
How Far is too Far? Fixing Vision of Autonomous
Vehicles using Selective Super-Resolution

Najiya Naj∗, Ritik Vaishnav †, Arani Bhattacharya∗
{najiyan, arani}@iiitd.ac.in, ritikvaishnav20@gmail.com

∗ IIIT-Delhi, † MBM University, India

Abstract—Autonomous vehicles (AVs) promise to transform
mobility, yet their deployment remains constrained by reliabil-
ity, scalability, and cost barriers. Current AV perception stacks
find it challenging to detect distant objects, as computer vision
models are powerful enough to detect them. While LIDARs
can detect such objects, they are less reliable for distant objects
and are expensive. These factors hinder widespread adoption,
particularly in consumer-grade vehicles where scalability and
robustness are critical.

In this work, we advocate for stereo vision as a scalable and
cost-effective alternative for long-range perception and propose
a stereo-guided selective super-resolution (SR) tiling framework
to address the challenge of far-object detection. Our system
leverages stereo depth to identify distant regions of interest and
selectively applies SR enhancement before detection, improving
far-field visibility while minimizing computation and main-
taining high accuracy and real-time efficiency. The proposed
framework is extensively evaluated on the CARLA simulator
and the KITTI benchmark under diverse environmental and
traffic conditions. Results demonstrate that our selective SR
approach improves far-object detection by 27% in the 50–100
m range and 35%beyond 100 m, while achieves with up to 3×
lower SR latency, paving the way for scalable and efficient AV
perception.

Index Terms—Autonomous Driving, Stereo Vision, Super-
Resolution, Dynamic Tiling, Far-Object Detection

I. INTRODUCTION

Autonomous vehicles (AVs) have seen remarkable progress
in recent years, particularly in perception, planning, and con-
trol. Yet, their widespread adoption remains limited by safety-
critical failures encountered in real-world driving conditions.
High-profile incidents demonstrate that even AVs equipped
with LiDAR can misidentify or fail to respond appropriately
to vulnerable road users in complex scenarios [4], [18],
[20]. These shortcomings underscore the need for perception
systems that are not only accurate but also scalable, cost-
effective, and dependable across diverse environments.

LiDAR has traditionally been the backbone of AV per-
ception, providing precise long-range depth measurements
and object localization [5]. While its accuracy is unmatched,
LiDAR comes with significant drawbacks: the cost of a single
unit, although reduced from approximately $75,000 in 2009
to $7,500 in 2017, still makes multi-sensor setups expensive,
often totaling hundreds of thousands of dollars per vehicle
[23]. Additionally, LiDAR consumes substantial power and
exhibits performance degradation in adverse environmental
conditions such as rain, fog, or snow [13]. Moreover, real-
world accidents, including the 2018 Uber crash in Tempe,
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Fig. 1: Comparison of detection distance between camera
and LiDAR systems. Stereo vision demonstrates competi-
tive range under daylight conditions, while LiDAR remains
superior in full range. The evaluation is performed using
CARLA’s simulation [6].

Arizona, illustrate that LiDAR detection alone cannot guar-
antee safe response when perception and planning modules
fail to interpret the scene in time [4], [25]. These challenges
have driven interest in camera-based perception as a viable
and scalable alternative.

Camera systems, particularly stereo vision, have emerged
as a compelling alternative for AV perception. Stereo cameras
are inexpensive, lightweight, and energy-efficient, while pro-
viding dense depth estimation over wide fields of view. Deep-
learning-based stereo perception methods such as Pseudo-
LiDAR and Stereo R-CNN [15], [27] have significantly
narrowed the performance gap with LiDAR, achieving im-
pressive accuracy on benchmarks such as KITTI [8]. Industry
prototypes have further demonstrated that stereo-based sys-
tems can reliably detect objects up to 130–200 m in favorable
lighting [11], [21]. As shown in Fig. 1, stereo cameras
achieve competitive performance within critical detection
ranges at a fraction of LiDAR’s cost, positioning them as
an attractive foundation for scalable AV perception.

However, detecting far-away objects (beyond 40–50 m)
remains challenging for stereo-based systems. At longer
distances, parallax becomes minimal, reducing disparity ac-
curacy and making small or distant objects occupy only
a few pixels-too few for reliable classification. This prob-
lem is especially critical for safety in highway and urban
intersection scenarios, where early recognition of distant



Fig. 2: Extending detection range improves reaction time.
At 100 km/h, increasing perception distance from 40 to
80m adds ≈ 1.5 s of reaction time, highlighting the safety
advantage of far-object perception.

obstacles directly impacts reaction time and decision-making.
As illustrated in Fig. 2, at 100 km/h, detecting an obstacle at
40 m provides roughly 1.4 s for reaction, whereas detecting
the same obstacle at 80 m offers about 2.9 sec an additional
1.5 sec that can be the difference between collision and avoid-
ance. Thus, extending perception reliability for far objects is
a fundamental safety requirement.

A promising way to improve distant object visibility is
through image super-resolution (SR), an ML-based inter-
polation technique that reconstructs high-frequency image
details such as edges and textures from low-resolution inputs.
SR has shown potential in restoring fine visual cues for
small or distant objects [17], [16]. However, applying SR to
entire high-resolution frames is computationally expensive,
often costlier than object detection itself, and transmitting
such frames to the cloud is impractical in bandwidth-limited
settings [26].

To overcome these challenges, we develop a stereo-guided
selective SR tiling framework that selectively applies SR
based on scene depth and driving context, balancing far-
object accuracy with real-time efficiency. We validate our
framework on the CARLA Simulator[6] and KITTI [8]
datasets under varied driving and environmental conditions,
demonstrating significant improvements in far-object detec-
tion accuracy and real-time efficiency compared to baseline
detection pipelines.

Our primary contributions are as follows:
• A stereo-guided adaptive decision framework that learns

when to activate SR based on curvature, density, and visibility
cues.

• A dual-branch local perception pipeline combining
YOLOv8n for near/mid-range detection and SR-enhanced
YOLOv11x for distant regions.

• A depth-aware selective tiling strategy that applies SR
only to far-field regions identified via stereo disparity, im-
proving detection accuracy with minimal overhead.

• Comprehensive evaluation on CARLA and KITTI,
demonstrating consistent gains in far-object detection and
real-time efficiency.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the role of stereo vision in
enabling scalable autonomous vehicle (AV) perception and
the challenges it faces in detecting far-away objects. We
further explore how image SR can enhance distant object
recognition and motivate the need for a stereo-guided, adap-
tive SR approach that improves perception accuracy and
efficiency within an onboard AV pipeline.
Stereo Vision for Scalable Perception. Stereo vision has
emerged as a compelling perception modality for autonomous
vehicles due to its low cost, compact form factor, and ability
to estimate depth from passive sensing. By computing dis-
parity between left–right image pairs, stereo cameras provide
dense 3D structure of the scene without expensive LiDAR
hardware. While recent learning-based stereo methods [15],
[22], [27] have achieved near-LiDAR accuracy in daylight
conditions, their performance degrades sharply for distant or
small objects due to limited pixel disparity. This limitation
becomes critical in scenarios such as high-speed driving or
large intersections, where early detection of far-field obstacles
is essential for safe decision-making.
Why Far-Object Perception Matters. Far-object detection
is a cornerstone of proactive and safe AV behavior. Ac-
curate early perception of distant obstacles allows AVs to
perform smoother braking, early lane changes, and proactive
trajectory adjustments. Most perception pipelines, however,
are tuned for mid-range accuracy, as datasets like KITTI [8]
primarily emphasize object distances below 40 m (Fig. 1).
This results in models that perform well in typical urban
scenes but degrade significantly in open-road or high-speed
highway conditions. To address this limitation, prior studies
have explored multi-sensor fusion [3], hybrid stereo–LiDAR
systems [28], and monocular depth learning with geometric
priors [9]. While these methods improve range perception,
they often introduce additional cost, latency, or calibration
overhead factors that limit their scalability in real-world
deployments.
Super-Resolution for Far-Object Enhancement. A promis-
ing alternative to sensor fusion is enhancing perception at
the image level using SR. SR is a machine learning-based
interpolation technique that reconstructs high-frequency de-
tails such as edges and textures from low-resolution images,
effectively increasing perceptual clarity and aiding small-
object detection. In the context of AV perception, SR can
compensate for the loss of spatial detail in distant or low-
quality frames. Models such as SRODNet [17], SwinIR [16],
and ESRGAN [24] have shown significant gains in image
fidelity and downstream detection performance. However,
these methods come with substantial computational overhead,
making them difficult to integrate into real-time AV pipelines.
As shown in Fig. 3(a), the per-frame computation time of
transformer-based models like SwinIR or GAN-based models
like ESRGAN is prohibitively high, whereas lightweight ar-
chitectures such as CARN [1] achieve real-time performance
with minimal degradation in visual quality.
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Fig. 3: SR model performance: (a) per-frame computation
times for different models, (b) Computation time for CARN-
based SR under full-frame, static, and dynamic tiling modes.

Challenges of Full-Frame SR in AV Pipelines. Processing
entire frames for SR wastes compute on irrelevant regions
(e.g., sky or road texture), while only a small fraction of the
frame contains distant, safety-critical objects. Transmitting
full-resolution frames for SR enhancement further inflates
bandwidth usage [26], [12]. Adaptive or region-based SR
strategies have been proposed to focus processing on in-
formative areas [14]. However, most existing methods rely
on heuristic region selection or static partitioning, which
may miss contextually important regions in dynamic driving
scenes. This motivates a stereo-guided, depth-aware SR ap-
proach that selectively enhances distant regions in real time.

Our proposed system adopts a dual-branch design: a
lightweight YOLOv8n detector continuously handles near
and mid-range perception, while a parallel SR-enhanced
YOLOv11x branch processes far-field tiles within the same
frame. Computation is dynamically distributed based on
stereo-derived depth and scene context, allowing SR to op-
erate only where it yields perceptual gains. We explore both
static and dynamic tiling strategies where static tiling uses
fixed-size patches for predictable computation, and dynamic
tiling adjusts tile boundaries according to disparity and object
density, allocating higher resolution to distant, object-rich
regions. As shown in Fig. 3(b), dynamic tiling reduces
CARN’s SR computation time by roughly 3× compared
to full-frame enhancement while improving detection con-
fidence for far objects (Fig. 4). By combining stereo-guided
depth cues, selective SR, and adaptive decision control, our
framework achieves high far-object detection accuracy with
real-time efficiency without any cloud dependence or external
offloading.

III. OUR SOLUTION: ADAPTIVE USE OF
SUPER-RESOLUTION

Building on the motivation from Section II, we design a
stereo-guided selective SR tiling framework that dynamically
balances accuracy and efficiency in real time. The system
leverages stereo depth to identify distant regions and applies
SR selectively before detection, rather than processing the en-
tire frame. A dual-branch design leverages YOLOv8n for near
and mid-range detection due to its low computational cost,
while an SR-enhanced YOLOv11x branch focuses on far-
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Fig. 4: Average detection confidence for far objects compar-
ing full-frame SR, static tiling, and dynamic tiling. Dynamic
SR tiling achieves higher detection confidence while mini-
mizing computation.

field regions to ensure high detection accuracy. An adaptive
decision module governs SR activation based on scene-level
cues such as road curvature, object density, and visibility,
ensuring that SR is used only when beneficial. This fully
onboard, dual-branch architecture enhances far-object visi-
bility while maintaining real-time performance and efficient
resource utilization.

A. System Overview

The proposed pipeline (shown in Fig. 5) operates on-
board and comprises four main components: (1) stereo-based
depth estimation, (2) scene characterization, (3) adaptive
SR decision framework, and (4) selective Tiling and Super-
Resolution. Depth and scene metrics are computed in real
time to determine when and where SR should be applied.
The lightweight YOLOv8n model ensures low-latency near-
field perception, while the SR-enhanced YOLOv11x module
processes selected far-field tiles in parallel to improve long-
range accuracy.

1) Stereo Depth Estimation: Depth is computed from
left–right stereo images using a refined Semi-Global Block
Matching (StereoSGBM) model [10]. A median filter is
applied to suppress low-texture noise. Based on the pinhole
camera geometry,

D =
f × b

disparity
, (1)

where f is the focal length and b is the stereo baseline. The
resulting dense depth map allows identification of far-field
regions (D > 40m), which guide subsequent SR processing.

2) Scene Characterization: Each frame is analyzed to
compute contextual metrics such as road curvature [19],
object density, and visibility. These parameters reflect the
driving context and are used to infer whether SR would
contribute meaningful improvement. For example, during
high curvature (i.e., on sharp bends or intersections), most
objects lie at short or medium range, and the visible far-field
area is small or partially occluded. Similarly, in high-density



Fig. 5: Proposed stereo-guided pipeline with dynamic tiling
and selective super-resolution. Far-field regions identified via
stereo depth are enhanced using SR before object detection
to improve accuracy.

traffic scenes, vehicles and pedestrians dominate the frame,
making SR less useful since distant regions are visually
cluttered and contribute little to decision-making. Conversely,
under open-road conditions, with low curvature, low density,
and good visibility, SR can meaningfully enhance distant
texture details, such as lane boundaries, traffic signs, or small,
far-away vehicles that are otherwise difficult to detect.

3) Adaptive SR Decision Framework: To activate SR only
when beneficial, we introduce an adaptive scoring-based
learner that quantifies scene complexity per frame. The
decision score is defined as:

S = 0.35(1− Sκ) + 0.35(1− Sρ) + 0.20Sv + 0.10Sh, (2)

where Sκ, Sρ, and Sv denote normalized curvature, density,
and visibility scores, respectively, and Sh captures temporal
stability to prevent rapid oscillations. Note that curvature
and number of objects are negatively correlated with the
need for super-resolution, and thus they appear in the above
equation as negative terms. SR activation is triggered when S
exceeds a learned threshold and distant objects (> 40 m) are
detected in the depth map. This ensures SR is used adaptively,
conserving compute during complex or occluded scenes.

4) Selective Tiling and Super-Resolution: When SR is
activated, the far-field regions are segmented into tiles and
enhanced using a lightweight Cascading Residual Network
(CARN) [1]. Meanwhile, YOLOv8n continues detection on
the native-resolution frame to maintain low-latency percep-
tion. This dual-branch setup allocates computation adaptively
between regions of interest.

We employ two tiling modes: Static tiling divides each
640×360 frame into a uniform 2×2 grid of 320×180 patches
for predictable compute cost, whereas dynamic tiling adjusts
tile boundaries based on disparity and object distribution,
typically cropping 50–100 pixel regions around far-field
objects. This ensures SR computation remains both efficient
and spatially focused

As shown in Fig. 3(b) and Fig. 4, dynamic tiling not only
reduces SR computation cost by nearly 3× compared to full-
frame enhancement but also improves detection confidence
for far objects while preserving visual fidelity.

IV. IMPLEMENTATION

We implement the proposed framework (Fig. 5) as a fully
onboard system optimized for real-time operation. Our entire
system is evaluated on a system with Nvidia GeForce RTX
3060 GPU and Intel Core i5-12600K with 10 cores. The
complete pipeline, including stereo processing, adaptive SR,
and detection, is co-located with the CARLA simulator and
evaluated on the KITTI dataset. The data from the camera is
encoded using H.265 encoder available with ffmpeg’s x265
encoder [7].

A. Pipeline Implementation

All modules run on the local GPU without any external
offloading. Stereo disparity is computed in real time, followed
by lane curvature, traffic density, and visibility estimation.
These scene metrics are fed to the adaptive SR decision
module, which dynamically determines whether selective SR
should be activated for the current frame.

When SR is active, only the identified far-field tiles are
enhanced using the CARN model (4× upscaling) and pro-
cessed by YOLOv11x, while YOLOv8n continues to handle
near and mid-range detection on the original frame. Dual-
branch Detections from both models are merged using non-
maximum suppression (NMS) and depth-consistency filtering
to form a unified high-confidence perception output. This
joint design ensures balanced accuracy and efficiency for
real-time onboard operation.

B. Adaptive Learning Process

The decision module operates through a three-phase adap-
tation loop:

1) Initialization: Conservative normalized thresholds are
set,curvature (1−Sκ = 0.3), density (1−Sρ = 0.3), visibility
(Sv = 0.2), and SR distance 40m.

2) Learning: Thresholds are refined continuously from
percentile-based and variance-aware updates derived from
recent driving frames.

3) Optimization: Parameters are periodically tuned to
maintain balanced SR activation (40–60%) while minimizing
latency and computational cost.
Learned parameters are persistently stored, allowing the sys-
tem to retain and adapt experience across multiple sessions.

C. Integration with Region-Based Detection

Our framework integrates seamlessly with region-based
detectors such as SAHI [2]. SAHI performs image slicing,
dividing the input into overlapping windows to improve
detection of small objects that would otherwise vanish at full-
frame resolution. It then applies slice-level NMS to merge
detections across overlapping patches, enabling high small-
object recall independent of input resolution.

Unlike uniform slicing, only SR-enhanced far-field tiles
are processed, improving recall for small and distant objects
while maintaining real-time performance. This modular in-
tegration demonstrates the flexibility of the proposed design
and its compatibility with diverse perception backbones.
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Fig. 7: Per-frame detection comparison: the proposed
stereo–SR pipeline consistently achieves higher detection
counts and smoother performance.

V. EVALUATION

We evaluate the proposed stereo-guided selective SR
framework on both the CARLA simulator and the KITTI
dataset. Our evaluation focuses on three key aspects: (i) im-
provement in far-object detection accuracy, (ii) computational
efficiency of selective SR and tiling, and (iii) stability of
detection trends across frames.

We compare our method (Stereo-SR-YOLO) against two
baselines: (1) camera-only YOLOv11x (no SR), (2) SAHI-
YOLO slicing-based detector.

A. Experimental Setup

All experiments are conducted on an Nvidia GeForce RTX
3060 GPU (CARLA and KITTI) running locally. Each test
uses 2,000 CARLA frames and 7,500 KITTI frames under
varying visibility and traffic density conditions. The input
frame resolution is 640× 360, and full frame SR outputs are
upscaled to 2560×1440. The stereo-guided decision module
activates SR only when the decision score threshold and far-
distance condition (> 40m) are satisfied.

B. Far-Object Detection on KITTI

As shown in Fig. 6a, the proposed Stereo-SR-YOLO
pipeline achieves consistently higher far-object detection
compared to SAHI-YOLO and baseline YOLOv11x. Specifi-
cally, it improves true detection counts by 27% in the medium

range (50-100 m) and 35% beyond 100 m. This gain comes
from selective SR applied to depth-identified distant regions,
which enhances texture and edge cues critical for recognition.
Overall, Stereo-SR-YOLO demonstrates superior far-object
perception across both KITTI and CARLA scenarios.

C. Computation Efficiency

Fig. 6b shows the breakdown of per-frame computation
time for different pipelines. The proposed Stereo-SR-YOLO
achieves an average total latency of 80 ms per frame, nearly
40% faster than SAHI-YOLO (136 ms). This improvement
comes from depth-aware selective tiling, which eliminates
unnecessary SR processing. Within each frame, stereo depth
estimation, dynamic tiling, and SR modules collectively
consume less than 50% of total inference time.

D. Frame-Level Detection Trends

Fig. 7 presents detection trends across 100 KITTI frames.
The Stereo-SR-YOLO pipeline maintains stable improve-
ments, consistently detecting 4-6 additional far objects per
frame compared to baseline YOLOv11x and SAHI-YOLO.
The average detection counts are: YOLOv11x = 6.3, SAHI-
YOLO = 8.6, and Stereo-SR-YOLO = 11.8. This stability
highlights the reliability of the adaptive SR decision module
and its ability to dynamically adjust to changing scene
complexity

E. Qualitative Results

Fig. 8 illustrates qualitative improvements. Baseline
YOLOv11x Fig 8(a) fails to detect distant obstacles. After
stereo-guided SR and tiling Fig 8(b), new detections appear
(green boxes). The depth map Fig 8(c) shows the far-field
regions (>40 m) that trigger SR enhancement. This high-
lights that our selective SR approach improves visibility and
detection of far-field targets without full-frame processing.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we show that while detecting distant objects
using single-shot computer vision techniques is challenging,
these challenges can be mitigated using super-resolution.
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Fig. 8: Qualitative improvements with stereo-guided SR: (a) baseline YOLOv11x detections, (b) detections after SR tiling,
(c) stereo depth map showing far-field regions (>40 m).

However, using such super-resolution is compute-intensive
in nature, making them challenging to use in autonomous
vehicles. We show that by using dynamic tiles, and applying
only the tiles that contain distant objects, it is possible to
significantly mitigate the problem of high compute latency.
We integrate this into our pipeline where the necessary tiles
are identified in run-time, integrate it into an autonomous
vehicle pipeline and evaluate it on KITTI dataset. We show
that accuracy of far-object detection increases by over 35%
compared to existing state-of-the-art SAHI-YOLO, while
maintaining near real-time operation. Our study shows that
use of super-resolution in autonomous vehicles is feasible.
We believe that such improved detection of far objects would
improve safety and support higher vehicle speeds.
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