑖) with probability (1 − 𝜖) (3)

where 𝜖 is a parameter that controls the balance between
exploration and exploitation. Initially, 𝜖 is set to 1 when the
network is untrained. SafeTail begins with 100% exploration,
where a random action is chosen. Each time SafeTail actuates
an action, a reward is given based on the effectiveness of
the action in optimizing tail latency and resource utilization.
The state-action-reward tuple, i.e., (𝜔𝑡 ,𝒜𝑡+1,R𝑡+1) is stored to
train the network. Once a sufficient number of tuples, denoted
as 𝜅, have been collected, we start training the network.

Each time the network is partially trained, 𝜖 is decreased
by a certain quantity, denoted as 𝜖𝑑𝑒𝑐𝑎𝑦 , until it reaches a
minimum value, denoted as 𝜖𝑚𝑖𝑛. As 𝜖 is decreased, SafeTail
continues its exploration and exploitation 𝜅 times before re-
training the network. During exploitation, SafeTail invokes the
reward-based learning network to return the action determined
by the network, i.e., the second case of Eq. (3).

Before discussing the architecture of the reward-based learn-
ing network, we first address the reward function of SafeTail.
As previously mentioned, the reward is decided based on
how effectively the action optimizes tail latency and resource
utilization. Ideally, the highest reward is given when optimal

latency is achieved with minimal resource usage. However,
determining the optimal latency value without executing the
service on all edge servers is infeasible. Therefore, we define a
target latency, which is a heuristic value that we approximate.
In calculating the reward, we consider the achieved latency
relative to this target latency. To proceed with defining the
reward function, we first need to establish the target latency.

Definition 4.2: Target Latency: The target latency, denoted
as 𝜏, is mathematically defined as:

𝜏 (𝜔𝑡) =
(
𝑆𝑖𝑧𝑒 (I𝑗)

Λ𝑢
+ 𝜌𝜇 (𝐿) +

𝑆𝑖𝑧𝑒 (I𝑗)
Λ𝑢

)
+𝒞 (𝑠 𝑗)+(

𝑒𝑆𝑖𝑧𝑒 (O 𝑗)
Λ𝑑

+ 𝜌𝜇 (𝐿) +
𝑒𝑆𝑖𝑧𝑒 (O 𝑗)

Λ𝑑

)
(4)

where 𝜌𝜇 (𝐿) = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑒𝑖∈E

(𝜌𝜇

𝑖
(𝐿)) and 𝒞(𝑠 𝑗) is the median

computation latency on an edge server when a certain number
(say, 𝜈) of instances of the service is executed on it. ■

It is important to note from Eq. (4) that to compute the trans-
mission latency, we use only the user’s uplink and downlink
bandwidths. This is a reasonable assumption because, in gen-
eral, the bandwidth of the edge server is significantly higher
than that of the user device. As a result, when computing the
minimum value between the user’s uplink bandwidth and the
edge server’s downlink bandwidth, the user’s uplink bandwidth
typically provides the minimum value.

Since the actual size of the output parameters is not available
during the computation of the target latency, we use the
estimated size of the output parameters in the computation
of the transfer time for the service output.

We choose the median propagation latency across all edge
servers because each server, regardless of its propagation la-
tency, has a non-zero probability of providing the least service
latency. Therefore, instead of choosing the least propagation
latency, we consider the median value across all servers.

We select the value of 𝜈 based on profiling the computation
time with varying numbers of parallel instances of the service.
Initially, adding more parallel instances typically results in
only minor increases in execution time. However, beyond a
certain threshold, additional parallel instances cause a signifi-
cant rise in execution time. We choose 𝜈 to strike a balance,
ensuring sufficient parallelism to prevent a drastic increase in
execution time while reflecting the fact that each edge server
often handles multiple parallel instances.

We finally define the reward function.
Definition 4.3: Reward: The reward, denoted as

R𝑡+1 (𝜔𝑡 ,𝒜𝑡+1), is a function computed at timestep 𝑡 + 1 and
is mathematically defined as:

R𝑡+1 (𝜔𝑡 ,𝒜𝑡+1) =


0 if L𝑅 = 𝜏 (𝜔𝑡)
0 if L𝑅 < 𝜏 (𝜔𝑡) and | E𝑘 | = 1
0 if L𝑅 > 𝜏 (𝜔𝑡) and | E𝑘 | = 𝑛

−𝛿.𝑒 (𝑛−|E𝑘 |) if L𝑅 > 𝜏 (𝜔𝑡) and | E𝑘 | < 𝑛

−𝛿.𝑒 (L𝑅−𝜏 (𝜔𝑡)) if L𝑅 < 𝜏 (𝜔𝑡) and | E𝑘 | > 1

(5)

where E𝑘 is the subset of edge servers chosen in action 𝒜
𝑡+1,

and L𝑅 is the latency achieved as a result of the action 𝒜
𝑡+1,

calculated according to Eq. (2). The variable 𝑛 denotes the
total number of edge servers and 𝛿 is an externally tunable
positive real-valued hyperparameter used to adjust the value
of R𝑡+1, either scaling it up or down.

6

■
Property 4.1: Upper Bound: The upper bound of the reward

function is 0. ■
Property 4.2: Conditions to Achieve Maximum Reward:

The maximum reward is attained when:
• The achieved latency is exactly equal to the target latency

irrespective of resource utilization.
• The achieved latency is less than the target latency, and

the resource utilization is minimal.
• The achieved latency is higher than the target latency, but

the resource utilization is maximum. It is important to note
that, although our objective is not fulfilled in this scenario,
SafeTail cannot select a better action to satisfy the objective
under these conditions. ■

Property 4.3: Conditions to Obtain Negative Reward: A
negative reward is attained when:

• The achieved latency is higher than the target latency,
however, there is a scope to increase the redundancy. In this
case, the reward is determined according to the fourth case
of Eq. (5), where it is inversely proportional to the potential
increase in redundancy that remains achievable.

• The achieved latency is lower than the target latency;
however, there is still potential to reduce redundancy. In this
case, the reward is chosen in the fifth case of Eq. (5), where
it is inversely proportional to the duration by which the target
latency exceeds the achieved latency. ■

Property 4.4: Characteristics of Reward Function: In de-
signing the reward function, we prioritize meeting the target
latency over reducing resource utilization. This is reflected
in the fourth and fifth cases of Eq. (5). Notably, when the
achieved latency exceeds the target and there is potential to
increase redundancy, the penalty is more significant compared
to situations where latency requirements are met but with
higher resource usage. This characteristic of the reward func-
tion effectively optimizes not only the median latency but also
the tail latency. ■

We now discuss the working principle of SafeTail. Fig. 2
(a) illustrates its structure. SafeTail uses a reward-based deep
learning framework, with a feed-forward neural network with
back propagation (FNN) as its core component, as presented
in Fig. 2 (b). The FNN takes the state 𝜔𝑡 as input, therefore,
the number of nodes in the input layer corresponds to |𝜔𝑡 |.
The number of nodes in the output layer is equal to the
number of possible actions, i.e. 2𝑛 − 1. In our experiment,
the FNN comprises 5 hidden layers with ReLU activations
and a Softmax output layer. It is optimized using Adam with
categorical cross-entropy as the loss function.

The reward-based learning network in SafeTail is trained
on an episode-wise basis. At the start of each episode, we
randomly initialize the load, i.e., the number of active users on
each edge server, and then begin the simulation. Each episode
is divided into a certain number of steps (denoted as 𝛼𝑠). In
each step, a user requests a service execution, and the SafeTail
framework selects a set of edge servers to execute the service,
using either exploration or exploitation with a probability 𝜖 as
described in Eq. 3. Once the user receives the service response,
a reward is calculated based on the actual service latency and

the target latency heuristically computed for that service. The
state-action-reward (𝜔𝑡 ,A𝑡+1,R𝑡+1) tuple from each step is
stored to train our reward-based learning framework, which is
updated after every interval of 𝜅 steps.

The reward R𝑡+1 in the (𝜔𝑡 ,A𝑡+1,R𝑡+1) tuple is translated
to represent the target vector V 𝑡 for the FNN, which is then
used to calculate the loss function for training the FNN. The
target vector has a length equal to the number of output nodes
in the FNN, i.e., 2𝑛 −1. In typical classifiers, the target vector
is a one-hot vector. However, in our framework, due to the
lack of prior knowledge about the appropriate action for a
given state, our target vector is not a one-hot vector. Instead,
we ensure that the sum of all elements in the target vector
equals 1. If the reward R𝑡+1 for a particular action A𝑡+1 is
zero, the corresponding element of 𝐴𝑘 (assuming A𝑡+1 = 𝐴𝑘)
in V 𝑡 is set to 1, and the rest of the elements are set to 0. For
other cases where R𝑡+1 is negative, we start by initializing all
elements of V 𝑡 with an equal value, i.e., 1

2𝑛−1 . We then adjust
the values for each element in V 𝑡 . The values corresponding
to 𝐴𝑘 and all other actions 𝐴 𝑗 that involve edge servers E 𝑗 ,
where E 𝑗 is a subset of E𝑘 , which correspond to 𝐴𝑘 , are set
as follows:

V𝑡 (𝑗) = max
(
0,

(
1

2𝑛 − 1
+ R𝑡+1

))
, ∀ 𝑗 where E 𝑗 ⊆ E𝑘 (6)

Once all the elements in V 𝑡 corresponds to the actions 𝐴 𝑗 ,
∀ 𝑗 where E 𝑗 ⊆ E𝑘 , are adjusted, the remaining value, i.e.,(
1 − ∑

∀ 𝑗,E 𝑗 ⊆E𝑘
V𝑡 (𝑗)

)
, is equally distributed among the remaining

elements of V 𝑡 .
Our reward-based learning network is trained for a prede-

fined number of episodes (denoted as 𝛼𝑒) until the training
process is terminated.

In the next section, we discuss our experimental setup and
analyze the performance of SafeTail.

V. IMPLEMENTATION & EXPERIMENTAL ANALYSIS

A. Experimental Setup

Our simulator was built using YAFS [21] to model the
topology of edge servers and user devices. We modified YAFS
to be compatible with Python 3.11, incorporated uncertainties
in the wireless network and execution time, enabled service
scheduling on duplicate edge servers, and integrated our
SafeTail framework to allow a user to schedule all the services
they wish to invoke. We implemented our reward-based deep
learning model using Keras with the TensorFlow backend
(Keras v3.0.5 and TensorFlow 2.16.1).
Use Case Selection for Evaluating SafeTail’s Performance:
To demonstrate the generaliability of SafeTail, we selected
three diverse use cases: (i) object detection on images using
YOLOv5 [22], (ii) instance segmentation on images [23], and
(iii) noise removal from audio signals [24]. These applications
differ significantly in computation time, transmission latency,
overall latency, and input modality. Object detection has low
overall latency and moderate computational cost with minimal
transmission overhead. Noise removal, though computationally
light, involves high transmission latency due to large audio in-
puts. Instance segmentation is the most latency-intensive, with

7

Time

Different locations of iPerf client across time

Computing device
serving as iPerf server

WiFi
Access
Point

R
as

pb
er

ry
 P

i t
o

ge
ne

ra
te

 n
et

w
or

k
lo

ad Off

Off

On

On

Fig. 3. Our experimental setup with two personal computing devices, four
Raspberry Pi’s, and one access point.

File
 size

No
 of Process

Resolution0.0
0.2
0.4
0.6
0.8
1.0

Co
rre

la
tio

n
wi

th
 T

im
e

0.02

0.95

0.05
File

 Size
No

 of Process
Resolution0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
wi

th
 T

im
e

0.51 0.55

0.02
File
 size

No
 of Process

Duration0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n
wi

th
 T

im
e 0.89

0.25

0.89

(a) (b) (c)

Fig. 4. Correlation between computation latency and different input param-
eters for (a) YOLOv5, (b) Instance segmentation, (c) Audio noise removal

high computational demands and moderate transmission la-
tency. This diverse selection allows us to evaluate and highlight
SafeTail’s adaptability across a broad spectrum of latency-
sensitive workloads. These services are core to autonomous
and real-time systems, where minimizing tail latency is criti-
cal. The use cases span a wide latency range—from hundreds
of milliseconds to several seconds—and cover two distinct in-
put modalities: images and audio. We tested using benchmark
datasets: the COCO dataset for images [25], and a Kaggle
benchmark for audio files [26].

To make our experiments realistic, we collected both net-
work traces and execution traces, as illustrated below:
Modeling Transmission Latency: We first collected traces
of network data over WiFi to obtain the distribution for the
uplink and downlink bandwidths of both the server and client.
To do this, we set up an access point (AP) and connected two
personal computing devices to it via WiFi, as shown in Fig. 3.
One device acted as the iPerf3 server, while the other served
as the client. We collected network throughput data (in bits
per second) reported by iPerf3, repeating the experiment 1000
times to gather each throughput value. To introduce additional
network congestion, we added 1-4 Raspberry Pi (Model 3B)
devices to the same WiFi network, simulating the presence of
additional users. The varying number of Raspberry Pis cap-
tured the uncertainty in the uplink and downlink bandwidths of
the edge servers. Since our framework assumes homogeneous
edge server settings, a single experiment involving one edge
server can be used to model the initial uplink and downlink
bandwidths for all edge servers in the network. However, as
the load on each edge server changes over time, the uplink and
downlink bandwidths per user may vary at later timesteps.
Modeling Propagation Latency: In a similar networking
setup, we sent 500 ping packets from one computing device
to another to model propagation latency. We repeated this
experiment by placing the client device at varying distances
from the AP to capture propagation latency under different
signal strengths, recording the round trip times reported by
ping for each packet.

Modeling Computation Latency: To collect the execution
traces, we run 1-5 instances of the chosen service in parallel
on an Intel Core i7-11700 processor (8 cores at 2.5 GHz base
frequency) and 16 GB RAM. For each instance, we note down
the execution time of the service using the time command.

For each service considered in this paper, we identified the
characteristics of the input parameters that influence com-
putation latency by analyzing its correlations with various
parameters. For example, we examined the relationship be-
tween execution time and parameters like file size, resolu-
tion/duration, and the number of processes. In image-based
services, resolution is the relevant parameter, whereas duration
applies to audio noise removal.

We first prepared a dataset with file sizes, computation
latency, and resolutions, converting the latter into numerical
formats for consistency. We then calculated the Spearman
correlation coefficients to quantify these relationships and
visualized them using bar plots, as shown in Fig. 4.

In the case of object detection, we found that execution
time is strongly correlated only with the number of processes,
while file size and resolution showed no significant correlation.
For instance segmentation, both file size and the number of
processes had moderate correlations with execution time, but
resolution exhibited a minimal correlation. Similarly, for noise
removal from audio signals, there was a strong correlation
with file size and duration and a moderate correlation with
the number of processes. Parameters with small correlations
were discarded, while those with stronger correlations were
retained for further analysis.

After identifying all the parameters that influence the com-
putation latency of a service, we created a dataset by executing
each service on the benchmark test dataset. During each
execution, we recorded the values of the selected parameters.
This dataset was then used to train our regression model.

These datasets are subsequently used to formulate a regres-
sion model capable of predicting the execution time for each
service. We employed a multilayer perceptron for this purpose,
where computation latency serves as the response variable, and
the selected parameters for each service act as the regressors.

To introduce uncertainty, we implemented the following
strategy. For each number of processes (i.e., 1 to 5 processes
that are executed in parallel) of a service, we obtained the
standard deviation, denoted as 𝜎𝑘 (where 𝑘 is the number
of parallel processes), of the computation latency. After the
regression model generates an output, denoted as 𝑦̂, for 𝑘

parallel processes, we further introduced Gaussian noise with
a mean of 𝑦̂ and a standard deviation of 𝜎𝑘 .
Modeling Load on Each Edge Server: We utilized the dataset
[27] to model the load variations for each base station. Starting
with an initial number of active users on each edge server, we
then adjusted the load according to the dataset’s distribution.

B. Comparative Methods

We implemented and evaluated four baseline methods, each
employing different strategies to optimize latency and two
past works having a similar goal. We compared the total
elapsed time to complete the service by each baseline method

8

with SafeTail. For a fair comparison, these methods also
incorporate redundancy. We select fixed redundancy levels
with x ∈ {1, 2, 3} and limit x to 3, as higher levels significantly
increase resource consumption. The four strategies are:

(i) Oracle (Optimal): This method executes the service on
all connected edge servers and records the fastest response,
ensuring minimal latency.

(ii) Random (Rand-x): This method involves using one or
more randomly selected edge servers for service execution,
depending on the allowed redundancy. In our experiment, we
implement three sub-methods: Rand-1, Rand-2, and Rand-3,
where the number indicates the level of redundancy.

(iii) Edge Server with Minimum Propagation Latency
(MinProp-x): This method directs the service to one or more
edge servers with the lowest propagation latency, depending
on the allowed redundancy, which is denoted by x.

(iv) Edge Server with Minimum Load (MinLoad-x): This
method sends the service to one or more edge servers that are
running the fewest number of services, with the number of
edge servers selected based on the redundancy level x.

(v) Deep Reinforcement Learning with Linear Model (DRL-
Linear) [28]: This work minimizes execution delay and energy
in multi-user settings via joint offloading and resource alloca-
tion, using a Q-learning and DQN-based strategy. We adapt
this framework to SafeTail by modifying Deep Q-learning to
suit its specific goals and constraints.

(vi) TLORA [9]: TLORA reduces tail latency in edge
networks by modeling latency with a Weibull distribution and
dynamically allocating resources. We extend this method to
align with SafeTail’s objectives and constraints.

C. Performance Metrics

The following metrics are used to measure the performance
of SafeTail in comparison to the baseline methods.

(i) Access Rate: The access rate of a method is defined
as the ratio between the number of redundant edge servers
selected for service execution and the total number of edge
servers reachable from the user device.

(ii) Latency Deviation: The latency deviation is the differ-
ence between the target latency and the achieved latency.

In our experimental analysis, we present the results using
the following visualizations for each use case:

(i) Average access rate versus average episode number:
This visualization illustrates how the access rate fluctuates in
response to the dynamic state of edge servers over time.

(ii) Average latency deviation versus average episode num-
ber: This visualization demonstrates the characteristics of
latency deviation as the number of episodes increases.

(iii) Average absolute value of reward versus average
episode number: This visualization illustrates that the absolute
value of the reward decreases and eventually stabilizes as the
number of episodes increases.

(iv) Comparison with baseline methods in terms of median
and tail latency: This analysis compares SafeTail with baseline
methods in terms of median and higher percentiles (90th,
95th, and 99th) of latency, also known as tail latency. We
first compare the latency achieved by SafeTail to the optimal

TABLE I
CONFIGURATION OF REWARD-BASED LEARNING FRAMEWORK

Parameter UC-1: Value UC-2: Value UC-3: Value
𝛿 0.003 0.0015 0.003
𝜖decay , 𝜖min 3.3 × 10−6 , 0.01 3.3 × 10−6 , 0.01 3.3 × 10−6 , 0.01
𝛼𝑠 , 𝛼𝑒 256, 50 256, 50 256, 50
𝜅, 𝛽 128, 200 128, 120 128, 200

UC: Use case

latency. Next, we assess the average target latency relative
to both the optimal latency and the latency achieved by
SafeTail. Finally, we demonstrate that SafeTail outperformed
all baseline methods in most cases.

We analyze SafeTail’s theoretical time complexity in Ap-
pendix A. A comparative analysis of algorithmic analysis with
the baseline methods is also presented in Appendix A.

In our analysis, we average each performance metric over 𝛽
steps and present the results. In our plots, the average episode
number refers to the ratio of the total number of steps to the
parameter 𝛽. In the plot of the average absolute value of reward
versus episode number, we display the training reward (for 50
× 𝛽 steps) followed by the testing reward (for 20 × 𝛽 steps).
Furthermore, in our comparison plots, we have included the
average value of the target latency.

D. Configuration of the Parameters

In our experiment, we consider 5 edge servers (𝑛 = 5),
each with a maximum load capacity of 4 concurrent service
requests. Appendix B of supplementary file shows the compar-
ative performance of SafeTail when 𝑛 = 10. Table I presents
the configuration of the hyperparameters used in our reward-
based learning framework. The values of the hyperparameters
were determined experimentally using the validation dataset.

E. Experimental Analysis

As discussed earlier, we now analyze the performance of
SafeTail across the following three different use cases.

1) Use Case-1: Object Detection using YOLOv5: Fig. 5
illustrates the performance of SafeTail on the YOLOv5 service.
Our observations are as follows:

(i) Improvement in median latency: SafeTail attained a
higher latency than Oracle’s Optimal value, though with a
small margin (5(a)). Specifically, Oracle’s Optimal attained a
speed-up in median latency of 1.08x compared to SafeTail. A
more detailed discussion between the performance of Oracle
(Optimal) and SafeTail is given in Appendix C in the supple-
mentary material. However, as evident from the figure, this
median latency is 1.08x, 1.19x, 1.72x, 1.11x, and 1.13x faster
than DRL-Linear, TLORA, Rand-1, MinLoad-1, and MinProp-
1, respectively.

(ii) Improvement in tail latency: As observed in Fig. 5(a),
although SafeTail attained higher latency compared to Oracle’s
Optimal by a small margin, it achieved significantly better tail
latency compared to the baseline methods. For the 90th, 95th,
and 99th percentiles, SafeTail had speed-ups in tail latencies of
0.93x, 0.92x, and 0.79x compared to Oracle’s Optimal value,
respectively. However, these tail latencies are faster by 1.48x,

9

50%tile 90%tile 95%tile 99%tile
Percentile

0.0

0.5

1.0

1.5

2.0
To

ta
l l

at
en

cy
 (s

)

1.2s

Target latency
Oracle (Optimal)
SafeTail
DRL-Linear

TLORA
Rand-1
MinLoad-1
MinProp-1

50%tile 90%tile 95%tile 99%tile
Percentile

0.00

0.50

1.00

1.50

2.00

To
ta

l l
at

en
cy

 (s
)

1.2s

Target latency
SafeTail
Rand-1

Rand-2
Rand-3

50%tile 90%tile 95%tile 99%tile
Percentile

0.00

0.25

0.50

0.75

1.00

1.25

1.50

To
ta

l l
at

en
cy

 (s
) 1.2s

Target latency
SafeTail
MinLoad-1

MinLoad-2
MinLoad-3

50%tile 90%tile 95%tile 99%tile
Percentile

0.00

0.50

1.00

1.50

To
ta

l l
at

en
cy

 (s
) 1.2s

Target latency
SafeTail
MinProp-1

MinProp-2
MinProp-3

(a) (b) (c) (d)

10 20 30 40 50
Average Episode Number

35.0

40.0

45.0

50.0

Ac
ce

ss
 R

at
e

(%
)

10 20 30 40 50
Average Episode Number

0.66

0.68

0.70

0.72

0.74

0.76

La
te

nc
y

De
vi

at
io

n
(s

ec
on

ds
)

10 20 30 40 50 60 70
Average Episode Number

0.04

0.05

0.06

0.07

Re
wa

rd

0.6s 0.96s 1.2s 1.44s
Target Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ta

l L
at

en
cy

 (s
)

Target Latency
50tile
90tile

95tile
99tile
Access Rate

30

35

40

45

50

55

60

Ac
ce

ss
 R

at
e

(%
)

(e) (f) (g) (h)

Fig. 5. Use Case-1: (a) Latency comparison among SafeTail, target latency and baseline methods, (b) SafeTail vs. Rand-x, (c) SafeTail vs. MinLoad-x, (d)
SafeTail vs. MinProp-x, (e) Access rate of SafeTail, (f) Latency Deviation of SafeTail, (g) Reward distribution of SafeTail and (h) Impact of target latency.

1.77x and 1.72x, compared to DRL-Linear, 1.26x, 1.29x and
1.39x compared to TLORA, 2.64x, 2.62x, and 2.24x compared
to Rand-1, 1.37x, 1.66x, and 1.69x compared to MinLoad-1,
and 1.63x, 1.99x, and 1.89x compared to MinProp-1.

(iii) Achieved latency with respect to target latency: As
evident from Fig. 5(a), SafeTail consistently achieved latency
below the target latency, including for tail latency cases.

(iv) Comparison with baselines with higher access rates:
We further analyzed the performance of each baseline method
by increasing redundancy up to 3, as shown in Fig. 5(b)-
(d). The results indicate that even with higher access rates,
the latency values of all baseline strategies remain higher
compared to SafeTail. This trend is consistent across all
percentile values, thus showing that SafeTail is effective. We
did not consider Redundancy levels 4 and 5 because level 5
is equivalent to Oracle’s Optimal latency, and level 4 closely
approximates it. Additionally, we note that the access rate of
SafeTail varies between 1 to 3 edge servers.

(v) Variation in access rate: As noted from Fig. 5(f), the
latency deviation of SafeTail decreases and stabilizes with an
increasing number of episodes. This is because, as observed
in Fig. 5(a), SafeTail consistently maintains latency below
the target, even in tail latency scenarios. To further reduce
access rate, as shown in Fig. 5(e), SafeTail reduces the latency
deviation while still keeping the latency value within the target
limits, by compromising slightly on the latency value.

(vi) Latency deviation: As noted from Fig. 5(f), the latency
deviation obtained by SafeTail gradually decreased with an
increasing number of episodes.

(vii) Stabilization of reward function: We show in Fig.
5(g) that the absolute value of the average reward curve
eventually converges to a consistent value, indicating that
SafeTail closely approximates the optimal latency and provides
stable performance relative to the target latency.

(viii) Impact of target latency: Our experimental results
(Fig. 5(h)) demonstrate the trade-off between target latency
and resource usage, as captured by the access rate. When the
target latency was the tightest (e.g., 0.60s), SafeTail reduced
the achieved latency accordingly. While the median and 90th

50%tile90%tile95%tile99%tile
Percentile

0

20

40

60

80

To
ta

l l
at

en
cy

 (s
)

11.18s

Target latency
Oracle (Optimal)
SafeTail
DRL-Linear

TLORA
Rand-1
MinLoad-1
MinProp-1

10 20 30 40 50
Average Episode Number

48.00

50.00

52.00

54.00

56.00

Ac
ce

ss
 R

at
e

(%
)

8.94s 11.18s 13.41s
Target Latency

0

10

20

30

To
ta

l L
at

en
cy

 (s
)

Target Latency
50tile
90tile

95tile
99tile
Access Rate

40

50

60

Ac
ce

ss
 R

at
e

(%
)

(a) (b) (c)

50%tile 90%tile 95%tile 99%tile
Percentile

0

10

20

30

40

50

To
ta

l l
at

en
cy

 (s
)

11.18s

Target latency
SafeTail
Rand-1

Rand-2
Rand-3

50%tile 90%tile 95%tile 99%tile
Percentile

0

10

20

30

40

To
ta

l l
at

en
cy

 (s
)

11.18s

Target latency
SafeTail
MinLoad-1

MinLoad-2
MinLoad-3

50%tile 90%tile 95%tile 99%tile
Percentile

0

10

20

30

40

To
ta

l l
at

en
cy

 (s
)

11.18s

Target latency
SafeTail
MinProp-1

MinProp-2
MinProp-3

(d) (e) (f)

Fig. 6. Use Case-2: (a) Latency comparison: SafeTail vs. other methods, (b)
Access rate of SafeTail, (c) Impact of target latency, (d) SafeTail vs. Rand-x,
(e) SafeTail vs. MinLoad-x, (f) SafeTail vs. MinProp-x.

percentile latencies stayed below the target, the 95th and
99th percentiles slightly exceeded it, as their optimal latencies
(0.57s and 0.70s, Fig. 5(a)) were inherently higher. This
indicates SafeTail remains close to optimal when strict tail
targets are challenging. As the target latency was relaxed (e.g.,
1.2s and 1.44s), all latency metrics (median and tail) fell within
the threshold, and the access rate decreased. This confirms
SafeTail’s ability to adaptively balance latency compliance
with resource efficiency based on the target constraint.

2) Use Case-2: Instance Segmentation of Images: A similar
trend is observed for this use case regarding median and tail
latency, access rate, latency deviation, and stabilization of the
reward, with a few exceptions discussed below.

As shown in Fig. 6(a), while the achieved median latency
was lower than the target latency, SafeTail did not always
meet the target latency in the case of tail latencies. It is worth
noting that even the optimal tail latency exceeded the target
latency. This discrepancy arises because the target latency is
a heuristic value based on certain assumptions that may not
always hold true. The target latency is primarily used for
reward computation, but achieving it is not always guaranteed.

Another observation from Fig. 6(d)-(f) is that SafeTail’s

10

50%tile90%tile95%tile99%tile
Percentile

0

10

20

30

To
ta

l l
at

en
cy

 (s
)

8.39s

Target latency
Oracle (Optimal)
SafeTail
DRL-Linear
TLORA
Rand-1
MinLoad-1
MinProp-1

10 20 30 40 50
Average Episode Number

37.5

40.0

42.5

45.0

47.5

50.0

Ac
ce

ss
 R

at
e

(%
)

3.12s 8.39s 12.00s
Target Latency

0

5

10

15

20

25

To
ta

l L
at

en
cy

 (s
)

Target Latency
50tile
90tile

95tile
99tile
Access Rate

0

10

20

30

40

50

60

Ac
ce

ss
 R

at
e

(%
)

(a) (b) (c)

50%tile 90%tile 95%tile 99%tile
Percentile

0

5

10

15

20

25

To
ta

l l
at

en
cy

 (s
)

8.39s

Target latency
SafeTail
Rand-1

Rand-2
Rand-3

50%tile 90%tile 95%tile 99%tile
Percentile

0

5

10

15

20
To

ta
l l

at
en

cy
 (s

)

8.39s

Target latency
SafeTail
MinLoad-1

MinLoad-2
MinLoad-3

50%tile 90%tile 95%tile 99%tile
Percentile

0

5

10

15

To
ta

l l
at

en
cy

 (s
)

8.39s

Target latency
SafeTail
MinProp-1

MinProp-2
MinProp-3

(d) (e) (f)

Fig. 7. Use Case-3: (a) Latency comparison: SafeTail vs. other methods, (b)
Access rate of SafeTail, (c) Impact of target latency, (d) SafeTail vs. Rand-x,
(e) SafeTail vs. MinLoad-x, (f) SafeTail vs. MinProp-x.

performance was comparable to Rand-3, MinLoad-3, and
MinProp-3. Specifically, for Rand-3, SafeTail showed the
worst degradation in median latency, with Rand-3’s latency
equal to 0.97x that of SafeTail. For MinLoad-3, the most
significant degradation was observed in the 90th percentile,
where MinLoad-3’s latency was 0.90x that of SafeTail. For
MinProp-3, SafeTail’s worst performance was seen in the
median latency, with MinProp-3 having 0.98x of SafeTail’s
latency. However, SafeTail outperformed MinProp-3 in other
cases. This degradation may be attributed to the baseline
methods using a fixed redundancy of three edge servers,
leading to higher resource utilization and network congestion.
In contrast, SafeTail selectively uses an average of 2 to 3 edge
servers and, in some cases, just 1 edge server. This analysis
shows a clear trade-off between optimizing latency and effec-
tively utilizing resources. While the baseline methods achieve
lower latency by consistently using multiple edge servers, they
increase resource utilization and network congestion. SafeTail
achieves comparable performance with more efficient resource
usage by selectively employing fewer edge servers, thus better
balancing latency optimization and resource management. The
trend observed on latency for different target latencies in Fig.
6(h) aligns with that of Use Case-1. In Use Case-2, where
SafeTail failed to meet the target latency, the corresponding
optimal latency was either higher than or comparable to the
specified target, indicating the inherent difficulty of satisfying
the requirement under those conditions.

3) Use Case-3: Removal of Noise from Audio Files: An
interesting observation can be made from Fig. 7(a), (d)-(f).
SafeTail shows a slight degradation compared to the Oracle
Optimal value, with Oracle’s Optimal being faster by 1.50x,
1.14x, 1.12x, and 1.00x for the median, 90th, 95th, and 99th

percentiles, respectively. While SafeTail utilized 1-3 edge
servers, it predominantly employed only 1-2 edge servers in
most cases, as shown in Fig. 7(b). It can be observed that
for median and 90th percentile latency cases, the baseline
methods outperformed SafeTail. However, for the 95th and
99th percentile cases, SafeTail performed better. Notably, in
the median and 90th percentile cases, even though SafeTail
did not surpass the baseline, it achieved latency values better

than the target latency. The primary objective of this work is
to balance the trade-off between the utilization of a number of
edge servers and latency optimization, with a higher priority
on reducing tail latency. This result aligned with our objective.
In the median and 90th percentile cases, when the achieved
latency is better than the target, SafeTail focused on reducing
the access rate. Conversely, in the 95th and 99th percentile
cases, where SafeTail could not meet the target latency, it out-
performed the baseline methods even with higher redundancy,
because it prioritized latency minimization. As observed in
Fig. 7(a), DRL-Linear and TLORA achieved slightly lower
median latency than SafeTail. However, SafeTail’s median
latency remained well within the target latency threshold.
More importantly, SafeTail outperformed both methods in
terms of tail latency, especially in cases where the tail latency
surpassed the target. Furthermore, Fig. 7(c) indicates that
lowering the target latency led to improved median latency,
aligning it more closely with the optimal latency.

4) Overhead of SafeTail: To evaluate the computational
overhead of identifying edge servers, we measured execution
time on an Intel Core i7-11700 processor (2.5 GHz, 8 cores).
For a scenario with 5 edge devices in the vicinity, SafeTail
required approximately 40 ms, which is comparable to DRL-
Linear at 42 ms, indicating that SafeTail introduces mini-
mal additional overhead despite its more expressive decision-
making model. As the number of nearby edge devices in-
creases to 10, the time taken by SafeTail rises to 45 ms due to
the exponential growth in the scheduling space. However, this
overhead is typically masked in practice by parallel execution
alongside other system services and thus has a negligible
impact on the end-to-end service latency.

In summary, SafeTail always achieved near-optimal latency
while effectively managing resource utilization across all three
use cases. In most cases, it outperformed baseline methods
without redundancy, and when redundancy was introduced, it
delivered competitive median and tail latencies compared to
the baseline methods, while controlling the number of edge
servers used. SafeTail’s dynamic and selective utilization of
edge servers offered a major advantage in resource optimiza-
tion. Despite minor latency degradations in certain scenarios,
SafeTail maintained a stable performance, showcasing a clear
balance between latency and resource efficiency.

VI. RELATED WORK

Existing studies fall into four categories, as discussed below:
Optimization of Latency-Sensitive Services on Edge
Servers: Latency-sensitive services are used by applications
such as video conferencing, virtual reality and even Industry
4.0. These applications all require optimization of tail latency.
A number of other works optimize the latency for critical
applications over wireless networks using edge computing
[29], [30], [31]. The work iSapiens [29] provides a distributed
platform to run different smart city applications. The work
[30] schedules tasks for vehicular control on the mobile edge,
with suitable slicing of the network resources. [31] utilizes
software-defined networking to schedule tasks related to con-
trolling a vehicle. Although these works focus on controlling

11

latency-sensitive applications, unlike SafeTail, they all focus
on optimization of median latency and not tail latency.

A few other works also specifically focus on optimizing
the computation latency of latency-sensitive services. For
example, NeuOS [32] is a system solution that runs multi-
DNN workloads within autonomous systems. TailGuard [7]
ensures that tail latency SLOs are met even under varying
workloads by using predictive modeling, real-time monitor-
ing, and adaptive scheduling. Unlike SafeTail, none of them
consider the uncertainties present in both the wireless network
and the computation time on edge servers. Furthermore, these
works also do not utilize redundancy for scheduling services.
Learning-based Scheduling for Edge Services: Learning-
based scheduling of edge services is often used to optimize
response times and other quality of service parameters. The
survey [33] provides a detailed discussion of the variety of
approaches used. For example, the work [34] uses prior-
itization of packets for mobile hotspots to schedule tasks
offloaded from mobile devices. The work [35] utilizes deep
reinforcement learning to balance the workload across the
edge servers. Finally, in the context of edge computing, deep
reinforcement learning (DRL) has been employed for caching
data in proximity to users [36] and for computation offload-
ing [28], [37]. Notably, [28] utilizes DRL to identify the
components to offload, departing from traditional optimization
methods. This approach assumes a linear relationship when
mathematically modeling the edge compute system. These
works focus on caching data, data offloading, and optimizing
latency. However, different from SafeTail, they do not focus
on scheduling of services to reduce tail latency.
Utilization of Redundancy to Reduce Latency: The concept
of redundancy to enhance reliability is widely employed in
data centers [38], [39]. For example, the work [40] analyzes
the root cause of high tail latency in longer jobs and identify
that it is mostly caused by high server utilization. This insight
enables the prediction of potential slower jobs early into their
computation, enabling efficient management and optimization.
In [41], an algorithm is proposed to estimate the latency and
cost tradeoff based on the empirical distribution of task compu-
tation time. This shows that a modest level of task replication
can diminish both latency and the expenses associated with
computing resources. Furthermore, [42] balances the require-
ment of tail latency with that of reduction of redundancy,
similar to ours. These works focus on cloud computing, and
not on edge computing, where network latencies are higher
and more uncertain. These techniques are suitable in situa-
tions with abundant compute and network resources, stable
network conditions, and the ability to absorb the overheads
of aggressive duplication, predictive scaling, or speculative
redundancy. These assumptions do not hold in edge computing
scenarios. On the other hand, SafeTail is explicitly designed for
decentralized, resource-constrained edge environments, where
excessive redundancy and overprovisioning are infeasible.
Comparative Analysis of Tail Latency Optimization Across
Different System Models: Several existing methods, such as
EdgeTuner [43], TLORA [9], and EcoEdgeInfer [44], also aim
to reduce tail latency but differ significantly from SafeTail in
control assumptions and operational scope. EdgeTuner [43]

operates at the orchestration layer with full control over
scheduling policies, enabling global job scheduling optimiza-
tion. TLORA [9] assumes centralized control in fog-based
5G networks to dynamically reallocate resources by assum-
ing Weibull latency distribution. EcoEdgeInfer [44] focuses
on optimizing local inference on resource-constrained edge
devices, controlling both hardware and software settings. In
contrast, SafeTail assumes no control over edge server inter-
nals. Instead, it guides service placement from the user side,
leveraging observed system conditions to manage redundancy
and minimize tail latency. Unlike the others, SafeTail passively
adapts to dynamic environments, making it well-suited for
decentralized, user-constrained edge computing.

Duplication [45] is used on edge servers to shorten the
transmission time and improve the quality of service (QoS).
Duplicate aware scheduling was proposed to duplicate every
task. The work [46] proactively senses the network and com-
putes resources available to ascertain the need for duplication
before scheduling services on edge servers. Further, [47]
explored the use of computation duplication to edge servers
to accelerate the download of results. The work [48] focuses
on reducing latency and reliability in edge computing with
inherent system uncertainty. Unlike SafeTail, these techniques
do not have a specific target latency. Our notion of target
latency ensures that the level of duplication remains limited
and thus, reduces the amount of resource utilization.

VII. LIMITATION AND FUTURE WORK

SafeTail currently has the following limitations. First, it has
been evaluated on a homogeneous set of edge servers, where
all servers have identical computing and network resources.
While this is common in prior studies, some research has
shown that resource heterogeneity in edge servers can help re-
duce latencies. However, our framework captures the dynamic
state of each server, which varies across the edge servers, and
thus, our approach can be extended to heterogeneous settings
as well. In future work, we intend to expand our experiments
to consider heterogeneous environments. Additionally, our cur-
rent framework assumes homogeneous services for execution,
a constraint we also plan to relax in future work.

Second, our framework is currently user-centric, with Safe-
Tail operating on the user side to decide redundancy levels
based on the user’s needs. However, this approach may occa-
sionally increase overall resource consumption, although we
mitigate this by reducing redundancy when possible. In the
future, we plan to optimize tail latency across services by
considering the needs of all users in the network.

Third, we did not model the initial waiting time for each
server. We assume that a server that cannot accept a request
simply discards it. Note that the subsequent waiting time of
processes due to resource preemption and/or contention is
considered to be part of execution time in our experiments.
Addressing this limitation will be a focus of our future work.

VIII. CONCLUSION

In this paper, we introduced SafeTail, a reward-based deep
learning framework designed to tackle the challenge of re-
ducing tail latency in latency-sensitive services. SafeTail aims

12

to optimize service execution latency through adaptive re-
dundancy, intelligently managing the use of additional edge
servers to achieve this goal. The framework dynamically
adapts to the changing conditions of edge servers and ser-
vice demands, deploying redundancy only when necessary to
minimize tail latency while avoiding excessive resource use
and network congestion.

Our experimental results revealed that SafeTail significantly
improved both median and tail latency compared to existing
baseline methods. We performed extensive trace-driven simu-
lations across diverse applications, including object detection,
image segmentation, and audio noise removal. These simula-
tions demonstrated that SafeTail effectively reduced service
latency, particularly tail latency, while skillfully balancing
latency and resource utilization.

ACKNOWLEDGMENTS

This work is supported by the Science and Engineering
Research Board, Department of Science and Technology,
Government of India, under Grant CRG/2022/005096.

REFERENCES

[1] K. Jiang, H. Zhou, X. Chen, and H. Zhang, “Mobile edge computing
for ultra-reliable and low-latency communications,” IEEE Communi-
cations Standards Magazine, vol. 5, no. 2, pp. 68–75, 2021. DOI:
10.1109/MCOMSTD.001.2000045 .

[2] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5g mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Communica-
tions Surveys and Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021. DOI:
10.1109/COMST.2021.3061981 .

[3] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,”
IEEE International Conference on Communications (INFOCOM), pp.
468–476, 2018. DOI: 10.1109/INFOCOM.2018.8486411 .

[4] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, and
D. O. Wu, “Improving cloud gaming experience through mobile edge
computing,” IEEE Wireless Communications, vol. 26, no. 4, pp. 178–
183, 2019. DOI: 10.1109/MWC.2019.1800440 .

[5] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and
X. Koutsoukos, “Performance interference-aware vertical elasticity for
cloud-hosted latency-sensitive applications,” IEEE International Con-
ference on Cloud Computing (CLOUD), pp. 82–89, 2018. DOI:
10.1109/CLOUD.2018.00018 .

[6] X. Chen, H. Song, J. Jiang, C. Ruan, C. Li, S. Wang, G. Zhang,
R. Cheng, and H. Cui, “Achieving low tail-latency and high scalabil-
ity for serializable transactions in edge computing,” ACM European
Conference on Computer Systems (EuroSys), p. 210–227, 2021. DOI:
10.1145/3447786.3456238 .

[7] Z. Wang, H. Li, L. Sun, T. Rosenkrantz, H. Che, and H. Jiang,
“Tailguard: Tail latency slo guaranteed task scheduling for data-
intensive user-facing applications,” in IEEE International Conference
on Distributed Computing Systems (ICDCS), 2023, pp. 898–909. DOI:
10.1109/ICDCS57875.2023.00042 .

[8] M. S. Elbamby, C. Perfecto, C.-F. Liu, J. Park, S. Samarakoon, X. Chen,
and M. Bennis, “Wireless edge computing with latency and reliability
guarantees,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1717–1737,
2019. DOI: 10.1109/JPROC.2019.2917084 .

[9] S. Zheng, Z. Gao, X. Shan, W. Zhou, and Y. Wang, “Tail latency opti-
mized resource allocation in fogbased 5g networks,” in IEEE Symposium
on Computers and Communications (ISCC), 2018, pp. 249–254. DOI:
10.1109/ISCC.2018.8538463 .

[10] W. Zhang, M. Feng, and M. Krunz, “Latency estimation and computa-
tional task offloading in vehicular mobile edge computing applications,”
IEEE Transactions on Vehicular Technology, vol. 73, no. 4, pp. 5808–
5823, 2024. DOI: 10.1109/TVT.2023.3334192 .

[11] S. P. Panda, A. Banerjee, and A. Bhattacharya, “User allocation in mo-
bile edge computing: A deep reinforcement learning approach,” in IEEE
ICWS, 2021, pp. 447–458. DOI: 10.1109/ICWS53863.2021.00064 .

[12] N. Khan and S. Coleri, “Resource allocation for ultra-reliable low-
latency vehicular networks in finite blocklength regime,” in IEEE
International Mediterranean Conference on Communications and
Networking (MeditCom), 2022, pp. 322–327. DOI: 10.1109/Medit-
Com55741.2022.9928733 .

[13] R. Bi, T. Peng, J. Ren, X. Fang, and G. Tan, “Joint service place-
ment and computation scheduling in edge clouds,” in IEEE Interna-
tional Conference on Web Services (ICWS), 2022, pp. 47–56. DOI:
10.1109/ICWS55610.2022.00022 .

[14] Y.-W. Hung, Y.-C. Chen, C. Lo, A. G. So, and S.-C. Chang, “Dynamic
workload allocation for edge computing,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 519–529,
2021. DOI: 10.1109/TVLSI.2021.3049520 .

[15] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communication Surveys and Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017. DOI: 10.1109/COMST.2017.2745201 .

[16] Y. Zhang, C. Chen, L. Liu, D. Lan, H. Jiang, and S. Wan, “Aerial edge
computing on orbit: A task offloading and allocation scheme,” IEEE
Transactions on Network Science and Engineering, vol. 10, no. 1, pp.
275–285, 2023. DOI: 10.1109/TNSE.2022.3207214 .

[17] “3GPP: Release 18,” https://www.3gpp.org/specifications-technologies/
releases/release-18, 2024, accessed: 2025-06-20.

[18] “Ubuntu manpage: stress-ng,” https://manpages.ubuntu.com/manpages/
xenial/man1/stress-ng.1.html.

[19] “Linux manpage: taskset,” https://man7.org/linux/man-
pages/man1/taskset.1.html.

[20] M. Mortimer, “iperf3 documentation,” 2018.
[21] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot scenarios

in fog computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019. DOI:
10.1109/ACCESS.2019.2927895 .

[22] https://github.com/ultralytics/yolov5, accessed on June 20, 2024.
[23] Ultralytics, https://docs.ultralytics.com/tasks/segment/, accessed on June

20, 2024.
[24] B. McFee, M. McVicar, D. Faronbi, I. Roman, M. Gover, S. Balke,

S. Seyfarth, A. Malek, C. Raffel, V. Lostanlen, B. van Niekirk, D. Lee,
F. Cwitkowitz, F. Zalkow, O. Nieto, D. Ellis, J. Mason, K. Lee, B. Steers,
E. Halvachs, C. Thomé, F. Robert-Stöter, R. Bittner, Z. Wei, A. Weiss,
E. Battenberg, K. Choi, R. Yamamoto, C. Carr, A. Metsai, S. Sulli-
van, P. Friesch, A. Krishnakumar, S. Hidaka, S. Kowalik, F. Keller,
D. Mazur, A. Chabot-Leclerc, C. Hawthorne, C. Ramaprasad, M. Keum,
J. Gomez, W. Monroe, V. A. Morozov, K. Eliasi, nullmightybofo,
P. Biberstein, N. D. Sergin, R. Hennequin, R. Naktinis, beantowel,
T. Kim, J. P. Åsen, J. Lim, A. Malins, D. Hereñú, S. van der Struijk,
L. Nickel, J. Wu, Z. Wang, T. Gates, M. Vollrath, A. Sarroff, Xiao-
Ming, A. Porter, S. Kranzler, Voodoohop, M. D. Gangi, H. Jinoz,
C. Guerrero, A. Mazhar, toddrme2178, Z. Baratz, A. Kostin, X. Zhuang,
C. T. Lo, P. Campr, E. Semeniuc, M. Biswal, S. Moura, P. Brossier,
H. Lee, and W. Pimenta, “librosa/librosa: 0.10.2.post1,” May 2024. DOI:
10.5281/zenodo.11192913 .

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision (ECCV) 2014,
pp. 740–755. DOI: 10.1007/978-3-319-10602-1 48 .

[26] “Mnist audio dataset.” [Online]. Available: https://github.com/
Jakobovski/free-spoken-digit-dataset/tree/master

[27] Y. Li, A. Zhou, X. Ma, and S. Wang, “Profit-aware edge server
placement,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 55–67,
2021.

[28] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in IEEE Wire-
less Communications Networks and Communications (WCNC), 2018,
pp. 1–6. DOI: 10.1109/WCNC.2018.8377343 .

[29] F. Cicirelli, A. Guerrieri, G. Spezzano, and A. Vinci, “An edge-
based platform for dynamic smart city applications,” Future Gen-
eration Computer Systems, vol. 76, pp. 106–118, 2017. DOI:
10.1016/j.future.2017.05.034 .

[30] L. Li, Y. Li, and R. Hou, “A novel mobile edge computing-based
architecture for future cellular vehicular networks,” in IEEE Wireless
Communications Networks and Communications (WCNC), 2017, pp. 1–
6. DOI: 10.1109/WCNC.2017.7925830 .

[31] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, “A scalable and
quick-response software defined vehicular network assisted by mobile
edge computing,” IEEE Communications Magazine, vol. 55, no. 7, pp.
94–100, 2017. DOI: 10.1109/MCOM.2017.1601150 .

https://doi.org/10.1109/MCOMSTD.001.2000045
https://doi.org/10.1109/COMST.2021.3061981
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/MWC.2019.1800440
https://doi.org/10.1109/CLOUD.2018.00018
https://doi.org/10.1145/3447786.3456238
https://doi.org/10.1109/ICDCS57875.2023.00042
https://doi.org/10.1109/JPROC.2019.2917084
https://doi.org/10.1109/ISCC.2018.8538463
https://doi.org/10.1109/TVT.2023.3334192
https://doi.org/10.1109/ICWS53863.2021.00064
https://doi.org/10.1109/MeditCom55741.2022.9928733
https://doi.org/10.1109/MeditCom55741.2022.9928733
https://doi.org/10.1109/ICWS55610.2022.00022
https://doi.org/10.1109/TVLSI.2021.3049520
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/TNSE.2022.3207214
https://www.3gpp.org/specifications-technologies/releases/release-18
https://www.3gpp.org/specifications-technologies/releases/release-18
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html
https://doi.org/10.1109/ACCESS.2019.2927895
https://doi.org/10.5281/zenodo.11192913
https://doi.org/10.1007/978-3-319-10602-1_48
https://github.com/Jakobovski/free-spoken-digit-dataset/tree/master
https://github.com/Jakobovski/free-spoken-digit-dataset/tree/master
https://doi.org/10.1109/WCNC.2018.8377343
https://doi.org/10.1016/j.future.2017.05.034
https://doi.org/10.1109/WCNC.2017.7925830
https://doi.org/10.1109/MCOM.2017.1601150

13

[32] S. Bateni and C. Liu, “Neuos: A latency-predictable multi-dimensional
optimization framework for dnn-driven autonomous systems,” in
USENIX Annual Technical Conference (ATC), USA, 2020.

[33] M. Raeisi-Varzaneh, O. Dakkak, A. Habbal, and B.-S. Kim, “Resource
scheduling in edge computing: Architecture, taxonomy, open issues and
future research directions,” IEEE Access, vol. 11, pp. 25 329–25 350,
2023. DOI: 10.1109/ACCESS.2023.3256522 .

[34] W. Zhou, L. Fan, F. Zhou, F. Li, X. Lei, W. Xu, and A. Nallanathan,
“Priority-aware resource scheduling for uav-mounted mobile edge com-
puting networks,” IEEE Transactions on Vehicular Technology, vol. 72,
no. 7, pp. 9682–9687, 2023. DOI: 10.1109/TVT.2023.3247431 .

[35] T. Zheng, J. Wan, J. Zhang, and C. Jiang, “Deep reinforcement learning-
based workload scheduling for edge computing,” Journal of Cloud
Computing, vol. 11, 2022. DOI: 10.1186/s13677-021-00276-0 .

[36] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching
transient data for internet of things: A deep reinforcement learning
approach,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2074–
2083, 2019. DOI: 10.1109/JIOT.2018.2882583 .

[37] J. Wu, H. Lin, H. Liu, and L. Gao, “A deep reinforcement learning
approach for collaborative mobile edge computing,” in IEEE Interna-
tional Conference on Communications (ICC) 2022, pp. 601–606. DOI:
10.1109/ICC45855.2022.9839202 .

[38] H. M. Bashir, A. B. Faisal, M. A. Jamshed, P. Vondras, A. M. Iftikhar,
I. A. Qazi, and F. R. Dogar, “Reducing tail latency using duplica-
tion: A multi-layered approach,” in ACM International Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2019,
p. 246–259. DOI: 10.1145/3359989.3365432 .

[39] M. Primorac, K. Argyraki, and E. Bugnion, “When to hedge in inter-
active services,” in USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2021, pp. 373–387.

[40] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters,” IEEE Transactions on Services Computing, vol. 12, no. 1,
pp. 91–104, 2019. DOI: 10.1109/TSC.2016.2611578 .

[41] D. Wang, G. Joshi, and G. W. Wornell, “Efficient straggler replication
in large-scale parallel computing,” ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, vol. 4, no. 2, apr 2019.

[42] B. Cai, K. Li, L. Zhao, and R. Zhang, “Less provisioning: A hybrid
resource scaling engine for long-running services with tail latency
guarantees,” IEEE Transactions on Cloud Computing, vol. 10, no. 3,
pp. 1941–1957, 2022. DOI: 10.1109/TCC.2020.3016345 .

[43] S. Wen, R. Han, C. H. Liu, and L. Y. Chen, “Fast drl-based scheduler
configuration tuning for reducing tail latency in edge-cloud jobs,”
Journal of Cloud Computing, vol. 12, no. 1, p. 90, 2023.

[44] S. P. Rachuri, N. Shaik, M. Choksi, and A. Gandhi, “Ecoedgeinfer:
Dynamically optimizing latency and sustainability for inference on edge
devices,” in IEEE/ACM Symposium on Edge Computing (SEC), 2024,
pp. 191–205. DOI: 10.1109/SEC62691.2024.00023 .

[45] W.-C. Chang and P.-C. Wang, “Adaptive replication for
mobile edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 11, pp. 2422–2432, 2018. DOI:
10.1109/JSAC.2018.2874140 .

[46] B. Choudhury, S. Choudhury, and A. Dutta, “A proactive context-aware
service replication scheme for adhoc iot scenarios,” IEEE Transactions
on Network Service and Management, vol. 16, no. 4, pp. 1797–1811,
2019. DOI: 10.1109/TNSM.2019.2928698 .

[47] K. Li, M. Tao, and Z. Chen, “Exploiting computation replication for
mobile edge computing: A fundamental computation-communication
tradeoff study,” IEEE Transactions on Wireless Communications, vol. 19,
no. 7, pp. 4563–4578, 2020. DOI: 10.1109/TWC.2020.2985039 .

[48] Q. Li, X. Ma, A. Zhou, C. Joo, and S. Wang, “Online service
request duplicating for vehicular applications,” IEEE Transactions
on Mobile Computing, vol. 22, no. 7, pp. 4168–4180, 2023. DOI:
10.1109/TMC.2022.3148170 .

APPENDIX A
ALGORITHMIC COMPLEXITY ANALYSIS

The algorithmic complexity of the SafeTail framework consists
of two key components: the redundant scheduling space and
the deep learning-based scheduling model.

Given 𝑛 edge servers, the total number of possible non-
empty subsets for redundant scheduling is: 2𝑛−1. This leads to
an exponential search space, making exhaustive enumeration

impractical. For instance, when 𝑛 = 5, there are 25 − 1 = 31
possible combinations. Thus, the scheduling complexity in the
worst case is: O(2𝑛). However, in practical scenarios, such
as within a confined area of approximately 2.5 kilometers in
radius, the value of 𝑛 is unlikely to exceed 10 [17].

State and Action Space Complexity: Each environment
state 𝜔𝑡 includes the dynamic features of all edge servers
and user-device characteristics. The dimensionality of the state
vector grows linearly with the number of edge servers 𝑛, i.e.,
State Complexity: O(𝑛).

The action space corresponds to the set of all
non-empty subsets of edge servers, which results in:
Action Space Size: O(2𝑛).

Neural Network Forward Pass Complexity SafeTail uses
a feed-forward neural network (FNN) for policy learning. Let:

• 𝑑: input dimension (O(𝑛))
• ℎ: number of neurons per hidden layer
• 𝑙: number of hidden layers
• 𝑜 = 2𝑛 − 1: output dimension (number of actions)
Then, the complexity of a single forward pass through the

FNN is: O(𝑑ℎ + (𝑙 − 1)ℎ2 + ℎ𝑜).
Training Complexity: Training occurs episodically. Let 𝜅

be the batch size (number of state-action-reward tuples), then
the training complexity per update step is: O(𝜅 · (𝑑ℎ + (𝑙 −
1)ℎ2 + ℎ𝑜)).

TABLE II
COMPLEXITY SUMMARY OF SAFETAIL FRAMEWORK

Component Complexity
Redundant scheduling space O(2𝑛)
State dimensionality O(𝑛)
Action space size O(2𝑛)
Neural network forward pass O(𝑑ℎ + (𝑙 − 1)ℎ2 + ℎ𝑜)
Training (per batch) O(𝜅 · (𝑑ℎ + (𝑙 − 1)ℎ2 + ℎ𝑜))

While SafeTail’s worst-case scheduling complexity remains
exponential due to the redundant action space, the use of a
deep learning-based approach circumvents exhaustive search.
This enables near-optimal scheduling decisions in real-time for
small to moderately sized edge networks (𝑛 ≤ 10). For larger
networks, further optimization techniques (e.g., hierarchical
action pruning) may be required.

The comparative analysis reveals that SafeTail achieves a
practical balance between expressiveness and tractability by
leveraging a combinatorial DRL-based policy while constrain-
ing the number of edge servers to 𝑛 ≤ 10. This allows
it to make latency-aware, near-optimal scheduling decisions
without incurring intractable computational costs. In contrast,
traditional heuristics such as Rand-x and MinLoad-x offer
low complexity but lack adaptivity, resulting in suboptimal
tail latency performance. DRL-Linear [28] introduces more
expressive control through joint offloading and resource al-
location but suffers from an exponential action space that
severely limits scalability. On the other hand, EdgeTuner [43]
provides excellent scalability and fast training by fixing the
action space to scheduler configurations and leveraging a
simulator for offline learning. However, it is inherently limited
to tuning configuration parameters rather than making fine-
grained, redundancy-aware scheduling decisions like SafeTail.

https://doi.org/10.1109/ACCESS.2023.3256522
https://doi.org/10.1109/TVT.2023.3247431
https://doi.org/10.1186/s13677-021-00276-0
https://doi.org/10.1109/JIOT.2018.2882583
https://doi.org/10.1109/ICC45855.2022.9839202
https://doi.org/10.1145/3359989.3365432
https://doi.org/10.1109/TSC.2016.2611578
https://doi.org/10.1109/TCC.2020.3016345
https://doi.org/10.1109/SEC62691.2024.00023
https://doi.org/10.1109/JSAC.2018.2874140
https://doi.org/10.1109/TNSM.2019.2928698
https://doi.org/10.1109/TWC.2020.2985039
https://doi.org/10.1109/TMC.2022.3148170

14

TABLE III
COMPARATIVE ALGORITHMIC COMPLEXITY ANALYSIS OF SAFETAIL AND BASELINES

Method Complexity Remarks
Oracle (Optimal) O(𝑛) Executes on all 𝑛 servers; yields minimum latency but with

maximum resource consumption.
Rand-x (Random Selection) O(𝑥) Simple and fast heuristic; selects 𝑥 servers randomly without

latency or load awareness.
MinLoad-x O(𝑛 log 𝑥) Selects 𝑥 least-loaded servers based on server queue or utilization

metrics; ignores network delay.
MinProp-x O(𝑛 log 𝑥) Picks 𝑥 servers with lowest propagation latency; does not adapt

to server-side load variations.

DRL-Linear [28]

Action: O(2𝑛 · 𝑚𝑛)
DQN Inference: O(𝑑ℎ + (𝑙 − 1)ℎ2 + ℎ𝑜);
𝑚 =Number of discrete bins used for
resource levels in joint offloading models

Joint binary offloading + resource allocation leads to exponential
action space; scalability limited for larger user sets.

TLORA [9] O(𝑇 × 𝑛 × 𝑀); 𝑇 = number of time slots;
𝑀 = number of historical latency samples
stored per server

Statistical method using Weibull-based tail estimation; low online
cost, but adaptivity limited by model fit.

EdgeTuner [43]
Action: O(1) (fixed-size config space)
State: O(𝑛 + 𝑇)
Inference: O(𝑑𝑘 + (𝑙 − 1)ℎ2 + ℎ𝑜)

DRL-based scheduler configuration tuning; highly scalable via
simulator-based training and compact action space.

SafeTail (Ours) Scheduling: O(2𝑛);
NN Inference: O(𝑑ℎ + (𝑙 − 1)ℎ2 + ℎ𝑜);
Training: O(𝜅 · inference)

Redundancy-based DRL policy with combinatorial action space;
scalable for 𝑛 ≤ 10 in practical edge deployments.

TABLE II summarizes the complexity of SafeTail and all the
baseline methods along with their limitations.

APPENDIX B
QUANTITATIVE ANALYSIS OF EDGE SERVER

REACHABILITY CONSTRAINT

The SafeTail framework assumes that the number of edge
servers reachable from a user is fewer than 10 [17]. This
assumption plays a critical role in making the framework
computationally efficient and practically deployable in edge
environments.

Effect on Action Space Size: SafeTail considers all non-
empty subsets of reachable edge servers for redundancy
scheduling. The number of possible actions is given by:
|A| = 2𝑛 − 1.

This exponential growth justifies constraining 𝑛 < 10 to
ensure tractable action selection.

Effect on Neural Network Complexity: The output layer
of the deep neural network in SafeTail must match the number
of actions, i.e., 2𝑛 − 1. As 𝑛 increases, the number of output
neurons grows exponentially, significantly increasing the com-
putational burden of both inference and training.

Comparative Analysis: Table IV presents a comparative
analysis of SafeTail’s performance as the number of edge
servers increases from 𝑛 = 5 to 𝑛 = 10.

TABLE IV
COMPARISON OF REALISTIC SCENARIOS WITH DIFFERENT NUMBER OF

REACHABLE EDGE SERVERS

Metric n = 5 n = 10
Action space size 31 1023
Inference time (ms) 40 45
Memory usage per inference (KB) 75.2 1228
Training episodes required 10, 000 30, 000
Avg. access rate (post-convergence) 1.5–2.5 4–5
Tail latency improvement (over Rand-1) 1.7–2.6× 1.5–2.2×

The assumption that fewer than 10 edge servers are reach-
able from a user is both realistic and strategic. It makes

the SafeTail framework scalable, efficient, and well-suited for
deployment in dynamic, resource-constrained edge environ-
ments.

APPENDIX C
OPTIMALITY GAP ANALYSIS

In this section, we present an empirical analysis of the op-
timality gap for SafeTail, demonstrating that it consistently
produces solutions close to the optimal across all scenarios.

While the Oracle baseline provides the minimum achievable
latency by scheduling a request on all edge servers, it incurs
the highest resource usage. To assess the trade-off, we compute
the relative optimality gap of SafeTail as:

Gaprel =
𝐿SafeTail − 𝐿Oracle

𝐿Oracle
× 100%

Table V compares SafeTail and Oracle across all use cases.

TABLE V
OPTIMALITY GAP BETWEEN SAFETAIL AND ORACLE

Use Case Target Percentile Oracle SafeTail Gap Access
Latency
(s)

(s) (s) (%) (%)

Object Detection 1.20 50% 0.33 0.36 8.33 39.7
99% 0.70 0.89 27.14

Segmentation 8.94 50% 8.09 8.94 10.50 65.6
99% 20.03 23.73 18.47

Noise Removal 3.12 50% 2.37 3.09 30.38 38.91
99% 18.54 19.29 4.04

Despite a modest increase in latency (maximum 30%),
SafeTail significantly reduces resource usage by selectively
choosing 1–3 edge servers, compared to Oracle’s use of all
servers. This validates that SafeTail achieves near-optimal per-
formance while maintaining efficiency in edge environments.

	Introduction
	Problem Formulation
	Analyzing Tail Latency: Empirical Studies
	Framework and Methodology
	Implementation & Experimental Analysis
	Experimental Setup
	Comparative Methods
	Performance Metrics
	Configuration of the Parameters
	Experimental Analysis
	Use Case-1: Object Detection using YOLOv5
	Use Case-2: Instance Segmentation of Images
	Use Case-3: Removal of Noise from Audio Files
	Overhead of SafeTail

	related work
	Limitation and Future Work
	conclusion
	References
	Appendix A: Algorithmic Complexity Analysis
	Appendix B: Quantitative Analysis of Edge Server Reachability Constraint
	Appendix C: Optimality Gap Analysis

