
Sensor Virtualization for Efficient Sharing of Mobile and
Wearable Sensors

Jian Xu
Stony Brook University

jianxu1@cs.stonybrook.edu

Arani Bhattacharya
IIIT-Delhi

arani@iiitd.ac.in

Aruna Balasubramanian
Stony Brook University

arunab@cs.stonybrook.edu

Donald E. Porter
UNC Chapel Hill
porter@cs.unc.edu

ABSTRACT
Users are surrounded by sensors that are available through various
devices beyond their smartphones. However, these sensors are
not fully utilized by current end-user applications. A key reason
sensor use is so limited is that application developers must exactly
identify how the sensor data can be used by smartphone apps. To
mitigate this problem, we present SenseWear, a sensor-sharing
platform that extends the functionality of a smartphone to use
remote sensors with limited additional developer effort. Sensor
sharing has several uses, including augmenting the hardware in
smartphones, creating new gestural interactions with smartphone
applications, and improving application’s Quality of Experience
via higher-quality sensors from other devices, such as wearables.
We developed and present six use cases that use remote sensors in
various smartphone applications. Each extension requires adding
fewer than 20 lines of code on average. Furthermore, using remote
sensors did not introduce a perceptible increase in latency, and
creates more convenient interaction options for smartphone apps.

CCS CONCEPTS
• Human-centered computing→ Smartphones.

KEYWORDS
wearable, sensor, mobile system, usability, gesture, development

ACM Reference Format:
Jian Xu, Arani Bhattacharya, Aruna Balasubramanian, and Donald E. Porter.
2021. Sensor Virtualization for Efficient Sharing of Mobile and Wearable
Sensors. In The 3rd International Workshop on Challenges in Artificial In-
telligence and Machine Learning for Internet of Things (AIChallengeIoT 21),
November 15–17, 2021, Coimbra, Portugal.ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3485730.3493451

1 INTRODUCTION
Users today are surrounded by a large and growing number of sen-
sors from various devices other than their smartphones. Specifically,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9097-2/21/11. . . $15.00
https://doi.org/10.1145/3485730.3493451

wearable devices are equipped with new sensors including ambient
light sensors, heartbeat rate sensors, and near-field communication
(NFC). Because wearable sensors are physically attached to users,
they can better measure the physical characteristics of users and
their environments.

However, end-user applications do not fully utilize these sensors.
Despite wearable devices being available for nearly a decade, both
stand-alone wearable apps or smartphone apps that leverage wear-
able sensors are few and far between. From our survey of the top
250 most popular Android Wear apps from the Google Play market-
place, we find that only 16% of apps utilize wearable sensors, and
primarily for straightforward use cases like activity tracking and
map navigation. Of these 16% of apps, nearly half are standalone
watchface apps that do not have any connection to smartphone
apps but simply display users’ health data on the watch.

One likely reason for this dearth of smartphone apps that lever-
age wearable sensors is that it is difficult for developers to write
code that both uses current sensors and is portable to new sensors.
Apps that use wearable sensors require complex code for tasks such
as processing sensor data, data communication across devices, and
sensor customization across heterogeneous devices [11]. None of
those tasks are trivial; for instance, significant background knowl-
edge on signal processing is required to write concise and efficient
sensor code [25]. Data communication among devices brings along
the complexity of writing a distributed system [35]. Designing an
application that uses sensors of another device thus requires hun-
dreds of lines of code [25]. Prior work, such as Mobile Plus [29]
and M2 [11], utilize sensor data from one device on another, but
they still depend on developers to programmatically specify the
type of interaction, such as swiping, tapping the screen. In short,
developers struggle with the complexity of using these readily avail-
able sensors, and users miss the opportunity for more efficient and
customized sensing in their smartphone apps.

To mitigate this problem, we design SenseWear, a sensor sharing
platform that facilitates the use of sensor data from wearables, or
any other sensor device, by smartphone applications. SenseWear
decouples the sensing code from the application logic, creating
a modular boundary for plugging in sensor data from different
devices. With only a few lines of code, SenseWear can (a) extend a
sensor application beyond the hardware on a given smartphone, and
(b) improve the user experience on existing apps by transparently
and opportunistically using higher-precision sensors available on
wearable devices. We discuss these use cases in detail in §2.

SenseWear enables the use of wearable devices as follows:

https://doi.org/10.1145/3485730.3493451
https://doi.org/10.1145/3485730.3493451

AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal Jian Xu, Arani Bhattacharya, Aruna Balasubramanian, and Donald E. Porter

Minimize programming effort in sensormapping: SenseWear
significantly reduces the programming effort needed to port wear-
able sensor data to a smartphone. SenseWear is a platform that
easily customizes wearable sensor data so that those sensor data
can be seamlessly utilized by smartphone apps. SenseWear con-
tributes a metaprogram framework that abstracts the essential task
of mapping sensor input across devices. To extend the smartphone
app to leverage remote sensors, the developer need only write a sim-
ple metaprogram. The metaprogram language only exposes a few
necessary APIs and specification choices for developers, without
requiring them to implement details such as inter-device communi-
cation or sensor mapping algorithm for calibration across devices.
The metaprogram is used by the developer to choose one among
the multiple possible types of interaction possible between a re-
mote and a local sensor, either with direct mapping or a semantic
mapping. A typical metaprogram in SenseWear is fewer than 20
lines-of-code. SenseWear takes care of the rest of the sensor map-
ping process by correctly and transparently “plumbing” the data
into the application.
Automatically Handling Sensor Heterogeneity: The key chal-
lenge developers face is the high degree of heterogeneity across
sensors. Specifically, devices can vary widely in sensor specification,
orientation, and position, which means that to use a remote sensor,
one has to map remote sensor data to the local device. SenseWear
uses linear regression to simply calibrate the IMU sensors of the
smartphones with that of the wearable device to emulate the type
of movement seen by the smartphone. The application developer
still writes a monolithic sensor application as if it were designed to
only run on a smartphone.
Evaluation: We implement SenseWear in Android OS 7.1.2 and
Android Wear 2.0 smartwatch OS. We demonstrate the utility of
SenseWear by creating eight SenseWear-enabled apps that show-
case the usefulness of leveraging remote sensors. These apps include
(1) Two mobile gaming apps where the smartwatch accelerometer
is used to control the game instead of tilting the smartphone, (2)
Two apps whose haptic feedback is relayed to the smartwatch from
the smartphone so that the user gets feedback on a device closer
to her, (3) Two apps that allow turning off a smartphone screen by
controlling the smartwatch.

In each case, the smartphone application is not re-compiled.
Instead, remote sensors are replaced via a small metaprogram (each
app takes fewer than 20 lines of code). Our evaluation shows that
in all eight cases, the remote sensor latency is lower than what a
human can perceive. Furthermore, we show that wearable sensors
can be mapped to the smartphone’s use with over 90% accuracy.

2 USE CASES
SenseWear aims to enable the development of sensor-based apps
for wearables by providing the following benefits.
Overcoming Hardware Limits New types of sensors can unlock
new families of applications, but it is unlikely that every smartphone
has all kinds of sensors onboard. For example, mobile payment apps
require an NFC sensor, but a third of the new phones shipped in
2018 [10] are not equipped with NFC sensors. SenseWear bridges
this gap, making it easy to “extend” the sensing hardware of a phone

by leveraging a wearable NFC sensor, thereby enabling payment
apps on a phone where it would otherwise not run.
Improving Quality of Experience: First, SenseWear facilitates
using more suitable sensors on another device when the smart-
phone’s sensors are limited. For instance, smartphone games, such
as car racing games, are often controlled by the user tilting the
screen to different angles. However, viewing the screen at various
angles and hand positions can be taxing on users. By integrating
wearables, the user could control the game in more ergonomic ways,
such as using their hands with the phone on a stand, thus keeping
the phone steady and in a more comfortable position.
Improving User-Interaction Modalities: Existing mobile apps
have pre-defined user interaction modes based on how the devel-
oper writes the app. Users’ needs vary, and the original interaction
mode may not be well-suited for every user. SenseWear facilitates
using more suitable sensors on another device when the smart-
phone’s sensors are limited. For example, a user may control the
smartphone, such as locking the screen, adjusting volume, by wav-
ing gestures with the smartwatch. It can be more convenient espe-
cially when the smartphone is less reachable than the smartwatch.
In this case, developers may utilize ambient light sensors on the
smartwatch to control the behaviors on the smartphone. However,
customizing the input of an application for all possible models of
interaction is infeasible and requires considerable developer effort.
SenseWear defines an easy-to-write metaprogram wherein a devel-
oper, or even a savvy user, can customize user interactions without
app source code.

3 SENSEWEAR DESIGN
In this section, we first introduce the architecture of SenseWear and
each component in detail. We then provide a high-level overview of
the design of SenseWear, while explaining how SenseWear performs
sensor virtualization and the steps needed by a user to apply Sense-
Wear to an existing app.

3.1 Overall Architecture of SenseWear
Figure 1 shows the overall architecture of SenseWear. At its core,
SenseWear aims to virtualize sensing so that a sensor from a re-
mote device can replace local sensors to overcome hardware limits,
change interaction patterns, and improve application QoE.

To this end, SenseWear is a sensor-sharing platform to virtu-
alize wearable sensors, according to the policies specified by a
developer. SenseWear enables wearable sensors to be utilized by
any smartphone apps without modifying existing application code.
The developer only needs to specify these policies using a simple
metaprogram that requires a simple effort for sensor sharing.

There are two challenges in realizing the architecture: (i) map-
ping sensors across heterogeneous devices to meet different sce-
narios, e.g., mapping between the same types or different types
of sensors, (ii) designing an easy-to-write metaprogram language
that reduces the burden on the developer. We first describe the
architecture and then discuss the SenseWear design that solves
these challenges. The components of SenseWear are highlighted in
Figure 1 and we explain the role of each below.
Metaprogram: A metaprogram is an easy-to-write program for
any user or developer to customize their preferred way of using

Sensor Virtualization for Efficient Sharing of Mobile and Wearable Sensors AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

Phone
App

Virtual Sensor Service
Sensor Service

User
Layer

Framework
Layer

Hardware
Layer

Wearable
Proxy

Smartphone Wearable Device

Metaprogram
Phone
App

Sensor JNI

SensorManager

Sensor
Mapping

Sensors

AndroidSenseWearAppKey: User Specified

Phone
Proxy

Figure 1: Overall architecture of SenseWear. The blue and green lines illus-
trate the data flow across devices. The blue lines indicate how smartphone
apps utilize wearable sensors as input, such as accelerometers; the green lines
show how SenseWear regards the wearable as an output, such as the vibrator.

wearable sensors to interact with phone apps. It consists of XML
code, and optional Java code, which depends on which scenarios
the users want to use the wearable sensors.
Phone Proxy: Phone Proxy is a long-running background service
on the smartphone. It is the main service in SenseWear that is
in charge of all the necessary jobs as described in Section 3.2, in-
cluding loading and parsing of metaprogram, communication with
Wearable Proxy, maps sensor data for phone use, etc.
Sensor Mapping: Sensor Mapping is a sub-component in Phone
Proxy that defines how sensors are mapped between heterogenous
devices. It calibrates or normalizes sensor data obtained from one
device to the other device.
Wearable Proxy: The Wearable Proxy acts as a watch app that
runs on foreground to provide a simple User Interface and gives
necessary directives to users when necessary. For example, it asks a
user to maintain the wearable device in a stable position for initial
calibration. As discussed earlier, Phone Proxy receives sensor data
from Wearable Proxy, based on the metaprogram specification on
the Phone Proxy.
Virtual Sensor Service: To enable existing apps to seamlessly
use remote sensor data, we need to intercept and replace the local
sensors with remote sensor data. One option is to intercept the
sensor API call at a relatively higher layer such as the Framework
API layer [32]. However, many applications, especially gaming ap-
plications, use sensors via Jave Native Interface (JNI) [7] rather
than Framework API. JNI circumvents Java API and JVM to deliver
efficient instructions to the operating system. The mobile oper-
ating system is designed in a way that compels all sensors to go
through the sensor service for dispatching sensor data. Therefore,
we add Virtual Sensor Service at the Framework Layer as the sensor
interception point.

3.2 SenseWear Workflow
Figure 2 shows the actions that a user needs to follow to apply
SenseWear to an existing phone app.

SenseWear
Wearable
Proxy

Smartphone Wearable

SenseWearAppKey: User Specified

Metaprogram

1) Write Metaprogram

4) calibrate
for

IMU sensors

Metaprogram

Phone app

7) Interact
by wearable

2) load
metaprogram

3) Send request

6) Inject sensor
data to apps

5) send wearable
sensor data

SenseWear
Phone
Proxy

Figure 2: The overview of how SenseWear performs the sensor virtualization
and what a user needs to do, in order to apply SenseWear, from a high-level
perspective.

User preparing phase: (1) A user starts by writing a metapro-
gram to specify which local sensor(s) needs to be substituted by
wearable sensor(s) and specifies how the wearable sensor(s) would
be used on the phone. The user then uploads the metaprogram
to a specified directory on the smartphone, via Android adb [1]
command.

SenseWear parsing phase: (2) SenseWear Phone Proxy, which
is a daemon process of SenseWear running on the phone, loads
the metaprogram from storage and parses the metaprogram. (3)
SenseWear Phone Proxy sends a request to Wearable Proxy to
request sensor information as specified in the metaprogram.

User calibration phase: (4) If SenseWear Phone Proxy asks for
IMU sensors, Wearable Proxy will prompt the user to maintain the
wearable device in a static position for 30 seconds for calibration.
This calibration process calculates the difference between the orien-
tation of the phone and wearable devices and converts the wearable
IMU sensor data into a form compatible with the phone. (5) The
Wearable Proxy sends sensor data back to the Phone Proxy.

SenseWear runtime phase: (6) After receiving the sensor data,
the Phone Proxy finishes the calibration process, and keeps convert-
ing incoming sensor data. Finally, SenseWear injects the ultimate
sensor data to the operating system, which redirects the sensor to
the smartphone app.(7) The user interacts with the original phone
app via the wearable device, without modifying the phone app.

We note that users need to spend a limited amount of effort on
sensor customization. The user’s involvement is limited to choosing
the interaction type in the metaprogram and if necessary to take
actions as requested by the Wearable Proxy during the calibration
phase for bootstrap.

4 METAPROGRAM
One of the goals of SenseWear is to help developers utilize wear-
able sensors in their applications with minimal engineering effort.
Developers can specify minimal required information in a metapro-
gram, such as semantics mapping and sampling rates. SenseWear
parses the metaprogram and performs the other steps involved in
utilizing it, including mapping and transmitting sensor data.

SenseWear abstracts the set of sensor information that is required
to virtualize sensing and specifies semantic mapping when needed.

AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal Jian Xu, Arani Bhattacharya, Aruna Balasubramanian, and Donald E. Porter

1 <metaprogram >

2 <appname >waveLock </appname >

3 <sensor >

4 <sensor_type_from >ambient_light </sensor_type_from >

5 <sensor_type_to >proximity </sensor_type_to >

6 <override >onSensorOverride </override >

7 <freq>UI</freq>

8 </sensor >
(a)

1 public double [] onSensorOverride(double [] watchData) {

2 /* Convert ambient light sensor data to

3 * proximity sensor

4 * proximity sensor has only range of [0,5]

5 **/

6 if (watchData [0] > 5) watchData [0] = 5;

7 else watchData [0] = 0;

8 return watchData;

9 }

10 }
(b)

Figure 3: Code (a) and (b) is a metaprogram that replaces a phone proxim-
ity sensor with a smartwatch ambient light sensor. The XML tag Override,
specifies a Java function name, such as, onSensorOverride, that overrides for
users/developers preferable sensor translation. The code snippet (b) shows
the overrided function orchestrates with code (a) that converts watch sensor
data, i.e., ambient light sensor, into the phone proximity sensor data.

The code snippet attached below shows an example of a meta-
program in SenseWear. A key feature of SenseWear is that each
sensor is classified into a particular sensor type, such as accelerator,
proximity sensor, or heartbeat rate sensor. By specifying the type
of sensors and their corresponding mapping rules to fit into the
local device, developers can easily adapt existing apps to utilize
wearable sensors seamlessly and transparently. In some cases, the
developer may have to write a function to specify the mapping. We
let the developers specify this mapping in Java, as shown in Figure
3(b).

sensor_type_from and sensor_type_to: This group of attributes
specifies the type of sensors the system is getting from andmapping
to. But if both sensor_type_from and sensor_type_to are used, then
the system replaces local sensor_type_to sensor with wearable sen-
sor_type_from sensor. The example metaprogram shown replaces
smartphone proximity sensor data with wearable ambient light
sensor data.

Java programming for deep customization: To deep cus-
tomize the sensor mapping, SenseWear enables developers to re-
serve the original ways of interacting with different sensors. As the
code snippet (a), (b) show, the developer wants to use a wearable
ambient light sensor to replace the smartphone proximity sensor.
To achieve this goal, SenseWear provides a new callback API onSen-
sorOverride in code (b) where developers can specify their preferred
way of customizing the mapping between two sensors.

5 SENSOR MAPPING
We apply different approaches depending on the two possible cate-
gories of sensor mapping – replacing sensors of the same kind and
that of different kinds.

5.1 Mapping sensors of the same kind
One-to-one mapping applies when a user wants to replace a local
sensor on the smartphone with the same type of sensor from a
wearable devices. For example, a user may prefer to have his/her

x
zy

Figure 4: Orientation difference between a smartphone (on the left) and a
smartwatch (on the right). We can see that these two devices have different
initial orientations, which will make the smartwatch motion sensor data not
work correctly to the smartphone.

smartwatch to enable the vibration mode when a phone call comes
in, rather than to enable the smartphone, as wearable devices are
more attached to body and can thus give more timely prompts. In
this case, the user could just utilize the wearable sensor data, such
as vibrators, as vibrators across devices share the same pattern
of vibration. [4]. A user may also wish to replace the smartphone
accelerometer sensor with a wearable accelerometer. Figure 4 shows
how different orientation angles can produce different values for
sensors like gyroscopes, accelerometers, magnetometers. Therefore,
directly using the wearable sensors on the smartphone would cause
the phone apps to behave incorrectly.

We represent the transformation of sensors to that of another
device as a type of affine transform [15]. We note that users tend
to intuitively use movements of similar lengths, rotations and lat-
eral movement for the same type of action on the same device.
Across devices, we argue that there is a one-to-one mapping of
such movement for each type of gesture. An affine transform can
effectively "map" such movement of one type conveniently into
another. Formally, let 𝑋𝑤 be the output given by the sensors of a
wearable device, and 𝑋𝑝 be the output given by that of a smart-
phone. Then, using an affine transform matrix 𝐴, we can represent
this as a matrix product, i.e., 𝑋𝑝 = 𝐴𝑋𝑤 . Now, we need to identify
the right values of the affine transform matrix𝐴. Doing this directly
is challenging, because of the following two reasons. First, the sen-
sors have some amount of oscillating values. Second, the sensors
also have different sampling rates. Accurate mapping requires to
solve these challenges.

We resolve this challenge in the following way. We observe
empirically that the relationship between the gyroscope and ac-
celerometer values of the smartwatch and the smartphone is linear.
We first use linear interpolation to ensure that the number of sam-
ples is equal. We then use a linear-regression [13] based learning
of the affine transform matrix. We use linear regression because
the affine transform matrix provides a linear mapping of the rela-
tionship between the sensors across devices. However, the exact
mapping among the sensors may differ depending on the type or
direction of movement. Thus, we use linear regression, with differ-
ent parameters used for each type of movement. For each distinct
gesture, we utilize linear regression using least-squares method to
get a particular affine transform matrix.

SenseWear calculates the affine transformmatrix using the initial
data collected during bootstrap or calibration. During bootstrap,
the UI on SenseWear first prompts the user to remain still with the
smartphone and wearable devices for 30 seconds, to allow Sense-
Wear to collect IMU sensors and calibrate based on the discussed
approach.

Sensor Virtualization for Efficient Sharing of Mobile and Wearable Sensors AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

Sensor

Phone AppUser
Layer

OS
Layer

Sensor Service

Local sensors

Sensor Connection

Phone App

Sensor Service

deactivated Virtual Sensor Service

Virtual Sensor

Virtual Sensors

Receiving from wearables

Android SenseWear AppKey:

(a) (b)

SensorManager

Local sensors

Sensor

Sensor Connection

SensorManager
created

Sensor Connection
destroyed

created

Figure 5: (a) The original design for sensor dispatching mechanism in An-
droid system. (b) SenseWear design for sensor dispatching, highlighted on
the right half. The left half shows that sensor dispatch connection would be
destroyed by de-registering a sensor.

5.2 Mapping sensors of different kinds
This case occurs when a developer wants to replace the local sen-
sor with a different type of wearable sensor. For example, some
smartphone applications like Proximity Service [9] require a prox-
imity sensor, which detects the distance between the object and
the phone screen. Those apps act as a gesture controller so that
users hovering on top of the screen can trigger the phone to make
a phone call or just pick up a phone. To make full use of wearable
sensors, users can hover on their smartwatch screens to trigger
such phone actions. However, smartwatches only have ambient
light sensors, which act similar to proximity sensors. But an ambi-
ent light sensor detects the light luminance rather than distance.
However, proximity sensors and ambient light sensors yield similar
data, as distance and luminance are strongly correlated. To sup-
port this use-case, SenseWear can simply map the ambient light
sensor on the watch to the proximity sensor on the phone. This
mapping rule is specified as a mapping rule in the metaprogram,
to tell SenseWear to keep converting the wearable ambient light
sensor data to proximity sensor data. The mapping rule specifies
how to convert the values from one sensor type to another.

6 IMPLEMENTATION
We implemented SenseWear on Android OS 7.1.2 and AndroidWear
2.0 smartwatch OS. We evaluate our prototype using a Nexus 5
phone and Sony Smartwatch 3. Other mobile operating systems
such as iOS, have a similar architecture for sensor framework design,
and it is possible to replace the Android watch with Apple watch
by installing watch proxy.

Table 2 lists those sensors supported by SenseWear. While Sense-
Wear can support a wider range of sensors than the listed ones,
the implementation of SenseWear was limited by the hardware.
For instance, Sony Smartwatch 3 does not sample heart rate data.
Note that supporting more sensors in SenseWear can be done by
additional software engineering, similar to thewaywe havemapped
the sensors.

The communication between Phone Proxy and Wearable Proxy
is based on Google Message Service(GMS) [6], which is a commonly

Sensor Smart-
phone

Smart-
watch Sensor Smart-

phone
Smart-
watch

Accelerometer ✓ ✓ Gyroscope ✓ ✓
Magnetometer ✓ ✓ Humidity ✓ ✓

Vibration ✓ ✓ Proximity ✓
Screen Touch ✓ Ambient Light ✓

Table 1: Sensors supported by SenseWear.

(a) (b) (c)

Figure 6: This figure shows four use cases that we implemented with Sense-
Wear (a) replace the phone accelerometer with a smartwatch accelerometer
while playing the game, RacingInCar; (b) control the smartphone using a
smartwatch ambient light sensor replacing the phone proximity sensor, for
AirGestureControl app; (c) using the smartwatch vibrator to get haptic feed-
back in place of smartphone, with HapticTest app.

App LoC Mapping Type
RacingInCar 10 Use wristwatch to control car in game
RacingFeverMotor 10 Use wristwatch to control car in game
AirGestureControl 18 Use wristwatch to control smartphone
WaveLock 18 Use wristwatch to lock and unlock smartphone
HapticTest 10 Vibration from phone to smartwatch
VibrationTest 10 Vibration from phone to smartwatch

Table 2: This table shows the apps used, alongwith the LOC for theirmetapro-
grams and the type of mapping we created to enable SenseWear for adapting
wearable sensors for those corresponding smartphone apps.

0

50

100

150

200

250

RacingInCar RacingFeverMoto AirGesture WaveLock HapticTest VibrationTest

La
te
nc
y
(m
ill
is
ec
on
ds
)

SenseWear Latency

Figure 7: This figure shows the duration it takes from the sensor generated
on a smartwatch to the sensor received on a smartphone. The red dashed line
indicates the threshold of 220ms.
used library to connect Android phones and watches via Bluetooth.
Based on Rio [12], batching network requests is a common approach
to reduce the latency of cross-device communication. Therefore,
the phone proxy and watch proxy are sending the sensor data in
batches with three sets of sensor data in a batch.

Virtual Sensor Service runs as a system-level thread, just like
SensorService [2]. Virtual Sensor Service keeps listening to requests
from Phone Proxy by epoll [5]. We also updated SystemSensorMan-
ager [3] in Android to expose a new API, registerVirtualSensor for
developers to use. Virtual Sensor Service is able to cover all tradi-
tional sensors, such as IMU sensors, proximity sensors.
6.1 Use Case Implementation
We utilized six different types of apps to show how SenseWear
can enhance existing smartphone apps by sharing remote sensors.
Table 2 shows the lines-of-code required for those six apps utiliz-
ing wearable sensors. We could conclude that SenseWear is able
to reduce the repetitive toil work for sensor developing, so that
minimizes the development.

6.2 Sensor latency for apps
To measure the latency that an application incurs by using remote
sensors, we measure the average time taken for the app to receive
sensor data from the remote sensor. To minimize the time drift
between two devices, we established a local NTP [8] server on a
LAN network. This environment enables the devices to have a sub
10-millisecond error drift.

AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal Jian Xu, Arani Bhattacharya, Aruna Balasubramanian, and Donald E. Porter

0

20

40

60

80

100

Gesture mapping-A Gesture mapping-B Gesture mapping-C

Pre
cis

ion
(%

)

Figure 8: This figure shows the results of the mapping matrix. This result
shows that mapping/calibration matrix works well with over 92% accuracy.

Figure 7 shows that the latency incurred for remotely receiving
sensors is about 80 ms for the first six apps and under 200 ms for
the last two. According to the psychophysics study [21] on human-
perceived response time, users cannot perceive latencies under
220ms. That means even though replacing local sensor data using
remote data does incur delays, this delay is acceptable.

6.3 Sensor Mapping performance
We test the working of one-to-one same-kind sensor mapping ap-
proach works by measuring the accuracy of mapping the phone
and watch orientations. We measure the accuracy along each of
the three possible axes, as well as the euclidean error in percentage.
Let 𝑝𝑥 and 𝑝 ′𝑥 be the actual and predicted value of one sensor data
point along axis x. Then, the error 𝑒𝑥 is given by:

𝑒𝑥 = (|𝑝 ′𝑥 − 𝑝𝑥 |)/𝑝𝑥 × 100.
The root mean squared error 𝑒 is given by: 𝑒 =

√
𝑒2𝑥 + 𝑒2𝑦 + 𝑒2𝑧 . We

report the values of 𝑒𝑥 , 𝑒𝑦 , 𝑒𝑧 and 𝑒 for three gestures.
Figure 8 shows the errors for mapping of three different move-

ments. Gesture mapping A represents the rotation of wrists anti-
clockwise andmoving the phone left. Gesture mapping B represents
the raising of arm and moving the phone forward. Gesture map-
ping C maps the movement of both smartwatch and phone both
horizontally to the right.

Our experiments show that this technique can translate the
sensors with a calibration error rate of at most 10% that is considered
acceptable [22]. We note that the euclidean error in each case is
at most 10%. We also observe that the error is relatively higher
(around 10%) along a single axis while being significantly lower
along the other axis. We explain this by observing that the user
movement is usually along a particular axis, so the values along
one axis remain relatively stable. Note that while a more complex
model than a linear model would increase the accuracy, it would
also make it necessary to get additional training data, which would
hurt usability. We have also anecdotally seen that users report a
significantly more positive experience when interacting with the
smartwatch using this calibration.

7 RELATEDWORK

Remote access supportMany solutions focus on remote access
to a server or desktop, like RDP [24] and VNC [26], albeit with-
out processing sensor data. Fluid [28] and UIWear [35] focus on
virtualizing and sharing UI across devices, which also reduces pro-
gramming effort. SenseWear complements their functionality by
facilitating sensor programming, thus making remote devices easier.
Rio [12], Mobile Plus [29] and M2 [11] also enable resource sharing
across devices. Specifically, Rio provides a general and efficient
way to virtualize all I/O peripherals, without considering the com-
patibility issue across devices. Mobile Plus shares resources at the
functionality layer instead of raw data. M2 shares I/O data, such
as display, audio, sensors, across heterogeneous devices to adapt

to several use cases, but it does not present a general solution to
address the problem of heterogeneous data.
Cross-device interaction: To enable richer interaction, multiple
studies have proposed utilizing multiple devices to improve cross-
device interactions. For example, Highlight [27] and Panelrama [36]
dispatch parts of UI to different form factors. WatchConnect [18],
TouchSense [19] and Serendipity [34] define a new series of gestures
to operate handheld devices with smartwatches. UIVoice [33] en-
ables smart home voice agents to act as remote agents to control or
interact with mobile apps seamlessly. Harmonious Haptics [20] acts
as additional tactile displays for smartphones. Duet [14] presents
a novel way of smartphone interaction using smartwatch motion
sensors. Unlike SenseWear, these studies do not focus on helping
the developers choose the sensor type of sensor for interaction.
Interaction and Gesture Mapping: Gluey [31] and MultiFi [16]
design new interaction techniques specifically for Head Mounted
Display (HWD) to operate other form factors. However, these tech-
niques have not considered using the HWD sensor data for existing
handheld apps. Hamilton et al. [17] present a way for users to mi-
grate UI between devices without migrating or reusing sensor data.
Yun et al. [37] demonstrate to use the smartphone as a mouse to
the larger form factor such as Smart TV. However, these techniques
only utilize sensors to recognize or analyze gestures and do not
aim to adapt different gesture approaches to the same apps.
8 CONCLUSIONS AND FUTUREWORK
In recent years, a large number of sensing devices such as smart-
watches have become commercially available. However, these wear-
able sensors are not fully utilized by most existing applications. We
circumvent this limitation by designing SenseWear, which allows
existing apps to utilize sensors on wearable apps seamlessly. Sense-
Wear is a sensor sharing platform that allows a developer to easily
specify how wearable sensors can be used to extend smartphone
applications. We evaluate SenseWear by creating six SenseWear-
enabled apps and conducting latency evaluations, and count the
lines-of-code for enabling wearable sensors, respectively. Our evalu-
ations show that SenseWear significantly improves the functionality
of applications, with minimal effort from the developer, and without
significant latency costs.

As future work, we plan to extend our work to more sensors.
Currently, SenseWear only maps smartwatch sensors. We will ex-
tend SenseWear to seamlessly integrate with more devices, such
as earpods and fitness trackers. Intuitively, such mapping is likely
to require more advanced techniques based on machine learning.
Specifically, a few simple gestures can be recognized by smart-
phones using techniques like incremental decision trees [30] or
CNN [23]. However, calibrating sensors with different forms of
signals while still retaining its usability is a major challenge. We
also plan to optimize power consumption by disabling the local
sensors being replaced by wearable sensors. This is non-trivial,
because disabling local sensors could affect or even stop the apps
function from functioning correctly. Thus, SenseWear needs a new
technique of disabling such sensors.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback
on the work. This work was supported in part by NSF grants CNS-
1717973 and CNS-1718491.

Sensor Virtualization for Efficient Sharing of Mobile and Wearable Sensors AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal

REFERENCES
[1] [n. d.]. AndroidDebug Bridge (adb). https://developer.android.com/studio/command-

line/adb .
[2] [n. d.]. Android Sensor Stack. https://source.android.com/devices/sensors/sensor-

stack.
[3] [n. d.]. Android SensorManager. https://developer.android.com/reference/

android/hardware/SensorManager.
[4] [n. d.]. Android Vibrator API Reference. developer.android.com/reference/kotlin/

android/os/Vibrator.
[5] [n. d.]. Epoll Wikipedia. https://en.wikipedia.org/wiki/Epoll.
[6] [n. d.]. Google Messaging Service.

https://developers.google.com/android/reference/com/google/android/gms/
gcm/package-summary.

[7] [n. d.]. Java Native Interface. https://developer.android.com/training/articles/perf-
jni.

[8] [n. d.]. ntpd. http://doc.ntp.org/4.1.0/ntpd.htm.
[9] [n. d.]. Proximity Service. https://play.google.com/store/apps/details?id=ss.

proximityservice&hl=en_US&gl=US.
[10] [n. d.]. Two in three phones to come with NFC in 2018.

https://www.nfcworld.com/2014/02/12/327790/two-three-phones-come-
nfc-2018/.

[11] Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh. 2019. Heterogeneous Multi-
Mobile Computing. In Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services (Seoul, Republic of Korea) (MobiSys
’19). Association for Computing Machinery, New York, NY, USA, 494–507. https:
//doi.org/10.1145/3307334.3326096

[12] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014. Rio: A
System Solution for Sharing I/O Between Mobile Systems. In Proceedings of the
12th Annual International Conference on Mobile Systems, Applications, and Services
(Bretton Woods, New Hampshire, USA) (MobiSys ’14). ACM, New York, NY, USA,
259–272. https://doi.org/10.1145/2594368.2594370

[13] Fred L Bookstein. 1975. On a form of piecewise linear regression. The American
Statistician 29, 3 (1975), 116–117.

[14] Xiang ’Anthony’ Chen, Tovi Grossman, Daniel J. Wigdor, and George Fitzmaurice.
2014. Duet: Exploring Joint Interactions on a Smart Phone and a Smart Watch.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). ACM, New York, NY, USA, 159–168. https:
//doi.org/10.1145/2556288.2556955

[15] Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[16] Jens Grubert, Matthias Heinisch, Aaron Quigley, and Dieter Schmalstieg. 2015.
Multifi: Multi fidelity interaction with displays on and around the body. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 3933–3942.

[17] Peter Hamilton and Daniel J. Wigdor. 2014. Conductor: Enabling and Under-
standing Cross-device Interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). ACM,
New York, NY, USA, 2773–2782. https://doi.org/10.1145/2556288.2557170

[18] Steven Houben and Nicolai Marquardt. 2015. Watchconnect: A toolkit for proto-
typing smartwatch-centric cross-device applications. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. ACM, 1247–
1256.

[19] Da-Yuan Huang, Ming-Chang Tsai, Ying-Chao Tung, Min-Lun Tsai, Yen-Ting
Yeh, Liwei Chan, Yi-Ping Hung, and Mike Y. Chen. 2014. TouchSense: Expanding
Touchscreen Input Vocabulary Using Different Areas of Users’ Finger Pads. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). ACM, New York, NY, USA, 189–192. https:
//doi.org/10.1145/2556288.2557258

[20] Sungjae Hwang, John Song, and Junghyeon Gim. 2015. Harmonious Haptics:
Enhanced Tactile Feedback Using a Mobile and a Wearable Device. In Proceedings
of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in
Computing Systems. ACM, 295–298.

[21] Donald R.J. Laming. 1968. Information theory of choice-reation times. https:
//doi.org/10.1002/bs.3830140408

[22] Huy Viet Le, Sven Mayer, Patrick Bader, and Niels Henze. 2017. A smartphone
prototype for touch interaction on the whole device surface. In Proceedings of

the 19th International Conference on Human-Computer Interaction with Mobile
Devices and Services. ACM, 100.

[23] Zhi Lu, Shiyin Qin, Lianwei Li, Dinghao Zhang, Kuanhong Xu, and Zhongying
Hu. 2019. One-Shot Learning Hand Gesture Recognition Based on Lightweight
3D Convolutional Neural Networks for Portable Applications on Mobile Systems.
IEEE Access 7 (2019), 131732–131748. https://doi.org/10.1109/ACCESS.2019.
2940997

[24] Todd R Manion, Ryan Y Kim, and Kestutis Patiejunas. 2014. Remote desktop
access. US Patent 8,776,188.

[25] Greg Milette and Adam Stroud. 2012. Professional Android Sensor Programming
(1st ed.). Wrox Press Ltd., GBR.

[26] KazuhiroNakao and YukikazuNakamoto. 2012. Toward remote service invocation
in android. In 2012 9th international conference on ubiquitous intelligence and
computing and 9th international conference on autonomic and trusted computing.
IEEE, 612–617.

[27] Jeffrey Nichols, Zhigang Hua, and John Barton. 2008. Highlight: a system for
creating and deploying mobile web applications. In Proceedings of the 21st annual
ACM symposium on User interface software and technology. ACM, 249–258.

[28] Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R. Jeong, Steven Y. Ko,
and Insik Shin. 2019. FLUID: Flexible User Interface Distribution for Ubiquitous
Multi-Device Interaction. In The 25th Annual International Conference on Mobile
Computing and Networking (Los Cabos, Mexico) (MobiCom ’19). Association
for Computing Machinery, New York, NY, USA, Article 42, 16 pages. https:
//doi.org/10.1145/3300061.3345443

[29] Sangeun Oh, Hyuck Yoo, Dae R Jeong, Duc Hoang Bui, and Insik Shin. 2017.
Mobile plus: Multi-device mobile platform for cross-device functionality sharing.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 332–344.

[30] Surbhi Saraswat, Ashish Gupta, Hari Prabhat Gupta, and Tanima Dutta. 2020. An
Incremental Learning Based Gesture Recognition System for Consumer Devices
Using Edge-Fog Computing. IEEE Transactions on Consumer Electronics 66, 1
(2020), 51–60. https://doi.org/10.1109/TCE.2019.2961066

[31] Marcos Serrano, Barrett Ens, Xing-Dong Yang, and Pourang Irani. 2015. Gluey:
Developing a head-worn display interface to unify the interaction experience
in distributed display environments. In Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile Devices and Services.
ACM, 161–171.

[32] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David Wetherall.
2015. Enhancing Mobile Apps to Use Sensor Hubs Without Programmer Effort.
In Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (Osaka, Japan) (UbiComp ’15). ACM, New York, NY, USA,
227–238. https://doi.org/10.1145/2750858.2804260

[33] Ahmad Bisher Tarakji, Jian Xu, Juan A. Colmenares, and Iqbal Mohomed. 2018.
Voice Enabling Mobile Applications with UIVoice. In Proceedings of the 1st Inter-
national Workshop on Edge Systems, Analytics and Networking (Munich, Germany)
(EdgeSys’18). Association for Computing Machinery, New York, NY, USA, 49–54.
https://doi.org/10.1145/3213344.3213353

[34] Hongyi Wen, Julian Ramos Rojas, and Anind K. Dey. 2016. Serendipity: Finger
Gesture Recognition Using an Off-the-Shelf Smartwatch. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems (San Jose, California,
USA) (CHI ’16). ACM, New York, NY, USA, 3847–3851. https://doi.org/10.1145/
2858036.2858466

[35] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and Donald E.
Porter. 2017. UIWear: Easily Adapting User Interfaces for Wearable Devices. In
Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking (Snowbird, Utah, USA) (MobiCom ’17). ACM, New York, NY, USA,
369–382. https://doi.org/10.1145/3117811.3117819

[36] Jishuo Yang and Daniel Wigdor. 2014. Panelrama: Enabling Easy Specification
of Cross-device Web Applications. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). ACM,
New York, NY, USA, 2783–2792. https://doi.org/10.1145/2556288.2557199

[37] Sangki Yun, Yi-Chao Chen, and Lili Qiu. 2015. Turning a Mobile Device into a
Mouse in the Air. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services (Florence, Italy) (MobiSys ’15). ACM,
New York, NY, USA, 15–29. https://doi.org/10.1145/2742647.2742662

https://source.android.com/devices/sensors/sensor-stack
https://source.android.com/devices/sensors/sensor-stack
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorManager
developer.android.com/reference/kotlin/android/os/Vibrator
developer.android.com/reference/kotlin/android/os/Vibrator
https://en.wikipedia.org/wiki/Epoll
https://developers.google.com/android/reference/com/google/android/gms/gcm/package-summary
https://developers.google.com/android/reference/com/google/android/gms/gcm/package-summary
https://developer.android.com/training/articles/perf-jni
https://developer.android.com/training/articles/perf-jni
https://play.google.com/store/apps/details?id=ss.proximityservice&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=ss.proximityservice&hl=en_US&gl=US
https://doi.org/10.1145/3307334.3326096
https://doi.org/10.1145/3307334.3326096
https://doi.org/10.1145/2594368.2594370
https://doi.org/10.1145/2556288.2556955
https://doi.org/10.1145/2556288.2556955
https://doi.org/10.1145/2556288.2557170
https://doi.org/10.1145/2556288.2557258
https://doi.org/10.1145/2556288.2557258
https://doi.org/10.1002/bs.3830140408
https://doi.org/10.1002/bs.3830140408
https://doi.org/10.1109/ACCESS.2019.2940997
https://doi.org/10.1109/ACCESS.2019.2940997
https://doi.org/10.1145/3300061.3345443
https://doi.org/10.1145/3300061.3345443
https://doi.org/10.1109/TCE.2019.2961066
https://doi.org/10.1145/2750858.2804260
https://doi.org/10.1145/3213344.3213353
https://doi.org/10.1145/2858036.2858466
https://doi.org/10.1145/2858036.2858466
https://doi.org/10.1145/3117811.3117819
https://doi.org/10.1145/2556288.2557199
https://doi.org/10.1145/2742647.2742662

	Abstract
	1 Introduction
	2 Use Cases
	3 SenseWear Design
	3.1 Overall Architecture of SenseWear
	3.2 SenseWear Workflow

	4 Metaprogram
	5 Sensor Mapping
	5.1 Mapping sensors of the same kind
	5.2 Mapping sensors of different kinds

	6 Implementation
	6.1 Use Case Implementation
	6.2 Sensor latency for apps
	6.3 Sensor Mapping performance

	7 Related Work
	8 Conclusions and Future Work
	References

