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Autonomous Vehicles (AVs)

A vehicle that can drive itself without human intervention.

Lidar (light detection and ranging)

Autonomous  Driving  (AV)
improves safety and efficiency

Supports better utilization of
road infrastructure.

https://ffifthlevelconsulting.com/key-components-of-autonomous-vehicles/
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Autonomous Vehicle with LIiDAR Sensors

Lidar sensor captures 3D point cloud data

Point cloud data provide information,
which can be used for 3D object
detection. But these 3D models are
computationally heavy.




The Core Perception Challenge

Reliable perception is critical for safe autonomous driving

— Vehicles must detect obstacles early
— Detection range directly impacts reaction time

— Errors at long distances are safety-critical [1,2]

[1] Caesar, Holger, et al. Proceedings of the IEEE/CVF CVPR 2020.
[2] Janai et al., 2020, Foundations and trends® in computer graphics and vision.



Why Far-Object Perception is a Safety Bottleneck

— AV struggle with far-object

detection (>40 m) = o
— Critical in high-speed roads and € Night
large intersections 3 100
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— High sensor and maintenance cost
— Sparse point clouds at long range reduce object detail

— Difficult to infer object shape and semantics, complicating
downstream prediction and planning

— Performance degrades in rain,
fog, and adverse weather

— Limits large-scale deployment




— Uses a pair of cameras to estimate depth via image disparity
— Passive sensing without active emission

— Cheaper and more scalable than LIDAR
— Achieves near-LIiDAR accuracy in favorable conditions



Stereo Depth Estimation

Depth from Stereo Geometry:

z = (f x B)/disparity,
Where X is object and,
— Z: object distance

— f. camera focal length

_ @) Baseline O’
— B: stereo baseline B

— disparity: pixel shift between left and right images (disparity =x-x’)



Limitation of Stereo for Far Objects

— Far objects occupy very few pixels
— Small disparity reduces depth precision
— Detection accuracy drops after long range

— Limits reliability at high speed and open intersections



Super-Resolution (SR) for Far-Object Detection

— SR enhances fine details and textures in low-resolution regions
— Improves far-object detection by up to 30-35% beyond 100 m
— Boosts detection confidence for small and distant objects

— Effectively addresses stereo’s limited pixel disparity at long range
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Challenge of Full-Frame Super-Resolution

— Full-frame SR is computationally ) 50e

expensive T 2° %
£

— SR latency can exceed object £2.0

detection time g, c
Qo

— Wastes computation on irrelevant ¢ 0.99s %
1.0

regions (sky, road, nearby objects) « %

— Impractical for real-time AV g0
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[3] N. Ahn, et al. CARN, In Proceedings of the European Conference on Computer Vision (ECCV), 2018. SR MOdeIS
[4] X. Wang, et al. ESRGAN, In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
[5] J. Liang, et al. SwinIR, In Proceedings of the IEEE/CVF ICCVW, 2021



Tiling-Based Super-Resolution

— Apply SR only on selected image regions (tiles)
— Two approaches:
o Static Tiling: fixed grid

Wl .|

Static Tiling




Tiling-Based Super-Resolution

— Apply SR only on selected image regions (tiles)
— Two approaches:

o Static Tiling: fixed grid
o Dynamic Tiling: scene aware adaptive tiles

Dynamic Tiling



Why Dynamic Tiling?

Dynamic Tiling for Efficient SR D 50/120ms
— Focuses SR on far-field, 2 100 100 me
object-rich regions £ 0
— Avoids processing empty or g
near-field areas g ©0
— Reduces SR computation = a0 o
significantly o 20
— Enables real-time far-object <
q:ull Frame Static Tile Dynamic Tile
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When Is Super-Resolution Worth It?

SR is useful only for specific regions and scenes

— Far-field regions benefit most from SR
— Dense or highly curved scenes reduce SR usefulness
— SR must be applied selectively and adaptively



— Use stereo depth to identify far-field regions
— Apply SR selectively, instead of full-frame processing
— Dual-branch detection architecture

o YOLOv8n for near & mid-range (low latency)
o SR-enhanced YOLOv11x for far-field regions

— Adaptive SR activation based on scene context

— SR is useful only for specific far-field regions and specific scenes



Architecture: Stereo-Guided Selective SR
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Our Solution: Stereo-Guided Selective SR

— Adaptive SR decision framework determines when SR is
beneficial using:

o Road curvature
o Object density
o Visibility & temporal stability

— SR activated only when the decision score (S) exceeds a
threshold



Our Solution: Stereo-Guided Selective SR

§=0.35(1-S,)+0.35(1-S )+0.20S +0.10S,

where SK, Sp, and SV denote normalized curvature, density, and
visibility scores, respectively, and S_ captures temporal stability to
prevent rapid oscillations.



Implementation

— Fully onboard real-time system

— NVIDIA RTX 3060 + Intel i5-12600K
— Integrated with CARLA simulator

— Evaluated on KITTI dataset



— Datasets: CARLA simulator and KITTI
— Compared against YOLOv8n, YOLOv11x and SAHI-YOLO

— Metrics: Far-object detection confidence score, true detection
count, latency



Results: Confidence Improvement
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SR-enhanced stereo increases detection confidence for small and
distant objects.



Results: Far-Object Detection
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Stereo-SR-YOLO improves far-object detection in both medium (50-100
m) and long-range (>100 m) scenarios compared to SAHI-YOLO.



Results: Computational Efficiency
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Stereo-SR-YOLO achieves significantly lower end-to-end latency avoiding
unnecessary SR through depth-aware tiling.



Results: Frame-Level Detection
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Stereo-SR-YOLO consistently detects more far-field objects per frame than
YOLOv11x and SAHI-YOLO, demonstrating stable frame-level performance.



— Far-object perception is a critical AV challenge

— Selective SR improves far-object detection by >35%

— Stereo-guided dynamic tiling enables real-time deployment

— Improved far-object perception enables safer driving at higher
speeds



