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Abstract—Conventional streaming solutions for streaming 360-
degree panoramic videos are inefficient in that they download
the entire 360-degree panoramic scene, while the user views
only a small sub-part of the scene called the viewport. This
can waste over 80% of the network bandwidth. We develop a
comprehensive approach called Mosaic that combines a powerful
neural network-based viewport prediction with a rate control
mechanism that assigns rates to different tiles in the 360-degree
frame such that the video quality of experience is optimized
subject to a given network capacity. We model the optimization
as a multi-choice knapsack problem and solve it using a greedy
approach. We also develop an end-to-end testbed using standards-
compliant components and provide a comprehensive performance
evaluation of Mosaic along with five other streaming techniques
— two for conventional adaptive video streaming and three for
360-degree tile-based video streaming. Mosaic outperforms the
best of the competitions by as much as 47-191% in terms of
average video quality of experience. Simulation based evaluation
as well as subjective user studies further confirm the superiority
of the proposed approach.

Keywords—360-degree video streaming, adaptive video stream-
ing, MPEG-DASH, Machine Learning, Convolutional Neural
Network (CNN), 3DCNN, Recurrent Neural Network (RNN)

I. INTRODUCTION

With video streaming proliferating on the Internet [1] inter-
est is growing for immersive video applications. An important
application in this space is 360-degree video [2]. 360-degree
video is a panoramic video recorded using omni-directional
cameras [3]. It is then projected onto 2D using one of the
available mapping techniques (e.g. equirectangular, cube, and
pyramid). Typically, the user watches the 360-degree video
using head mounted display (HMD) or commodity mobile
devices (e.g., [4]).

Regardless of the actual mapping used, the existing video
streaming ecosystem delivers the full 360-degree scene, while
the user views only part of the scene at a given time, called
viewport (VP). A viewport is about 90° — 120° horizontally,
90° vertically, less than 20% of the full 360-degree scene.

This amounts to a significant wastage of network bandwidth
by fetching bits that is never used in actual viewing. Thus, with
the prevalent Internet connection speeds [5] the video can only
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Fig. 1. Total downloaded size vs. download size for only the viewport watched
(in MB) for an actual 360-degree video streaming experiment with video
encoded in different bit rates. The video is about 1 min long. Further details
about the experiments are discussed in Section III.

be viewed at a compromised quality. Fig. 1 shows the total
download video file size in MB, consumed by conventional
360-degree video streaming compared with the download
consumed by only the current viewport. This is shown for
multiple video qualities (or bit rates). The highest of the bit
rates used is equivalent to the 4K video quality.

Clearly, the perfect solution is a video streaming system
that fetches only the information related to the viewport and no
more. The challenge here is as follows: 1) In a video streaming
system the video frames are fetched in advance of playing and
thus the user’s viewport must be predicted in advance in order
to do this. 2) The viewport depends on user’s attention and
thus cannot always be predicted perfectly in advance though
several techniques have been proposed recently with varying
prediction performance [6]-[9]. Imperfect prediction must be
handled adequately. For example, with imperfect prediction,
part of the viewport may be missing and thus the user’s quality
of experience (QoE) will drop — causing the player to either
ignore these missing parts or stall until these missing parts are
fetched. 3) Viewport prediction must be integrated seamlessly
with bit rate control.

As an example, consider Fig. 2. The Subfigure 2(a) shows
the scenario where the entire frame is downloaded at a
low quality (video bit rate) subject to the available network
bandwidth. Subfigure 2(b) shows a scenario when only the
viewport portion is downloaded but now at a much higher bit
rate. However, if the viewport prediction is imperfect the user
may miss part of the viewport (Subfigure 2(c)) leading to a
poor quality of experience. The alternative we pursue in this
work is to use utilize the viewport prediction to determine
which parts of the frame to be fetched at what quality. Thus,
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(b) Download predicted viewport only

(a) Download Full 360 ° video

(c) Download predicted viewport only,
but prediction inaccurate

(d) Download rate adapted tiles
based on viewport prediction

Fig. 2. Example illustrating the tradeoff between accuracy of viewport
prediction and video resolution.

the portion of the frame that is highly probable is fetched at a
higher quality and other less probable areas are still fetched,
but at a lower quality and other lower probability areas are
not fetched at all (Subfigure 2(d)).

Even for conventional videos, adequate bit rate control is
a challenging problem and is still a matter of active research
interest [10]-[16]. With 360-degree video a new dimension is
now added to this: a temporal domain problem now transforms
to a spatio-temporal problem. As the example with Fig. 2 has
illustrated, appropriate video bit rates both across space and
time must now be determined.

While a number of studies have recently looked into op-
timizing 360-degree video streaming [17]-[24], these have
not developed a complete end-to-end solution including bit
rate allocation/control across both space and time along with
advanced viewport prediction. Though a more recent study
[25] proposed such a system, in this study the server has to
manage client status, decide which client HTTP request of
video it should respond to, making them difficult to scale. It
also suffers from low prediction accuracy. In contrast, Mosaic
does not require any changes to the MPEG-DASH standard.
Moreover, Mosaic also uses state-of-the-art vision techniques
such as 3D-Convolutional Neural Networks (3D-CNN) [26] to
ensure that it can achieve accurate prediction for much longer
segments than previous studies. This significantly reduces both
the computation and network overhead. See a comprehensive
review in Section VII.

In this work, we develop an end-to-end 360-degree video
delivery system, Mosaic, that streams spatial subparts of the
video at appropriate encoding rates to maximize the estimated
user’s quality of experience subject to the prevalent network
capacity. (See Fig. 3 for an overview of the major com-
ponents.) To achieve this, Mosaic spatially partitions video
frames into rectangular regions called files, encodes them in in
multiple bitrates, and packages them for adaptive 360-degree
video streaming.

To utilize the existing video streaming ecosystem, we use
MPEG-DASH with spatial relation description (SRD) [27].
We predict the user’s viewport based on features such as head
tracking data, motion map and saliency map using advanced
machine learning methods. We then use a variant of the knap-
sack problem to choose an optimal video resolution for each
tile, given available network capacity and prediction. To handle
the prediction error, we factor in a penalty of missing tiles
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Fig. 3. Overview of Mosaic design: a tile-based adaptive 360-degree video
Streaming using user viewport prediction.
and incorporate this cost within the rate adaptation equation.
We evaluate Mosaic for 360-degree video streaming on the
Internet with a rate-limited client network link and compare
its performance with state-of-the-art algorithms for both con-
ventional video streaming and 360-degree video streaming.
Mosaic provides about 50% better median user perceived
video quality than its nearest competitor in our evaluations.
Median rebuffering is 3 times less than that of the competitor
over WiFi and similar of 4G/LTE emulated network.

A previous version of this paper was published in [28]. The
current version adds substantially to the content, including:

« utilization of a more representative metric of QoE as
opposed to only the bitrates (Section II-B),

« addition of more experiments to evaluate system per-
formance under various network conditions (Section V),
such as latency and bandwidth constraints,

« experiments to justify the choices of parameters used (e.g.
the tile size and segment length used for prediction),

« experiments to show the performance of each unit of
the system separately, such as QoE modeling, viewport
prediction module and adaptive bitrate (ABR) algorithm,

« addition of a more representative baseline technique, and

« addition of subjective user study (Section VI), with illus-
trations to give an intuitive understanding of the quality.

The rest of the paper is structured as follows. We discuss
the background and develop the Mosaic system design in
Section II. Section III reports the experiment methodology and
explains our implementation. We describe the experimental
results and our observations in Section IV and Section V.
We describe subjective user studies in Section VI. We discuss
related works in Section VII and conclude in Section VIII.

II. MOSAIC SYSTEM DESIGN
A. Background

The first step of adaptive streaming of 360-degree videos
is to divide the video across both space and time. Across
space, the 360-degree frame is split into multiple tiles after
an equirectangular projection [18], [27]. Across time, each
tile is split into multiple chunks of fixed duration, called
segments. We make a design choice in our work regarding
segment duration and number/layout of tiles. We choose 4x6
tiling and 2sec long segments. Note that larger tiles (i.e.,
fewer in number) provide a better encoding efficiency, but
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may cause additional bits to be downloaded as larger tiles
may increasingly extend beyond the viewport. Prior work [23],
[25] has indicated that 4x6 tiling work well in this regard.
Similarly, both too long and too short segment duration could
be detrimental to performance. Interested reader can refer to
Appendix B for additional study on segment size, where we
establish that 2 sec is a good choice.

A <tile,segment> is the unit of encoding, storage or net-
work communication. Each <tile,segment> is encoded in mul-
tiple qualities (i.e., resolutions or video bit rates) at the video
server. The client dynamically chooses the playback bitrate
of each segment based on the network capacity and/or client
player buffer levels and sends HTTP requests to the server to
prefetch the future segments of selected set of tiles. Ideally, the
only tiles that need to be fetched are those corresponding to the
user’s viewport. We assume that the tiles are smaller than the
viewport. In other words, multiple tiles are needed to cover the
viewport. Since the viewport at the (future) playback time is
unknown when video data is being fetched we first predict the
viewport corresponding to the segment being fetched. Given
the prediction is always imperfect, the prediction is modeled
as a probability distribution over all possible tiles. This in turn
provides a probability distribution over viewports for the 360-
degree video frame. Given this input, our task is to select the
tiles along with their playback bit rates for the next segment
to be fetched subject to the prevalent network capacity. This
is fundamentally an optimization problem — maximizing the
user’s quality of experience subject to the network capacity.

B. Modeling Quality of Experience

In this section, we develop a model for the proposed tile-
based adaptive video streaming system for 360-degree videos.
We use a control theoretic approach similar to [29].

We model the quality of experience metric of an individual
segment, QoF, as consisting of four distinct components.

User Perceived Video Quality:The first component considers
the average bitrate perceived by the user and the quality
penalty when tiles are missed. Note that higher bitrate im-
proves the quality, whereas missed tiles hurt the quality. The
user perceived video quality of the segment is modeled as a
linear combination of the bitrate perceived and tiles missed.

Assume that N tiles cover the 360-degree scene, T} is the
j™ tile of the segment, R; is the rate selected for 7} and
D(R;) is the size of the T} for rate R;. Ry and Rmaz are
the minimum and maximum rate avaﬂable respectively. If T}
is not to be fetched, then R; = 0. Viewports are indicated by
V;. Since the viewport spans over some tiles, quality of tiles in
turn defines viewport quality. Then the user’s perceived video
QoE is assumed to be proportional to the sum of the qualities
of the tiles composing the viewport. Mathematically, we define
the estimated user perceived video bitrate as:

N
B; = Zij(Rj)Oij (D

where ¢(R) is a function that maps a video bitrate R to the
perceived quality and O;; is overlapping ratio of viewport V;
and T}. P; is the probability indicating how likely the user is

to view the tile T};. The set of tiles that are not fetched but still
overlap with user viewport are called missing tiles. They cause
QoE degradation either by projecting poor quality video (part
of the viewport missing) or by stalling to fetch these missing
tiles. We define penalty function for such missing tiles as:

-3 ri

where L; = 1if Tj is sklpped (not fetched), else L; = 0.
Combmmg the above two models, the estimated quahty is
modeled as:

Rpin)Lj, 2

Qi =nBi —7S; 3)

where 7; and ~y, are weights modeling the relative importance
of tiles to be fetched vs. not fetched.

Quality Variation Within Viewport: Unless all tiles are
fetched at the same quality level, it is possible that the tile
quality levels vary across different tiles within the user’s view-
port during playback. This is because no special mechanisms
have been used to ensure same qualities. This may impact
the QoE. However, because tiles are being fetched for future
playback, it is unknown which tiles will overlap with the
future viewport. Therefore we use the standard deviation of
qualities of all tiles instead (i.e. O; ; = 1), proportional to the
probability indicating how likely the user is to view the tile
(P;). Mathematically,

E; = StdDev [¢(R;)P;| j =1,...,N] (4)

Quality Variation Across Segments: Quality variation across
segments during playback also impacts QoE. As the third
component, similar to a metric used for regular adaptive video
streaming [29], we use G; to quantify quality change at each
segment transition.

Gi=1Qi — Qi—1] )

Rebuffering: While we run rate adaptation within the esti-
mated network capacity, network delays and capacity fluctua-
tion could cause the playback buffer to deplete and the client
player to stall until the content for the player is downloaded.
This stall/rebuffering duration is an important QoE metric. We
model the forth component, rebuffering, as follows:
S DRNA- L) .
W, —Bi)+ (6)
where W; is estimated network bandwidth and B; is the play-
back buffer level when the player segment starts to download
h segment. (a); = a if a > 0, else (a) = 0.

Normally, the initial start time would also be an important
QoE metric. We do not present this here, however, as this is
similar across all mechanisms we evaluated, since all tiles are
to be downloaded for the first segment in our implementation
of the client regardless of the mechanism used.

Now we define the quality of experience, QoF, as linear
combination of the four distinct components as follows:

T; = (

QoE = pu1Q; — poTi — psGi — paFs @)

where the p’s are constants modeling contributions of video
bitrates, rebuffering and quality smoothness on the QoFE. A
large 11 indicates the user cares for the high quality video
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bitrates. A large ps, p3 and g indicates the user prefers low
rebuffering, low quality variance across segment and within
viewport respectively.

Our objective is to select and assign rate R; for each
tile 7} (if the tile is not selected to be fetched, L; = 1
and R; = 0) such that QoE is maximized, subject to the
estimated download capacity C. So the optimization problem

to be solved is:
N

Maximize QoE subject to ZD(Rj)(l -Lj)<C (¥
j=1
We determine download capacity C' as function of the
estimated network capacity W; and/or the player buffer level
Bi. f(W;,8;) = C. Similar to previous works [25], [29],
we consider several different download capacity estimate
functions f(.) as follows:
o f(Wi,B;) = 6W;.
o f(W;,B;): Similar to buffer based approach [12],
if B; <reservoir 61 W,
else if 8; <cushion 6oW;,
else 63W;
o f(Wi, Bi) = SWip;.
Similar to [15], [29], we consider several different quality
functions ¢(.):
e Linear: ¢(R) =R
« Ratio: ¢(R) = R/Rmin of R/ Rz
o Index: ¢(R) is an index into a table of R.
Evaluating QoE in terms of PSNR or similar methods (V-
PSNR, WS-PSRN) is expected to be expensive for tiled
360-degree video rate adaptation because of the evaluation
overhead that needs to run in real-time. Studies such as [8],
[23] do use the V-PSNR to evaluate QoE, but there this is
done only after the playback/streaming is complete. Note that
our algorithm is generic in nature and works for any quality
function. We present the results with the linear function in this
paper. Additional experimental results with the index function
appears in the Appendix C. We model the optimization prob-
lem in Equation 8 as a multi-choice knapsack problem and
solve it using a greedy algorithm.

Algorithm 1 Tiled Adaptive Video Streaming

1: Initialize

2: for k <+ 1 to M do /* M segments in video*/

3: Estimate current download capacity C

Estimate tile probabilities P;, Vj =1... N

[R1..RN] = SelectRates ([Py..Pn], C)

Download the tiles in segment &k with video rates [R;]

AN

C. Greedy Algorithm

Algorithm 1 selects tiles and their bit rates for each
segment to be downloaded. We use the network capacities
observed while downloading the previous %k segments and
use harmonic mean of k£ observed network capacities as a
proxy for the current network capacity. We acknowledge that
more sophisticated network capacity estimation techniques
may possibly provide better results. The tile probabilities P;
are estimated based on (offline) analysis of the video and user’s

Algorithm 2 SelectRates: Viewport Based Rate Adaptation
Input: tile probabilities P;, capacity estimated C
Output: Rates, bitrates selected for tiles

1: max < —oo

2: Rates «+ {0,0,..0} /*initial condition */

3: isSelected < False

4: while Rates is updated do

5: Rimp < Rates

6: for : < 1 to V do /* viewport index*/

7: R «+ Rtmp

8: for j < 1 to N do /* tile index*/

9: if O@j > 0 then

10: R; < Increase to next rates available
11 if Z;V:lD(Rj)(l —Lj)> C & isSelected then
12: continue; /* too aggressive.*/

13: else

14: QoE <+ p1Q; — pu2Ty — 3Gy — g B

15: if QoE > max then

16: isSelected + True

17: max < QoFE

18: Rates <+— R /*update optimal rates*/

19: return Rates

head tracking data upto this point of the video. The function
SelectRates (Algorithm 2) is called with C, and P;’s as inputs
to determine the selection and rates for each tile 7.

We implement a greedy knapsack-based solution in Al-
gorithm 2. We choose a greedy algorithm as opposed to
more sophisticated dynamic programming based solution to
minimize the overhead. Our algorithm works as follows. In
each iteration (line 7-18), the goal is to find the viewport V;
that maximizes the user perceived quality given C. Best rate
selection is at Rates. The precondition for each viewport rate
selection is at Rc,,p. For each V;, we increase the quality of
the overlapping tiles R;, if T} overlaps with V;, O; ; > 0 (line
9). If downloading tiles based on rate selection R exceeds the
capacity C' (line 11), we discard the selection (line 12).

If rate selection is within the capacity estimate C' (line 13),
we evaluate the expected quality of experience QoF (line 14)
and check if it is greater than the best quality so far, max
(line 15). The quality function evaluated using Equation 3. If
the new rate selection has the maximum quality, we assign
this rate R to Rates as the optimal rate that provides the
highest expected quality so far (line 18). We evaluate the next
viewport in same manner (line 7-18). We repeat this while
Rates updates (line 4) and total download is within C'.

To compute the time complexity of Algorithm 2, we note
that we iterate over each tile (line 8) and over each view-
port(line 6), thus having O(V x N) number of steps, where
V is the number of viewports and N is the number of tiles.
Since there is only a small number of available rates for each
tile, we consider this as a constant. Thus, the time complexity
of Mosaic’s algorithm is equal to O(V x N) per segment. In
Mosaic, we have a relatively small number of viewports with
different overlapping tiles. Thus, as shown in the evaluation,
the overhead of rate adaptation is relatively small.
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Fig. 4. Mosaic Prediction Algorithms: CNN+RNN (LSTM) and 3DCNN.

D. Viewport Prediction

We develop two different viewport prediction mechanisms.
The output of the viewport prediction system is the probabili-
ties of different tiles indicating how likely the user is to view
the tile. One can assume that the viewport is defined by its
center point inside the 360-degree frame. The basis of viewport
prediction is that users tend to look at interesting (salient)
features in the scene that captures their attention. Video
analysis can reveal these features. In addition, temporally
meaningful correlation exists in the viewer’s attention. Overall,
a combination of video analysis (static) and head tracking for
the user in the past (real time, dynamic) can be used to predict
the user’s viewport in near future (say, next several seconds).
We use suitable machine learning (ML) algorithms to predict
the viewport. The saliency and motion maps of the video and
user head tracking trace are used as input for the prediction.

The saliency of a pixel indicates how much this pixel
stands out from its neighboring pixels, and thus saliency is
directly related to how likely a pixel/part of an image can
attract the viewer’s attention. The motion map captures the
movement of each pixel in two consecutive images in a video.
In particular, each pixel of a motion map describes how much
the corresponding pixel has moved from the previous frame
in the original video.

The choice of the actual algorithms are important. Our
initial approach used simpler approaches such as linear re-
gression and SVM (similar to prior work [8]). However, this
resulted in poor accuracy (<65%) for lookaheads of more
than 1sec. This led us seek out more sophisticated models
using neural networks that can capture latent features of the
video. In the work we present here, we use convolutional
neural networks (CNNs) to capture spatial features in the
video and Recurrent Neural Networks (RNN) to capture the
temporal features. We take a similar approach to [7], where
we combine CNN and RNN with motion and saliency maps of
the video. However, they create two separate networks making
the prediction cumbersome and slow. Instead, we extract the
saliency and motion maps of the video via off-line analysis and
embed them with the viewport trajectory of the current user
(this is obtained from the head tracking data at the client)
and use this combined information as an input to a single
network. We also propose an alternative design using 3DCNN
to improve the prediction performance. The two prediction
mechanisms used are described below.

CNN+RNN (LSTM): We use the motion and saliency maps
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(b) Architecture of 3DCNN based prediction.

TABLE I
HYPERPARAMETERS OF LSTM AND 3DCNN-BASED VIEWPORT
PREDICTION

LSTM Hidden Units

Learning rate

Updater

Loss

Learning rate

FC layer 1/2 Hidden Units
Activation

Loss

256

0.01

Stochastic Gradient Descent
Binary Cross Entropy

0.01

1024 / 200

ReLU

Binary Cross Entropy

3DCNN

along with users’ head tracking data, feed it to a CNN model
combined with RNN. More specifically, we collect motion
map and saliency map for each frame, encode in a common
vector and consider it as single input instance to the CNN. We
use a pre-trained ResNet-101 model [30] to extract the spatial
features. The CNN’s spatial features are then combined with
the head tracking data and fed into an RNN. In this way, this
model computes the tile probabilities by modeling the spatial
region that users are likely to pay more attention. Fig. 4a shows
the architecture of our CNN+RNN model. As an RNN, we use
Long Short Term Memory (LSTM) that captures long term
dependencies among the frames.

3DCNN: The CNN+RNN model learns the spatial feature
and the temporal feature of the video independently and sep-
arately. However, in reality, there often exists spatio-temporal
correlation in a user’s gaze movement (e.g., a user’s attention
following a flying bird in the sky as time goes by). Inspired
by the works in action recognition [31], we adopt a 3DCNN
model to extract the spatio-temporal feature from the videos.
Fig. 4b depicts the architecture of our 3DCNN approach.
Specifically, we use the pre-trained 13D [26] as our 3DCNN
component and apply a simple two-layer fully connected (FC)
network to map from the feature space to the tile probability
map space. Notably, compared with the CNN+RNN model,
the prediction latency of 3DCNN is significantly lower as
the 3DCNN applies a simple two FC layers for prediction
while CNN+RNN applies an RNN model (e.g., LSTM) which
requires much more computation. Both models are trained oft-
line using the hyperparameters listed in TABLE 1.

III. EVALUATION TESTBED

We evaluate Mosaic and compare its performance with
other state-of-the-art methods using a testbed. The testbed
consists of a video server, a client and the viewport prediction
system (see Fig. 5). In the following we describe these system
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components and also the data set to be used for evaluation. A
high-level block diagram appears in Fig. 3.

A. System Components and Data Set

The server uses MPEG-DASH compliant HTTP adaptive
streaming [32] on a Linux platform (Ubuntu 16.04). The player
is implemented based on an open-source tile-based adaptive
streaming video player, MP4Client [33]. The viewport predic-
tion system interfaces with the player. The training part of the
viewport prediction is done off line and only the inference runs
on the client. The overhead of the viewport prediction and rate
control algorithms (Algorithms 1 and 2) are negligible in our
implementation.

For evaluation we use ten popular 360-degree videos of
different categories for which head tracking dataset is available
(50 users for each video) [34]. Each trace in the head tracking
data set contains a user’s head position (yaw, pitch and roll)
for every frame. From this the viewport and viewport-specific
tiles are derived. For each of these videos, we also extract
the saliency and motion maps as described in Section II. The
videos are typically about 1min long. Each video is split
temporally in 2 sec long segments.!

Each video is encoded and projected using equirectangular
projection using 4K quality (3840 x 1920). Since we need
multiple qualities for our experiments, we transcode the video
in six different bit rates — 512 Kbps, 2 Mbps, 5 Mbps, 10 Mbps,
15Mbps and 20 Mbps. We use the open source HEVC en-
coder kvazaar [35] for the transcoding. HEVC ‘motion
constrained’? 6 x 4 tiling is used in the transcoding. Using the
GPAC MP4Box [36], we package the HEVC encoded videos
in MP4 containers and generate the necessary MPD (Media
Presentation Description) including SRD (Spatial Relational
Description) [27]. The MPD file serves as the manifest which
client references as the video catalog for HTTP requests for
various tiles for video segments. The MPD file contains two
sets of elements— AdaptationSet and RepresentationSet. One
AdaptationSet in the MPD specifies each tile with tile index,
encoded bitrates each at a RepresentationSet, bandwidth re-
quired, and the media (audio/video) file name. Client requests
the video tiles with specific qualities selected by the rate
adaptation algorithm. This enables the standard MPEG-DASH

'We have experimented with other segment lengths. But 2sec segments
work well. See Appendix B for more analysis on this topic.

2This signifies that the decoding and rendering can be done independently
on the tiles [23].

SRD capable server to work with Mosaic, without server side
modification.

We implement the CNN+RNN (LSTM) and 3DCNN based
prediction using PyTorch [37] and train the network using the
saliency map, motion map, and head tracking dataset [34].
Specifically, we use 6 videos out of 10 available and randomly
sample 100 video segments from each video. We randomly
select 12 users’ head tracking data of which 80% is used for
training and 20% for validation. For testing, we use the other 4
videos and the head tracking data of 20 different users (neither
the videos nor the users’ head tracking data are seen during
the training phase). Given 30 video frames and head tracking
data, the prediction system outputs the tile probabilities of next
30 frames (assuming 30 frames/sec framerate).

To implement the client, we extend the MP4Client [36]
adding an interface to the prediction system, rate adaptation
and additional logging for evaluating the QoE metrics (to
be described in the next subsection). Note that MP4Client
requires downloading all the tiles of the first segment and
the first tile of each subsequent segment to use the informa-
tion for decoding. Without modification, we use the existing
MPA4Client modules such as scheduling and downloading of
MPD file and tiles, MPD parser, video buffer management,
decoding and rendering. Bandwidth estimation directly affect
the rate control and the buffer management determines how
much to pre-fetch to avoid rebuffering, which are crucial part
of rate adaptation. We use harmonic means of previous k
segments download trajectories. We plan to enhance the rate
adaptation using more advanced data-driven machine learning
techniques in the future. We empirically determine the weight
parameters, v; for B; and -, for S;, 0.9 and 0.3 respectively
(Equation 3).

B. Network Setup

The client connects to the server over the Internet through a
WiFi network using commodity Access Point (2.4 GHz band)
capable of providing a throughput upto 60 Mbps. We use
tc to emulate different challenging network conditions and
configure multiple realistic traffic control settings: bandwidth
limit of 3, 5, 7, and 10 Mbps and average delay about 20-
40 ms. To evaluate rate adaptation using realistic network
condition, we use throughput traces of existing 4G/LTE dataset
[38]. A number of studies have evaluated the system over
emulated network using public throughput traces [15], [25],
[29]. To reflect prevalent Internet connection speed [5], we
shape the bandwidth by scaling it down to average bandwidth
around 16.68 Mbps and standard deviation of 6.6 Mbps. To
save space, we present the results over WiFi with 10 Mbps
bandwidth limit and emulated network using five traces of the
4G/LTE dataset.

C. QoFE Evaluation Metrics

While the rate adaptation algorithm uses prediction prob-
abilities, user perceived quality is measured in deterministic
fashion. In this section, we define several QoE metrics and
empirically evaluate the performance of Mosaic based on these
metrics:
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User Perceived Video Quality: We define user perceived
video quality as the sum of the qualities (¢(.) function, II-B)
of viewed tiles during playback. If a tile is only partially in
view, the overlapping ratio is used to weight the contribution
of this tile. Missing tiles within the viewport contribute zero,
q(0) = 0. Note that we use linear quality function of video
bitrate. We evaluate this metric with subjective evaluation in
Section VI.

Mathematically, this is somewhat similar to Equation 1
but only relates to the actual viewport used by the user
and considers what happens during playback. If there are M
segments, the average user perceived quality during playback
is given by,

| M N
Q= i ;;CI(RJ')Oi,j 9

where R; is the rate of tile 7} in this interval, O;; is
overlapping ratio of this interval’s viewport and 7. Note that
we reuse the notations with a slightly different definition.

Quality Variation Within Viewport: To evaluate the quality
variation among tiles within a viewport during playback, we
use F;, standard deviation of weighted qualities of tiles that
overlaps the viewport of the segment during playback. Math-
ematically, this is somewhat similar to Equation 4, Section
II-B but only relates to the actual viewport used by the user
and considers what happens during playback. This is averaged
over all segments, V;.

M
1 .
Vi = i ZSthGV [¢(R;)O; 4| j=1,...,N]

=1

(10)

Quality Variation Across Segments: To evaluate quality
variation across segments during playback, we use V; for
quantify quality change at each segment transition, averaged
over all such transitions. If there are M segments as follows:

1
M—-1

M N N
1> a(R)0i; = > a(R;)0i1 4 (11)

i=2 j=1 j=1

‘/s:

Rebuffering: We quantify the duration of rebuffering where
playback buffer depletes and the client player stalls until the
content for the player is downloaded. If there are M segments
as follows, rebuffering averaged over all segments as defined

as follows:
M
T=+; ; T;

where T; is the rebuffering for segment ¢ as defined at
Equation 6.

12)

Quality of Experience: So far, we presented the Mosaic
evaluation methods using different QoE metrics. However,
often in many literature [15], [25], [29], QOE is presented
in one quantitative representation, combining multiple QoE
metrics. Similarly, we define a average user perceived quality
of experience, over M segments, QoEM, as the linear sum
of user perceived bitrates, rebuffering, and smoothness for all
video segments as follows:

QoE! = 11nQ — o1 — psVi — paVi

where the p’s are constants modeling contributions of video
bitrates, rebuffering and quality smoothness on the QoFE The
approach we have used in evaluating the quality of experience
is similar to the existing literature [15], [29]. QoF is to
present a quantitative measurement of user perceived quality
of experience. To save space, we present the results using 3,
4,1, and 2 for pi, pe, psg and pg respectively.

(13)

IV. EVALUATION RESULTS

The goal in this section is to evaluate Mosaic in our testbed
and compare its performance vis-a-vis other state-of-the-art
and baseline methods. We also separately evaluate the perfor-
mance of the viewport prediction method. The algorithms we
consider for comparative evaluation are described first. Then
we proceed with the evaluation results.

A. Suite of Algorithms

We consider two state-of-the-art algorithms for regular, non-
tiled adaptive video streaming [12], [14]. These provide the
baseline for our comparisons. We also consider three variations
of tiled adaptive video streaming algorithms [7], [23], [25]. In
our knowledge these are three most recent works closest to
Mosaic. The five algorithms are described briefly below.

BBA (Buffer-Based Algorithm): BBA [12] is a buffer-based
rate adaptation algorithm for conventional adaptive video
streaming with no tiling. The entire frame is downloaded
regardless of user’s viewport. We use BBA implemented in
the GPAC MPA4Client described before and assume that the
entire frame is just a single tile (i.e., 1 x 1 tiling).

BOLA (Buffer Occupancy-Based Lyapunov Algorithm):
BOLA [14] also does not use tiling and is another example of
state-of-the-art in adaptive video streaming. BOLA formulates
bitrate adaptation as a utility maximization problem that uses
Lyapunov optimization techniques. We use BOLA in our
testbed using a similar approach as BBA by downloading a
single (or, 1 x 1) tile in a segment with a selected quality.

VP_Only (Viewport Only): This is an implementation of a
recent work [7] that downloads the tiles in the viewport as
predicted by the LSTM-based technique similar to what we
described before. All tiles with probability of appearing in
the viewport greater than a threshold (0.5) are downloaded in
highest quality possible given network capacity and the other
tiles are not downloaded.

VP_Plus (Viewport Plus): This technique downloads tiles
with a high probability of appearing in the viewport with the
highest quality possible given network capacity and all other
tiles in the lowest quality [23].

Flare [25]: Using previous segment viewing history, it predicts
the viewport center using simple machine learning techniques

3The evaluation presented in [23] uses a ‘static’ viewport which obviously
presents very poor results in a real situation. Their evaluation has a different
goal. We do not present any viewport prediction method. So, we apply the
same viewport prediction as used for VP_Only for ease of comparison.
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of maximum 10 Mbps using Linux fc utility, (b) over emulated network with
LTE traces.

such as LR (Linear Regression), Ridge Regression (RR), and
Supporting Vector Machine (SVM). It then applies two-step
rate adaptation: first, classification of tiles then assigning bit
rates for each class. We implement the LR for prediction and
apply 4 level classification.

Mosaic-1, Mosaic-2: In the evaluation, we implement Mosaic
using two prediction techniques indicated by labels Mosaic-
1 and Mosaic-2 for the CNN+RNN (LSTM) and 3DCNN
prediction respectively.

B. Results for Viewport Prediction

We first evaluate the viewport prediction component of
Mosaic. We evaluate LSTM and 3DCNN-based predictions
and compare with LR baseline technique in two categories
given the available ground truth head tracking data [34]
that provides the instantaneous user viewport: i) testing and
training data from the same videos and the same users, but
each video segment randomly sampled, ii) testing and training
data randomly sampled from different videos and different
users.

We use four different metrics to evaluate the performance
of the viewport prediction techniques.

Accuracy: Accuracy is the ratio of number of tiles correctly
predicted to be viewed or not viewed to the total number of
tiles. While accuracy is used to measure the performance of

(b) Average QoE over LTE traces.

TABLE I
PREDICTION ACCURACY

LSTM Accuracy Precision Recall F1
Same videos/same users 89.80 73.69 59.16 0.66
Diff videos/diff users 88.43 67.04 56.03 0.61
3DCNN

Same videos/same users 92.21 83.85 83.83 0.79
Diff videos/diff users 91.69 83.99 71.92 0.77
Linear Regression

All videos 79.46 49.82 49.13 0.49

prediction techniques [6], [25], it is often not sufficient to
evaluate a prediction model. Especially when the cost of false
negative or false positive is high.

Precision: Precision is the ratio of number of tiles correctly
predicted to be viewed to the number tiles to be viewed both
correctly and incorrectly. The higher the precision is, the lesser
tiles are incorrectly predicted to be viewed. Thus, having a
high precision is necessary to provide high bitrates to the
viewed tiles, especially when the bandwidth is limited.

Recall: Recall calculates the ratio of number of tiles predicted
to be viewed over number of tiles actually viewed. The higher
the value of recall is the smaller number of tiles are incorrectly
predicted not to be viewed. Having a high recall is necessary
to ensure fewer tiles are missed.

TABLE II shows the prediction accuracy, precision, recall
and Fl-score of the LSTM and 3DCNN-based predictions.
We also add the Linear Regression results to compare with
LSTM and 3DCNN. Note that as expected the 3DCNN-based
method performs somewhat better than LSTM in general.
3DCNN and LSTM methods outperform the other method, in
all scores, accuracy, predicion, recall and F1 scores. Training
and testing with different videos/users (as opposed to the
same) have negligible impact on performance. This shows that
these methods have tremendous potential. The video server
just need to collect enough training data to be effective. This
does not necessarily need to be from the same users.

The prediction computation is efficient. Excluding training
of the neural networks which can be done offline on the
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Fig. 8. Evaluation over simulated network with average 13 Mbps and 6 Mbps and average RTT 20ms and 80 ms. User Perceived bitrates (a), quality
variance across segments (b), quality variance within viewport (c), rebuffering ratio (d), and quality of experience (e)—(h). When RTT is high, both the quality
degradation in Flare and VP_Plus is more serious and they download the tiles in lower qualities most of time, resulting in poor user perceived bitrates. This

is one reason for poor QoE of Flare and VP_Plus in (g) and (h).

server, the prediction takes about 0.6ms for 3DCNN, 12.7ms
for LSTM on a CPU (Intel Xeon E5-1650 v3 Haswell-EP
3.5GHz). The speed improves for LSTM when a GPU is used.
On Nvidia Titan X GPU, it takes 0.7ms for 3DCNN, 2.8ms for
LSTM. This is fast enough for a seamless video experience.

While we have not evaluated the performance on mobiles, we
expect them to perform well. For example, a recent study [39]
shows similar or better performance on mobile GPUs relative
to a Xeon CPU similar to what we also have used. We also
expect mobile GPU performance to improve significantly in
future and neural network accelerators to be available. The
trained model is small, about 38 MB for 3DCNN and 28 MB
for LTSM.

C. Results for Streaming Performance

Fig. 6a and Fig. 6e plot the user perceived video quality
during playback in a CDF for all evaluated algorithms over
WiFi and emulated network using the 4G/LTE dataset re-
spectively. With Mosaic LSTM and 3DCNN-based predictions
yield average user perceived bitrates of 3.0 and 3.21 Mbps
over WiFi, and 3.78 and 4.24 Mbps using the 4G/LTE dataset
respectively. This is in comparison to Flare, VP_Only and
VP_Plus which offer in the average about 2.46, 1.97 and
1.77 Mbps over WiFi and 2.58, 2.67 and 3.01 Mbps over
the 4G/LTE emulated network, respectively. Thus, Mosaic
with 3DCNN offers almost 30-81% improvement over WiFi
in quality at the average versus the state-of-the-art. It also
offers 40-65% improvement over 4G/LTE emulated network.
As expected, BBA and BOLA both perform somewhat poorly
as they download the entire panoramic frame.

Fig. 6b and 6f plot rebuffering ratio (fraction of playback
time spent in stalls) for 1-minute video playback. Note that
the average rebuffering ratio of Mosaic is about 13-15% less
than Flare over WiFi and upto 15% less than Flare over
4G/LTE. While Mosaic does not show the best performance in
rebuffering and quality variance within viewport, it achieves
overall the highest QoE.

Fig. 6¢c-6d and Fig. 6g—6h plot several other metrics — qual-
ity level variation within a viewport and across the segments
over WiFi and over 4G/LTE respectively. For quality variation
within viewport, the spatial quality changes, Mosaic with
LSTM and 3DCNN are better than VP_Only and VP_Plus.
Note, however, BBA and BOLA do not have any variation
within viewport as they do not use tiling but bring in the
entire frame always. For variation across segments, Mosaic is
better than Flare. Here, however, BBA performs better (almost
negligible variation) due to a conservative rate control.

Fig. 7 plots the average QoE per segment over all videos
considered over WiFi and over emulated network with 4G/LTE
traces. Mosaic has 58-107% higher QoE over WiFi and 47-
191% higher over emulated network with 4G/LTE traces than
VP_Only, VP_Plus, and Flare. Overall, Mosaic (specifically
with 3DCNN) provides a significantly better video quality
during playback relative to other state-of-the-art 360-degree
video streaming.

We also measure the overhead of running the bitrate adap-
tation algorithm of Mosaic. In general, we find an overhead of
0.1 — 0.4 ms per segment. We note that this overhead is quite
small, and thus our technique is feasible even on smartphones.

V. SIMULATION

We further evaluate Mosaic and compare its performance
with other techniques using simulation environment. To bench-
mark algorithms under different configurations and different
network settings, simulation makes it more efficient to evaluate
the performance than with a real video player. It is because
the real player would have to wait until the actual segment
download is complete, or even entire video download is
complete before evaluating the quality of experience for each
video playback. Details of the environment is discussed at
Section V-A). We compare the performance of Mosaic with
the performance of one conventional video streaming tech-
nique (BBA) and three tile based 360-degree video streaming
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Fig. 9. User perceived bitrates, rebuffering, and quality of experience of Mosaic using different weight parameters (vy1/v2) over different network delays.
Different weigh parameters performs best at different network delays and quality metrics. Over average 100ms RTT network, y2=0 gives the highest bitrates
and QoFE where as v2 = 0.3 works best for low delay network. Smoothness variance over segment and within viewport is best when 2 = 0.4.

1.0

1.0 e Leer o e
—a— Mosaic |avg3.11 ¢ ‘,’/(,f_/" REw s
08 VP_only | avg 1.20 ,’/ 08 .'Jf,'.»‘
—+— VP_plus |avg 1.48 [/ ::’,’
06 —e— Flare |avg2.09 ', 06 2E
w w i -
8 + BBA | avg 0.10 9 i —=— Mosaic |avg1l.75
0.4 3y 0.4 H VP_only | avg 0.04
-"gp o7 ,—7— VP_plus |avg 0.27
02 ol 02 L% —— Flare  |avg0.56
-J/ o e e BBA | avg-0.96
ba -4

0.0 =~
-10.0 =75 -5.0 =25 0.0 25 50 7.5 10.0 50 7.5 10.0

Average QoE Average QoE

(a) (1,1,1,1). (b) (1,1,2,2).

PR > 1.0 + e -
R e
T T o o e
0.8 i 0.8 s
e & 4";-’
0.6 A 0.6 . 9"
¢ —=— Mosaic |avg2.77 5 & —=— Mosaic | avg 7.06
0.4 3 VP_only |avg 1.25 © 0.4 .4 ‘;J,' VP_only |avg 3.74
4% —"— VP_plus | avg 1.26 M }?, »—~ VP_plus | avg 3.69
0.2 ,"’ —e— Flare |avg 1.75 0.2 ' #d  —e— Flare |avg5.23
. :
Lo e BBA  |avg-029 ;/;' < BBA  |avg1.00
0,0 Lo a1 0,0 wrmsiz it n
-10 -5 0 5 10 -10 -5 0 5 10 15 20 25
Average QoE Average QoE
() (14,1,1). ) (24,1,2).

Fig. 10. QoFE with different weight parameter p’s (101, p1, 43, p4). Mosaic has the highest average QQoE values proving it outperforms VP_Only, VP_Plus,

and Flare in all conditions.

technique (VP_Only, VP_Plus, and Flare). We use Mosaic
with 3DCNN method as it shows the better performance than
Mosaic with LSTM method (Details of the evaluation results is
at Section IV). We skip BOLA as we have already shown that
tiled based approaches are superior than conventional video
streaming techniques (BBA and BOLA in our evaluation) and
BBA performs better than BOLA in our evaluation. Details of
the baseline techniques in comparison is at Section IV-A.

A. Simulation Environment

The simulator faithfully models the dynamics of the tiled
video player and the network. It simulates the adaptive video
streaming over HTTP. It maintains the video player buffer
level and assigns download time of each tile of a segment,
< segment, tile > unit, based on the chosen tile quality and
instantaneous network throughput that is determined by the
input trace. Then it simulates the download of the video tile
and the storing of the tile to the player buffer. The simulator
also models the player buffer by decreasing for the playback of
videos and increasing of buffer upon the download complete
of a segment.

For each pair of video and the head tracking data, we
can emulate different streaming conditions and calculate the
quality of experience. The simulated environments are based
on real network traces of public datasets: FCC broadband
dataset [40] and a mobile dataset [41]. We linearly increase the
bandwidth to reflect prevalent Internet connection speed [5].
Many existing studies also use such simulated environment
as ours [15], and/or use network traces to simulate the real
network condition [12], [15], [29]. We use harmonic means of
the previous network capacities observed while downloading
the previous segments (upto 8) as a proxy for the current
network capacity.

B. Evaluation Results

To understand how network conditions such as capacities
and delays affect the user quality of experience of 360-degree
video streaming, we simulate different network conditions
and evaluate how Mosaic performs in comparison with other
techniques.

Network condition and QoE: Fig. 8 plots QoE metrics of
the Mosaic and baseline techniques over 4 different network
capacities and delays. For brevity, we provide the drill-down
results for one case and final QoE plots for all 4 cases. Fig.
8a through Fig. 8c plot the user perceived bitrates, the quality
variance across segments and within viewport, respectively,
for one such case. Note that Mosaic has the highest bitrates
and lowest variations. Fig. 8d plots the rebuffering ratio for
the same case. All the methods has about 4-6% rebuffering
ratio, which makes about 1 sec difference in a 60 sec video.
Fig. 8e — Fig. 8h show the final QoE plots for the all 4 cases
studied.

From left to right (Fig. 8¢ — Fig. 8h), as network changes
from higher capacity / low RTT network (13Mbps/20ms) to
lower capacity / higher RTT, the quality of experience degrades
more in Flare and VP_Plus than in VP_Only or Mosaic. This
is because higher RTT further decreases the performance when
there are more number of tile downloads (i.e. larger number
of HTTP Request/Response). BBA, for example, has one
HTTP Request/Response (video segment is in a file) for each
segment, which shows the impact is less even when streaming
over higher RTT network. This lead us to conclude that,
in deploying tiled 360-degree video streaming over existing
adaptive video streaming ecosystem, high delays significantly
cause more quality degradation in 360-degree video streaming
than in conventional video streaming. If player has to bring in
more tiles (such as VP_Plus or Flare which brings all tiles of
entire 360-degree scene), it adds up the delays even further.
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(a) Coaster using VP_Plus (b) Coaster using Mosaic

(d) Ride using Mosaic

(c) Ride using VP_Plus

Fig. 11. Frame captures of video session for two videos each with Mosaic and VP_Plus. Video frames at (b) and (d) show that parts of the viewport have

poor quality (red rectangular areas) for VP_Plus.

This also explains that VP_Only or Mosaic hits less impact
by the higher delays than Flare and VP_Plus.

Overall, Mosaic has the highest QoE over different network
conditions (Fig 8e — 8h) and prove it adapts well to the various
network conditions.

Weight Parameters: To further optimize the quality of ex-
perience with Mosaic, we evaluate how different v; and ~»
weight parameter values affects the quality of experiences. In
other words, in low delayed network, would bringing more
tiles outside the predicted viewports give higher QoE? How
about in low capacity and high delay network? (Note ~; and
o are weight parameters to tiles to download and to skip in
computing expected quality in bitrates. Please see Eq. 1, Eq.
2 and Eq. 3 for details). Fig. 9 shows the average bitrates
perceived by viewers for different weight parameters, where a
higher bitrates indicates a better quality of experience. Differ-
ent y; and 7y, achieves the best results under different network
conditions. Fig. 9 plots the QoE metrics under different RTTs
(average 100ms, 50ms, 20ms and 10ms) and with different v
and 7, values. We find in high delay network (avg 100 ms), it
has the highest bitrates when 75 is zero, whereas in low delay
network (avg 20ms, 10ms) it achieves highest bitrates when
2 is 0.4. Fig. 9 plots CDFs of QoE metrics over different
network and with different weight parameters that gives the
best results under the network condition. Note that different
weight parameters produce the best results under different
network conditions, which can be addressed by applying ML
techniques for rate adaptation [42].

QoFE parameters (1’s): We also evaluate how different p’s
affects the Mosaic performance. In all condition, Mosaic has
the highest QoF values compared to the based line techniques.
Fig. 10 is four different sets where penalty for quality variation
or rebuffering is set, or higher reward for video bitrates. This
shows Mosaic adapts well to maximize the QoF and is not
dependent on the u’s parameter values.

To separately evaluate the ABR algorithms, we also fix the
viewport prediction mechanism and study the performance of
different ABR algorithms at Appendix A.

VI. SUBJECTIVE EVALUATION: USER STUDY

Modeling the QoE of users has always proved challenging
for the computer networks and multimedia community [11],
[43], [44]. In fact, there is no clear guidance yet on how to tie
measurable metrics to user’s perception, especially in the con-
text of 360-degree tiled video streaming. Peak Signal-to-Noise

Ratio (PSNR), which compares bits of the original image with
the played video image is often inadequate. The approach we
have used in evaluating the QoFE of Eq. 13 is linear sum of
user perceived bitrates, rebuffering, and smoothness for video
segments. All related techniques use a very similar heuristic
model (e.g. [15], [25], [29], [45]. This model provides all
lower-level metrics that might influence viewing experiences,
but does not directly evaluate user experience.

Thus, for the sake of a complete evaluation we also perform
subjective user study. We follow the recommendations for
subjective video quality assessment methods for multimedia
applications in [46]. We use two recommended methods, one
called Absolute Category Rating (ACR) and the other called
Pair Comparison (PC). We recruit a total of 13 volunteers*
for our subjective user study. Each volunteer views ten videos
with different methods (Mosaic, VP_Only, VP_Plus, Flare)
for ACR and ten videos with PC methods. The viewing of
is randomized. In total, 40 video sessions are presented to
each volunteer. Among the volunteers, 62% of the subjects
are male and 38% are female. The distribution of age groups
of 20-30, 30-40, 40-50, 50-60 year old is 38%, 31%, 23%,
and 8% respectively.

A. Absolute Category Rating (ACR)

We use a recommended method, called Absolute category
rating (ACR) to evaluate different algorithms and to rank the
video system performance and quality levels [46]. The subject
is presented with test sequences, one at a time and rates
independently on a category. According to recommendations
in [46], the subject is advised to ask if there are any questions
about procedure or the meaning of instructions and to observe
carefully the entire video sequence before making judgment.
Using the five-level scale for rating (5-Excellent, 4-Good, 3-
Fair, 2-Poor, 1-Bad), the subject is asked to evaluate overall
qualities as well as additional rating components as follows:
Overall quality, Image colour, Image quality, Image borders,
Image continuity, and Movement continuity.

Unless all tiles are downloaded in a same quality level,
the user could view a scene with different quality levels.
In the subjective study, we evaluate this aspect — how the
user perceives the discontinuities in the qualities within the

4According to the ITU-T recommendation, “four is the absolute minimum
number of subjects for statistical reason, while there is rarely any point in
going beyond 40.” [46]
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Fig. 12. Result of subjective user studies using three different techniques. In (a), we show Absolute Category Rating, which is the average rating of Mosaic
and other techniques for overall quality and six additional rating components. Mosaic is able to achieve higher overall quality rating compared to other
techniques. In (b), we show Pair Comparison, where the volunteer is asked to compare video streaming sequence shown in Mosaic with VP_Plus. In (c),
which shows the average Pair Comparison to quantify the average value by which Mosaic is preferred by the user across all videos.

viewport. The subject is asked if he/she notices any disconti-
nuity within a viewport and asked to rate in five-level scales
(5-Imperceptible, 4-Perceptible but not annoying, 3-Slightly
annoying, 2-Annoying, and 1-Very Annoying). The higher
the rating, the better image continuity within the viewport is
observed.

B. Pair Comparison (PC)

While ACR is easy to implement, the subject may have
different interpretation on rating scales. We extend the study
using Pair Comparison (PC) method where test videos are
presented in pairs and subject is asked to express if he/she
prefers the first or second sequence. This is efficient when
evaluating if a specific method improves the user quality of
experience compared to the other method. We compare the
pair of 10 videos using Mosaic versus VP_Plus. The subject
is also asked to compare the QoE Mosaic with VP_Plus in
PC rating by giving a rating between -5 and 5, where a higher
rating denotes that Mosaic has better quality than VP_Plus.

C. Results

Fig. 11 shows frame captures of the video session using two
different techniques presented to the volunteers. Fig. 11c and
11a show that the frames using VP_Plus have poor quality at
some parts of the viewport. Fig. 11b and 11d show that the
video is presented with the highest quality in entire viewport
in Mosaic.

Fig. 12a shows the subjective qualities in terms of overall
quality and six additional rating components. Each bar repre-
sents the average rating of a technique used in tiled 360-degree
video streaming. Mosaic exhibits superior performance in
overall quality, with average rating value of 3.7. Notably, Mo-
saic has the highest rating in all additional rating components.
Mosaic has higher overall quality and image color/quality than
other techniques. Mosaic also has the highest average user
perceived bit rates as is seen at the evaluation results with a
real video player as well as in simulation (Fig. 6a, Fig. 6e,
and Fig. 8). Note that Mosaic has highest viewport continuity,
which also confirms the our simulation results in Fig. 8.

Fig. 12b shows the user preference of Mosaic compared
to VP_Plus. Out of a total of ten videos, 87.7% of them get
better ratings using Mosaic, 8.5% of them receive the same

rating, and 3.8% of them get worse ratings using Mosaic. In
seven out of ten videos, volunteers prefer the Mosaic as much
as 92% — 100%. The PC rating shows how much the subject
prefers Mosaic over VP_Plus. Note that higher is better, with
5 being the best possible. The results in Fig. 12¢ show that
overall the user prefers Mosaic by an average value of 2.35.
In seven out of ten videos, the subjects rate Mosaic is better
than VP_Plus as much as 2.5-3.6.

VII. RELATED WORK

Adaptive Video Streaming: Recent works on rate adaptation
to improve QoE of streaming videos include Festive [11],
MPC [29], Pytheas [47], Pensieve [15], and CS2P [13].
Pensieve and CS2P use neural networks and data-driven rate
adaptation scheme respectively, while Festive and Pytheas
are based on throughput and network-capacity. There is also
another line of work such as BBA [12] based on client’s buffer
capacity and BOLA [14] as a utility maximization problem
using Lyapunov optimization techniques. Unlike Mosaic these
methods do not handle tiling with rate adaptation.

Streaming 360-degree Videos: Several recent papers consider
viewport-based adaptive streaming for 360-degree videos.
They either utilize run-time spatial splitting of frames into tiles
to deliver a subset [6], [7], [9], [18], [48], or utilize adaptive
compression rates based on the region-of-interest and network
capacity [22]. A recent work, Rubiks [49] maximizes the video
quality as a function of the tile bitrate and the user’s current
field of view.

While a tile-based approach enables reusing the existing
streaming ecosystem, it requires viewport prediction to be
really effective. A body of recent work has focused on such
prediction. The methods proposed vary from Liner Regression
(LR) and variations [6], [8] to advanced machine learning [7],
[9], [50]. However, relative to Mosaic these approaches have
various limitations: i) They bring in only the predicted view-
port [6], [7], [23] and unable to handle missing tiles. ii) Use
of rate adaptation is limited. Some of the schemes bring in
viewport tiles at the highest bitrate regardless of the network
capacity [7]. The work in [6] evenly allocates the bandwidth to
the predicted tiles. Some works employ a simple binary bitrate
adaptation — highest quality for predicted viewport and lowest
for outside viewport [17], [17], [23]. In [8] regression is used
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to predict future viewports and a buffer-based approach is used
However, a buffer-based approach has limitation in case of
tile-based streaming, as higher buffer levels do not necessarily
mean that there is no rebuffering/stalls. A more recent study
[25] predicts viewport center using simple machine learning
techniques and assign rates to tiles by incrementally enlarging
the viewing angles from the predicted viewpoint center. How-
ever this rate adaptation is sensitive to the viewport prediction
error. It also requires server to decide whether to respond to
client HTTP request of tiles, which makes it hard to scale
for large number of streaming session. Mosaic complies with
standard DASH and does not require server side modification
and can offer longer duration of segment over 90% accuracy.

Also, many of these works including Mosaic play a crucial
role in streaming VR and/or AR content. For example, Flash-
Back [51] and Furion [52] are specifically developed for VR
ecosystem. While these methods are orthogonal to Mosaic,
our tile-based rate adaptation and prediction algorithms can
significantly improve these methods.

Data driven Quality of Experience of 360-degree Videos:
Pano [53] proposes different quality model using 360-degree
video specific features. It then formulates variable size tiles
and chooses rates from pre-generate look up tables using such
features. However, unlike Mosaic, it does not run a prediction
system at run-time, and thus risks much worse QoE for
atypical users. DRL360 [45] uses machine learning to choose
tile qualities to fetch. Unlike our work, DRL360 does not
support different bitrates for predicted viewport tiles. Instead it
settles for downloading all tiles outside the predicted viewport
in the lowest quality, while downloading predicted viewport
in one quality matching the available network capacity, i.e.,
the RL agent learns only one rate. This leads to high quality
variance within the viewport, similar to VP_Plus and a poor
QoE when the network indeed has sufficient bandwidth and
also the viewport prediction is inaccurate. Mosaic builds on
these quality models to provide a streaming system that runs
both viewport prediction, and variable quality streaming at
run-time. Other data driven approaches [42], [54] apply ML
techniques to manage configurable weight parameters of the
ABR algorithms.

VIII. CONCLUSIONS

We have developed an end-to-end tiled adaptive video
streaming framework for 360-degree videos called Mosaic.
Mosaic uses viewport prediction exploiting latest develop-
ments in video analysis and deep learning to predict user
viewports in advance. The prediction uses saliency and motion
maps of the video and user’s head tracking data as input. We
have used two different techniques for prediction: one based
on a CNN followed by an LSTM-based RNN and the other
based on a 3DCNN. They both provide superior prediction
performance (about 90% accuracy), especially the latter.

The rate adaptation part of Mosaic uses a control-theoretic
approach and allocates rates for the tiles of the next segment
being fetched based on their viewing probabilities. We utilize a
representative metric of QoE to achieve higher user perceived

video bitrates, less quality variance within viewport and across
segments, and less rebuffering.

We implement Mosaic using the GPAC MP4Client reference
video player. We evaluate Mosaic and compare its performance
against the current state-of-the-art video streaming solutions
— both for regular and 360-degree video streaming. Our
evaluations in realistic network settings show that Mosaic
achieves at least 47-191% better video quality of experience
(in terms of the average quality of experience) relative to other
state-of-the-art methods. Simulation based evaluation as well
as subjective user studies further confirm the superiority of the
proposed approach.
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APPENDIX
A. Subsystem Performance Evaluation

In tiled 360-degree video streaming, viewport prediction
and rate adaptation algorithm are two key sub-components. In
this section, we separately evaluate the performance of each
component of the system. In addition to Table II, we provide
additional results to evaluate accuracy of viewport prediction
under various prediction window sizes in units of number of
future frames in Table III.

We also evaluate the ABR algorithms independently of
the viewport prediction. To do this, we fix the viewport
prediction mechanism and study the performance of different
ABR algorithms. Fig. 13 shows the experimental results.

Mosaic has the highest user perceived quality levels, least
smoothness variance over viewport and across segments, and
highest QoE compared to seven other methods. Note that Flare
with LSTM (Flare-L) or Flare with 3DCNN (Flare-3) does
not achieve better QoE than Flare. It is because LSTM and
3DCNN give probabilities of tiles likely to be viewed but
Flare’s ABR algorithm only uses a single predicted viewport
center, then decreases the tiles’ quality levels further away
from the center (up to 4 different levels). As a result, it
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does not handle well the case where multiple viewport centers
are predicted with similar probabilities. We believe that each
method focuses on designing the ABR algorithm to work best
with the specific viewport prediction method used. Mosaic’s
viewport prediction and ABR algorithm both outperform other
methods.

B. Segment Duration and Efficiency

In adaptive video streaming, encoding efficiency reduces
when the segment duration becomes short because the number
of I-Frame increases. (An I-Frame does not require other video
frames in the segment to decode; it is the first frame of each
segment.) On the other hand, larger segment duration is not
always the best because it is less adaptive to the network
variations.

In tiled 360-degree video streaming viewport prediction, the
accuracy of prediction drops with a large segment duration.
On the other hand, having a shorter segment duration does
not necessarily guarantee a higher QoE. According to our
study, short segment duration (1 sec) has a higher ratio of
HTTP request overhead than 2 second. As a result, the player
selects lower quality to avoid frequent rebuffering. In turn

it degrades the QoE. Fig. ?? shows the average QoE of
different methods when streaming videos of segment duration
(1,2,3 and 4 seconds). Using Mosaic, in spite of the better
viewport prediction accuracy under 1sec segment, the QoE
of video with 1sec segment is worse than the QoE of 2 sec
segment under the same network condition. And QoE is worse
at 3 second and 4 second segment duration than that of 2
second segment. Mosaic outperforms other methods in all
segment duration. Mosaic in 2 seconds outperforms the other
15 comparing cases.

C. Evaluation with another Quality Function

We evaluate the system when using the index quality func-
tion (¢(R) = quality level of the encoded video (Section II-B).
Flare also uses the index quality function [25]. Note that we
encode the video in six different quality levels. 1 is the lowest
quality level, and 6 is the highest quality level. Fig. 14d shows
Mosaic achieves the highest QoE. Mosaic also outperforms
the other methods in terms of user perceived quality level
(Fig. 14a), smoothness with viewport (Fig. 14c) and across
segments (Fig. 14b).
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Fig. 13. Experimental results of ABR Algorithms with different Viewport Prediction methods. Mosaic (with 3DCNN), Flare (with LR), Flare-3 (Flare with
3DCNN), Flare-L (Flare with LSTM), VPP-3 (VP_plus with 3DCNN), VPP-L (VP_plus with LSTM), VPO-3 (VP_only with 3DCNN), and VPO-L (VP_only
with LSTM)
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ment.

Fig. 14. Index Quality Function. We encode videos in 6 different quality levels. 1 indicates the lowest and 6 indicates the highest video quality level. Video
Quality Level is used at the index quality function, q(R;)= index of the quality levels.
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