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Active Geolocation Can Be Very Slow

• Especially, when many targets need to be located

• Reliable vantage points: Crucial for accurate global Internet metrics
• Frequent moves: Some vantage points are relocated often [Ramesh2022]

• Requiring daily location checks   

• Network traffic: High volumes from "ping" packets could lead to network 
overload, resembling a DDoS attack [Hu2012]

• Necessary to optimize geolocation speed and minimize network impact
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• Our research focus: Determine the smallest effective subset of 
landmarks for accurate geolocation of many worldwide targets

• Prior work: shows that active geolocation should use only landmarks 
near the target [Darwich2023]
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Our Focus

• Our research focus: Determine the smallest effective subset of 
landmarks for accurate geolocation of many worldwide targets

• Prior work: shows that active geolocation should use only landmarks 
near the target [Darwich2023]

• Challenge in geographic uncertainty: selecting nearby landmarks 
when the target's global location is unknown is challenging

• Algorithm evaluation: Assess various algorithms to select an optimal 
subset of landmarks from a larger pool
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• Our targets

• Active geolocation algorithm 
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Overview

• Motivation and Research Focus

• Our Experimental Setup

• Our Landmark Selections
• LS1: Random Selection

• LS2: Clustering Selection

• LS3: Greatest-Distance Selection 

• LS4: Hybrid Selection
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decreases rapidly

Full Agreement:
Reached only when all 
landmarks are in use 



Overview

• Motivation and Research Focus

• Our Experimental Setup

• Our Landmark Selections
• LS1: Random Selection

• LS2: Clustering Selection

• LS3: Greatest-Distance Selection 

• LS4: Hybrid Selection

15



Overview

• Motivation and Research Focus

• Our Experimental Setup

• Our Landmark Selections
• LS1: Random Selection

• LS2: Clustering Selection

• LS3: Greatest-Distance Selection 

• LS4: Hybrid Selection

15



Overview

• Motivation and Research Focus

• Our Experimental Setup

• Our Landmark Selections
• LS1: Random Selection

• LS2: Clustering Selection

• LS3: Greatest-Distance Selection 

• LS4: Hybrid Selection

15

Diversity Metrics

Optimal Selection of a landmark that 
maximize diversity metrics 



LS2: Clustering Selection

•  Four types of cluster

16



LS2: Clustering Selection

•  Four types of cluster

16

Internet 
topology

Geographical 
distribution



LS2: Clustering Selection

•  Four types of cluster

16

Internet 
topology

Geographical 
distribution

Compare subset sizes (=number of 
clusters) to randomly selected subsets 
of the same size



LS2: Clustering Selection

•  Four types of cluster

16

Internet 
topology

Geographical 
distribution

Compare subset sizes (=number of 
clusters) to randomly selected subsets 
of the same size



LS2: Clustering Selection

•  Four types of cluster

16

Internet 
topology

Geographical 
distribution

Compare subset sizes (=number of 
clusters) to randomly selected subsets 
of the same size

The need for 
fine-grained 
diversity



LS2: Clustering Selection Result

• Extended to all sizes: 
Landmarks are 
randomly selected, 
aiming for equal 
contribution from 
each cluster where 
possible

17



LS2: Clustering Selection Result

• Extended to all sizes: 
Landmarks are 
randomly selected, 
aiming for equal 
contribution from 
each cluster where 
possible

17

City and AS Clusters: 
• Outperform random selection for 

most sizes 
• Achieve perfect (100%) agreement 

without full pool use

AS City



LS2: Clustering Selection Result

• Extended to all sizes: 
Landmarks are 
randomly selected, 
aiming for equal 
contribution from 
each cluster where 
possible

17

City and AS Clusters: 
• Outperform random selection for 

most sizes 
• Achieve perfect (100%) agreement 

without full pool use

AS City



LS2: Clustering Selection Result

• Extended to all sizes: 
Landmarks are 
randomly selected, 
aiming for equal 
contribution from 
each cluster where 
possible

17

City and AS Clusters: 
• Outperform random selection for 

most sizes 
• Achieve perfect (100%) agreement 

without full pool use

AS City



LS3: Greatest-Distance Selection

• Geographic distances between landmarks
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LS3: Greatest-Distance Selection

• Geographic distances between landmarks

• Minimum RTT between landmarks
• Anchors continuously measure and upload RTT data between each other, 

eliminating the need for additional measurements
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LS3: Greatest-Distance Selection (cont’d)

Selection with greedy algorithm for maximum spanning trees
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LS3: Greatest-Distance Selection (cont’d)

Selection with greedy algorithm for maximum spanning trees
• Initial selection: starts with a landmark 

• Within the target's claimed location, or … 

• That maximizes the distance matric

• Continuation: 
• Selects landmarks maximizing diversity until desired subset size is reached
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• Small Subsets: 

   Random and clustering selections > Geographic distance maximization

• Large Subsets: 
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LS4: Hybrid Selection

• Observations from LS1–LS3
• Small Subsets: 

   Random and clustering selections > Geographic distance maximization

• Large Subsets: 

   Random and clustering selections < Geographic distance maximization

• Hybrid approaches may yield better results than any single method
• Hybrid 1: Clustering and great distance

• Hybrid 2: Random, then Hybrid 1
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LS4: Hybrid 1: Clustering and Great Distance

• Initial Focus: Prioritize cluster diversity over geographic distance 

• Filling Gaps: Select next landmark from unrepresented clusters if any 
are missing

• Subsequent Focus: Once all clusters are represented, shift to purely 
geographic distance maximization
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23
Worse than random at 
small subset sizes

Surpasses random with 
210+ landmarks (27% of 
the pool) using AS or city-
based clustering

Achieves perfect 
agreement first at 384 
landmarks (49% of the 
pool).

AS-based hybrid: at 409
City-based hybrid: at 572
Continent-based hybrid: at 590

AS City Continent



LS4: Hybrid 2: Random, Then Hybrid 1

Observations so far: No algorithm substantially outperforms random 
selection for small subsets
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LS4: Hybrid 2: Random, Then Hybrid 1

Observations so far: No algorithm substantially outperforms random 
selection for small subsets

 

Hybrid 2: random, then hybrid 1
• Initial selection: Begin by randomly choosing up to 100 landmarks

• Expansion: Expand these subsets using the Hybrid 1 approach   
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LS4: Hybrid 2: Random, Then Hybrid 1 Result

Enhanced 
Performance: 
Modification aligns 
performance closely 
with random 
selection across all 
subset sizes
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Enhanced 
Performance: 
Modification aligns 
performance closely 
with random 
selection across all 
subset sizes
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AS

AS Clustering: 
Reaches full agreement 
with 280 landmarks, 
130 fewer than Hybrid 1
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City

Continent
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Top 
Performer

ICMP Echo 
Request 
packets   

1,308,060  

469,560 (36%)  

Consistent 
Runner-Up 643,968 (49%)

(36%)

(49%)



Summary
• Demonstrated that it is possible to reduce landmarks by 2/3 with no 

change in the overall results

• City/AS-based clusters outperform country/continent-based clusters
• Highlighting the need for fine-grained diversity

• Geographic distance is a better metric than RTT for selecting 
landmarks close to distant targets

• Future directions: Combine selection rules with incremental 
geolocation algorithms to further reduce landmarks and leverage RIPE 
Atlas probes for greater diversity

27
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