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Abstract—We address the problem of localizing an (illegal)
transmitter using a distributed set of sensors. Our focus is on
developing techniques that perform the transmitter localization
in an efficient manner, wherein the efficiency is defined in terms
of the number of sensors used to localize. Localization of illegal
transmitters is an important problem which arises in many
important applications, e.g., in patrolling of shared spectrum
systems for any unauthorized users. Localization of transmitters
is generally done based on observations from a deployed set of
sensors with limited resources, thus it is imperative to design
techniques that minimize the sensors’ energy resources.

In this paper, we design greedy approximation algorithms
for the optimization problem of selecting a given number of
sensors in order to maximize an appropriately defined objective
function of localization accuracy. The obvious greedy algorithm
delivers a constant-factor approximation only for the special case
of two hypotheses (potential locations). For the general case of
multiple hypotheses, we design a greedy algorithm based on
an appropriate auxiliary objective function—and show that it
delivers a provably approximate solution for the general case. We
develop techniques to significantly reduce the time complexity of
the designed algorithms, by incorporating certain observations
and reasonable assumptions. We evaluate our techniques over
multiple simulation platforms, including an indoor as well as
an outdoor testbed, and demonstrate the effectiveness of our
designed techniques—our techniques easily outperform prior and
other approaches by up to 50-60% in large-scale simulations.

I. INTRODUCTION

Wireless transmitter localization via analysis of the received
signal from multiple receivers or sensors is an important
problem. While the problem has been widely explored, the
problem exposes new challenges in many emerging applica-
tions due to the constraints of the application. In this work, we
are specifically interested in a distributed monitoring system
where a set of distributed RF sensors are tasked to detect and
localize transmitters. These transmitters could be of various
type. For example, in certain spectrum allocation scenarios,
unknown primary transmitters need to be detected/localized.
Or, in spectrum patrolling scenarios, unauthorized transmitters
need to be detected/localized [1]. Recent work has explored
new approaches for such monitoring where the RF sensors
are crowdsourced, perhaps using various low-cost spectrum
sensing platforms [2], [3]. The crowdsourcing makes densely
deployed, fine grain spectrum sensing practical by creating
suitable incentive mechanisms [4], [2].

Crowdsourcing makes the sensing cost-conscious. The cost
here could be incentivization cost, cost of power, backhaul
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bandwidth on the part of the spectrum owner or the opportu-
nity cost – being low-cost platform, the sensors may be able to
only sense smaller spectrum bands at a time. Thus, involving
only a small number of sensors or sensors with low overall
cost budget (for a suitable cost model) for sufficiently accurate
localization performance is critical. Prior work [2] that discuss
sensor selection in this context only presents heuristics without
any performance guarantees.

We do not use geometric approaches which rely on hard-to-
model mapping of received power to distance. Instead, we use
a hypothesis-driven, Bayesian approach for localization [5].
We focus on the optimization problem of selecting a certain
number of sensors from among the deployed sensors such
that an appropriately defined objective of localization accuracy
is maximized. This optimization problem can also be used
to solve the dual problem of selecting a minimum number
of sensors (or sensors with the minimum total cost budget)
to ensure at least a given localization accuracy. We adopt
the framework of a hypothesis-driven localization approach
wherein each hypothesis represents a configuration (location,
power, etc.) of the potential transmitters and then the local-
ization is equivalent to determining the most-likely prevailing
hypothesis. See Figure 1. The hypothesis-driven framework
does not require an assumption of a propagation model,
and works for arbitrary signal propagation characteristics.
The framework does, however, require prior training to build
joint probability distributions of observation vectors for each
hypothesis.

Our Contributions. In the above hypothesis-based frame-
work, we develop an overall approach that enables selection
of sensors that are most relevant to localize transmitters.
In particular, we develop algorithms that aim to maximize
localization accuracy for a given budget of number of sensors
to be used for localization. More specifically, we make the
following contributions in the paper.

1) We design a greedy algorithm (GA) that selects sensors
iteratively to maximize the objective function of localiza-
tion accuracy, under the constraint of number of sensors
selected. We prove that GA yields a constant-factor approx-
imate solution for the special case of the problem wherein
there are only two hypotheses.

2) For the general case of more than two hypotheses, we
design an alternate greedy scheme (called AGA) based on
maximizing an auxiliary objective function. We prove that
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Fig. 1: Hypothesis-driven localization. The figure shows the simple
case of localizing a single transmitter with fixed power; thus, there is
a hypothesis created for each potential location. Observations from
deployed sensors are analyzed to determine the most likely prevailing
hypothesis (and thus, location).

AGA delivers a solution that has (i) an auxiliary objective
value within a constant factor of the optimal auxiliary
objective value, as well as (ii) a localization error within a
certain factor of the optimal localization error.

3) We optimize the time complexity of our developed algo-
rithms by a substantial factor, based on certain observations
and reasonable assumptions. In addition, we generalize our
techniques to more practical and useful settings.

4) We evaluate the performance of the developed algorithms
over multiple evaluation platforms: (1) large-scale simu-
lation using synthetically generated data using established
signal propagation models, and (2) publicly available ex-
perimental data trace collected over an indoor WiFi net-
work with 44 sensors, and (3) our own data collection using
18 outdoor software radio sensors in the 915 MHz band
with a custom transmitter. Results show that our techniques
outperform other state-of-the-art algorithm [2] substantially
(up to a factor of 50-60%).

II. BACKGROUND AND MOTIVATION

Problem Setting. The overall setting of the transmitter lo-
calization problem is as follows. Consider a geographic area,
with a number of spectrum sensors deployed or available (if
attached to mobile devices) at known locations. At any instant,
one or more transmitters are allowed to transmit signals
(on a common frequency). Each deployed/available spectrum
sensor senses and processes the aggregate received signal, and
reports appropriate metric (i.e., total received power or signal
strength) to a central server which estimates the location of
the transmitter(s) using the maximum-likelihood hypothesis
algorithm as described below. The overall objective of our
paper is to develop techniques to select an optimal subset of
sensors in order to accurately localize any present transmitters.
Though our developed techniques naturally extend to the case
of multiple transmitters, for simplicity, we implicitly assume
at most a single transmitter present at any instant. We consider
the extension to multiple transmitters in §III-E. We start with
defining basic notations used throughout the paper.

Hypotheses, Observations, and Inputs. We discretize the
given space into locations l1, l2, . . . , and transmit power
of a potential transmitter is similarly discretized into levels
p1, p2, . . .. We represent potential “configurations” of the pos-
sible transmitter by hypotheses H0, H1, . . . ,Hm, where each
hypothesis Hi represents a configuration (li, pi) of location li
and transmit power pi of a potential transmitter (see Figure 1).
We use the convention that hypothesis H0 corresponds to no
transmitter being present. Localizing any potential transmitter
is thus equivalent to determining the prevailing hypothesis. To
do this, we use observations from a set of deployed sensors.
We denote the observation vector of a subset of sensors T by
xT (we usually drop the subscript T, as it is clear from the
context).
Inputs. For a given set of sensors deployed over an area, we
assume the following available inputs, obtained via a priori
training, data gathering and/or analysis1:
• Prior probabilities of the hypotheses, i.e. P (Hi), for each

hypothesis Hi.
• Joint probability distribution (JPD) of sensors’ obser-

vations for each hypothesis. More formally, for each
hypothesis Hj , we assume P (xS |Hj) to be known for
each observation xS for the entire set S of deployed
sensor. Note that this also gives us the JPD’s of each
subset T ⊆ S.

Maximum a Posteriori Localization (MAP) Algorithm. We
use Bayes rule to compute the likelihood probability of each
hypothesis, from a given observation vector xT for a subset
of sensors T:

P (Hi|xT) =
P (xT|Hi)P (Hi)∑m

j=0 P (xT|Hj)P (Hj)
(1)

We select the hypothesis that has the highest probability,
for given observations of a set of sensors. Formally, the
MAP algorithm returns the hypotheses based on the following
equation:

arg
m

max
i=0

P (Hi|xT) (2)

The above MAP algorithm to determine the prevailing hy-
pothesis is known to be optimal [7], i.e., it yields minimum
probability of (misclassification) error. The above hypothesis-
based approach to localization works for arbitrary signal
propagation characteristics, and in particular, obviates the need
to assume a propagation model. However, it does incur a one-
time training cost to obtain the JPDs, which can be optimized
via independent techniques [8].
Selection of Sensors for Localization. As mentioned above,
in a typical setting, spectrum sensors may be deployed at pre-
determined locations or available at certain locations (if part of
mobile devices) to sense unauthorized signals and thus localize
any unauthorized transmitters. Two immediate problems of
interest in this context are: where to deploy given a number of
sensors, and once deployed/available, which subset of sensors

1In our concurrent work [6], we discuss novel interpolation techniques to
minimize such training cost.



to select for localization. The latter problem of selection of
sensors is motivated by the fact that, in most realistic settings,
the sensors (or their mobile devices) are not tethered to
AC power outlets and hence have limited energy resources.
Moreover, spectrum sensors also incur cost in transmitting
sensing data to the fusion/cloud center [9]. Thus, it is critical
to optimize resources and costs incurred in localization of
unauthorized transmitters, e.g., via the selection of an optimal
set of sensors. Note that the sensor-selection problem can also
be used to effectively deploy a given number of sensor, by
assuming sensors available at all potential locations.

III. OPTIMAL SENSOR SELECTION FOR INTRUDER
LOCALIZATION

In this section, we address the problem of sensor selection
for transmitter localization; informally, the problem is to select
an optimal set of B sensors such that the overall probability
of error of localizing a transmitter is minimized, given ap-
propriate JPDs as discussed in the previous section. We start
with formulating the problem in the following subsection. In
following subsection, we present a greedy algorithm for it and
prove that it is guaranteed to deliver an approximation solution
for the special case of two hypotheses. However, as shown, the
greedy algorithm can perform arbitrarily bad for the general
case of multiple hypotheses. Thus, we then modify our algo-
rithm to use an “auxiliary” objective function and show that
the modified algorithm delivers an approximation solution for
the general case of multiple hypotheses albeit with a slightly
worse approximation ratio. Finally, we discuss optimizing the
computation complexity of the designed algorithms, certain
extensions and other issues.

A. LSS Problem Formulation

We start with formally defining the optimization objective
(probability of error or misclassification) for a given subset
of sensors. Then, we formally define the sensor selection
problem, hereto referred to as Localization Sensor Selection
(LSS) problem. Throughout this section, we use hypotheses
H0 to represent the hypotheses with no transmitters present,
and Hi to represent the hypotheses wherein a transmitter is
present in ith configuration.

Probability of Error (Perr(T)). Recall that, for a given
observation vector, the MAP localization algorithm outputs
the hypothesis that has the most likelihood among the given
hypotheses. Thus, MAP can also be looked upon as a classifi-
cation technique. Given a subset of sensors T, we define the
probability of error or misclassification as the probability of
the MAP algorithm outputting a hypothesis different from the
actual ground truth (i.e., prevailing hypothesis). The expected
or overall probability of error is an expectation of the prob-
ability of error over all possible prevailing hypotheses and/or
observation vectors xT from T. Our techniques generalize to
the notion of distance-based localization error, as discussed in
§III-E.

Formally, let MAP(x) be the output of the MAP algorithm
on observation vector x from a given subset of sensors T.

Let δMAP(x) 6=i be the binary predicate that denotes whether
MAP algorithm outputs the hypothesis Hi or not; here, δp is
the indicator function which is 1 if the predicate p is true
and 0 otherwise. Given Hi as the ground truth and x as the
observation vector, the probability of error Perr(T|Hi,x) can
be written as:

Perr(T|Hi,x) = δMAP(x)6=i. (3)

If the observation vector x is not given, then the expected
(or marginal) probability of error for a given ground truth Hi

is just an expectation over the random variable x. That is,
Perr(T|Hi) can be written as:

Perr(T|Hi) =
∑
x

δMAP(x)6=iP (x|Hi) = Ex|Hi
[δMAP(x)6=i]

Since expectation of an indicator random variable is its prob-
ability, we can simplify the above equation as:

Perr(T|Hi) = P (MAP(x) 6= i|Hi) (4)

Above, the probability is over the random variable x. Now, if
the ground truth hypothesis is also not given, we can compute
an expectation over all possible hypotheses. Thus, the (overall)
probability of error for a given set of sensors T is given by:

Perr(T) =
∑
i

P (MAP(x) 6= i|Hi)P (Hi) (5)

Localization Accuracy Function, Oacc(T). To facilitate
a greedy approximation solution, we formulate our sensor
selection as a maximization problem—and thus, define a
corresponding maximization objective. In particular, we define
the localization accuracy Oacc(T) as 1− Perr(T). Based on
the above equation Eqn. 5, we get the expression for Oacc(T)
as:

Oacc(T) = 1−Perr(T) =
∑
i

P (MAP(x) = i|Hi)P (Hi) (6)

Localization Sensor Selection (LSS) Problem. Consider a
geographic area with a set of sensors S deployed. Given a
set of hypotheses and JPD’s, as defined in previous section,
the LSS problem is to select a subset T ⊆ S of sensors
with minimum probability of error Perr(T) (or maximum
localization accuracy Oacc(T)), under the constraint that |T|
is at most a given budget B. The above formulation implicitly
assumes a uniform cost for each sensor; we generalize our
techniques to handle non-uniform sensor costs (see §III-E).

It can be shown (proof omitted here) that the above LSS
problem is NP-hard, via reduction from the well-known
maximum-coverage problem. Thus, we develop approximation
algorithms below; in particular, our focus is on developing
greedy approximation algorithms. The key challenge lies in
showing that the objective function satisfies certain desired
properties that ensure the approximability of the algorithm.



4 2 0 2 4
Power (dB)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y 
of

 S
am

pl
es

Fig. 2: Distribution of the received power from a transmitter at an
RTL-SDR sensor, and the Gaussian fit (green line) of the observed
distribution.

B. Greedy Algorithm (GA)

In this subsection, we analyze a simple greedy approach and
show that it delivers a constant-factor approximate solution for
the special case of two hypotheses and Gaussian JPD’s. In the
next subsection, we present a modified greedy algorithm for
the general case of more than two hypotheses.

Greedy Algorithm (GA): A straightforward algorithm for
the LSS problem is a greedy approach wherein we iteratively
select a single sensor at each stage. At each stage, we select
the sensor that improves the localization accuracy Oacc(T)
the most. The algorithm iterates until the given budget B is
reached. We call this algorithm Greedy Algorithm (GA); see
Algorithm 1 for the pseudo-code.

Constant-Factor Approximation for 2 Hypotheses. We
observe that when the spectrum sensors are deployed outdoors,
the joint probability distribution (JPD) of the observation vec-
tors is approximately Gaussian. See Figure 2, which shows the
distribution obtained by a single RTL-SDR [10] based spec-
trum sensor and a USRP-based transmitter. This assumption of
Gaussian JPDs allows us to derive closed-form expressions for
the objective functions, at least for the case of 2 hypotheses,
and thus prove a performance guarantee of 63%. The result is
stated in Theorem 1 below.

Theorem 1. For the special case of two hypotheses and
Gaussian JPDs, GA gives a subset T of sensors whose
localization accuracy is at least 63% of the optimal.

We defer the proof of the above theorem to Appendix
A, but the performance guarantee of the greedy approach
holds because the localization accuracy function Oacc() can
be shown to be ”monotone” and ”submodular” for the above
special case. The function Oacc() being monotone signifies that
for a given T and a sensor s /∈ T, Oacc(T∪{s}) ≥ Oacc(T).
Intuitively, the monotone property means that adding a sensor
to a set of already selected sensors can never decrease the
localization accuracy. Also, Oacc() being submodular signifies
that for any subsets T1 and T2 such that T1 ⊆ T2, we can
show that for any sensor s /∈ T1,Oacc(T1∪{s})−Oacc(T1) ≥
Oacc(T2∪{s})−Oacc(T2). Intuitively, the submodular prop-
erty means that the “benefit” of adding a sensor s decreases
over GA’s iterations, i.e., as the selected set of sensor grows
(from T1 to T2, here). It is well known that if an objective
function is both monotone and submodular, then a greedy

approach that iteratively maximizes the objective function will
return a constant-factor approximate solution [11].

Algorithm 1 Greedy Algorithm (GA).
INPUT: Set of available sensors S, budget B, objective Oacc

OUTPUT: Subset of sensors T

1: T← φ
2: while |T| ≤ B do
3: L← Oacc(T)
4: max ← 0
5: for all s ∈ S \T do
6: M = Oacc(T ∪ {s})− L
7: if M > max then
8: max ←M
9: r ← s

10: end if
11: end for
12: T← T ∪ {r}
13: end while
14: return T

Performance of GA for more than two Hypotheses. For
the case of more than two hypotheses, GA no longer provides
a constant-factor approximation. In fact, we can show via a
counter-example that the Oacc() is not submodular for more
than 2 hypotheses, even if the given JPDs are Gaussian; we
omit the details for space constraints.

C. Auxiliary Greedy Algorithm (AGA)

In the section, we design an approximation algorithm for
the general case of multiple hypotheses based on an auxiliary
objective function. To do so, we first analyze the proof of
Theorem 1 and see why it doesn’t generalize if the number of
hypotheses is greater than 2. This insight helps in defining an
“auxiliary” objective function that is the key to designing the
approximation algorithm for the general case.

Auxiliary Function. Let us consider a special case of MAP
algorithm, viz., MAPij which compares the likelihood of only
two hypothesis Hi and Hj and returns the one with a higher
likelihood. It is easy to formulate the objective function Oacc

in terms of MAPij too. From Equation 6, we easily get:

Oacc(T) =

m∑
i=0

P (
⋂
j 6=i

MAPij(x) = i|Hi)P (Hi) (7)

Oacc(T) =

m∑
i=0

[1− P (
⋃
j 6=i

MAPij(x) = j|Hi)]P (Hi) (8)

Above, x represents the observation vector for the set of sen-
sors T. For the case of two hypothesis, the above expression
is just

∑1
i=0[1 − P (MAPij(x) = j|Hi)]P (Hi) where j is

1 if i is 0 and vice-versa; Theorem 1 essential shows that
the term P (MAPij(x) = i|Hi) is submodular. However, for
the case of multiple hypothesis, computing the probability for
a union of events involves product (and sum) of appropriate
probability terms. Note that product of submodular functions
need not be submodular, while sum of submodular functions is



submodular. Thus, we approximate the above Oacc() expres-
sion as follows, so that it is a sum of submodular terms. In
effect, in defining the auxiliary objective Oaux(), we estimate
the probability of union of events in the above equation by
just taking a summation of the probability of events, i.e., we
ignore the other terms involving subsets of events. Formally,
we define the auxiliary objective Oaux() for a set of sensors
T as:

Oaux(T) = 1−
m∑
i=0

∑
j 6=i

P (MAPij(x) = j|Hi)P (Hi) (9)

The above auxiliary objection function is submodular if the
JPDs are Gaussian, as it is a sum of submodular functions
(P (MAPij(x) = i|Hi) is submodular, as per Theorem 1’s
proof). Note that, for a competitive algorithm for the original
LSS problem, we also need to show that maximizing Oaux()
also maximizes the original objective function Oacc().

Auxiliary Greedy Algorithm (AGA). We now modify our
Greedy Algorithm (Algorithm 1) to iteratively maximize the
auxiliary objective Oaux() instead of the original objective
Oacc(). We call this algorithm as Auxiliary Greedy Algorithm
(AGA). From the submodularity of the Oaux() for Gaussian
JPDs, it is easy to see that AGA delivers a solution T s.t.
Oaux(T) is within 63% of the optimal Oaux() possible. The
following lemma states that maximizing Oaux also maximizes
Oacc. See Appendix B for a proof.

Lemma 1. Let T be a subset of sensors already selected by
AGA at some iteration. We claim that Oaux(T) ≤ Oacc(T) ≤
1 − 1

k (1 − Oaux(T)), where k is a value less than m that
decreases as T grows (i.e., over AGA’s iterations).

We empirically evaluate the value of k defined above in §IV.
The above lemma easily yields the below result.

Theorem 2. For Gaussian JPDs, AGA delivers a subset T of
sensors such that

Perr(T) ≤ 0.37 + 0.63kPerr(OPT),

where k is as defined in the above Lemma and OPT is the
optimal solution.

D. Optimizing AGA’s Computation Cost

In a straightforward implementation of AGA (akin to Algo-
rithm 1 for GA), Oaux function is computed (using Eqn. (9))
Bn number of times where n is the total number of sen-
sors. Eqn. (9) requires m2 computations of the expectation
P (MAPij(x) = j|Hi), which, for Gaussian distributions,
effectively requires computing the Eqn. 10 and thus takes
O(B2) time as it involves matrix multiplication of the ob-
servation vector of dimension B with the covariance matrix
of dimension B × B. Thus, the overall time complexity of
a straightforward implementation of AGA is O(m2nB3). As
mentioned before (and in §II), the number of hypotheses m
can be large due to the large number of potential transmitter
locations and power values; however, we can reduce the time

complexity to O(Bn) as discussed below, based on some
observations and optimizations.
Reducing Number of Comparisons. Consider a sensor s
whose benefit is to be computed in the for loop of Algo-
rithm 1. Below, we show that effectively we only need to
consider a constant number of (Hi, Hj) pairs in Eqn. (9) when
computing s’s benefit, and thus removing the m2 factor from
the time complexity. We implicitly assume a single transmitter
in the below discussion, and later extend our argument to
multiple transmitters. Let us use R to denote the maximum
transmission “range” of the transmitter; formally, R is such
that, beyond R, the probability distribution of the signal
received from the transmitter is similar to the signal received
when there is no transmitter present. We stipulate that any
observation xs at s, P (xs|Hi1) = P (xs|Hi2) for any two
hypotheses Hi1 and Hi2 whose corresponding locations li1
and li2 are more than R distance away from s. The implication
of the above observation is that, for a given sensor s, we can
group all the hypotheses Hi with corresponding location li
more than R distance away from s into one single “super”
hypothesis Hs. Then, if the total number of hypotheses with
corresponding locations within a distance of R from s is say
GR, then the total number of comparisons between pairs of
hypotheses in Eqn. (9) is effectively only (GR+2)2, involving
GR hypotheses, H0, and Hs. The above brings down the
overall time complexity of AGA to O(G2

RnB
3). Note that

GR is essentially equal to the number of grid locations within
a circle of radius R times the total number of power levels,
and thus, can be considered as constant (does not vary across
problem instances)—which reduces AGA’s time complexity to
O(nB3).
Independent Sensor Observations. If we assume that the
observations across sensors are conditionally independent,
then the JPDs can be instead represented by independent
probability distributions at each sensor location. In this case,
the covariance matrix is purely diagonal, which allows us to
“incrementally” compute the benefit of a sensor from one AGA
iteration to another and thus reduce AGA’s time complexity by
an additional factor of B2—and thus to O(nB). See Appendix
C for details.

E. Generalizations

Weighted (Distance-Based) Objective Function. The proba-
bility of error Perr function penalizes uniformly for each mis-
classification. However, in general, it would be useful to assign
different penalties or weights for different misclassifications.
E.g., Eqn (9) should be generalized to:

O′aux(T) = 1−
m∑
i=0

∑
j 6=i

wijP (MAPij(x) = j|Hi)P (Hi)

Above, wij is the weight function. We note that our techniques
and proofs of performance guarantees generalize easily to the
above generalized function, irrespective of the weight func-
tion. In particular, weight wij can be the Euclidean distance
between the locations li and lj corresponding to the hypotheses



Hi and Hj . For the general case of multiple transmitters,
where Hi and Hj may represent configuration of multiple
transmitters, a minimum-cost matching based objective can be
used to define the weight wij ; if the number of transmitters
in Hi and Hj are different, then an appropriately penalty for
misses or false-alarms can be added to the weight.

Non-Uniform Sensor Cost. Another generalization of interest
is to allow non-uniform cost for sensors, e.g., to prefer sensors
with more (remaining) battery resources. Here, each sensor s
may have a different cost c(s), and the LSS problem constraint
becomes: total cost of the selected set of sensors must be less
than a given cost budget. For this version of the LSS problem,
our algorithms need to be slightly modified in that we should
pick the sensor that offers the highest improvement in the
objective function per unit cost. To ensure a theoretical per-
formance guarantee, we also need to use the “knapsack trick,”
i.e., to pick better of the two solutions: one returned by the
modified algorithm, and the other the best one-sensor solution
[12]. It can be shown that the overall algorithm still offers a
theoretical performance guarantee for submodular functions,
but the performance ratio is reduced by a multiplicative factor
of 2. The above model is useful when designing a “load-
balanced” strategy to maximize network lifetime of a system—
therein, the sensor-selection algorithm must be run periodically
based on the remaining battery resources.

Multiple Transmitters. Till now, we have implicitly assumed
that a single transmitter was present. Our selection2 techniques
naturally generalize to the case of multiple transmitters, if we
represent each combination of configurations of present trans-
mitters by a separate hypothesis. Since the GA and AGA algo-
rithms are formulated in terms of hypotheses, they generalize
naturally to localization of multiple transmitters. However, the
key challenge arises due to the large number of hypotheses—
exponential in the number of potential transmitters— and thus,
the high time complexity of AGA. Fortunately, the techniques
discussed in previous subsection can be extended for the case
of multiple transmitters as follows.

The key observation is that, for a given hypothesis Hi, the
probability distribution of observations at a sensor s depends
only on the configuration of transmitters in Hi that within a
distance of R of s. I.e., for any observation xs at a sensor
s, P (xs|Hi1) = P (xs|Hi2) for any two hypotheses Hi1 and
Hi2 that have the same configuration (locations and powers)
for transmitters that are within a distance of R of s. The
implication of the above observation(s) is that, for a given s,
we can group the given hypotheses into equivalence classes
based on the configuration of transmitters close of s, and
to compute the benefit of a sensor s with AGA’s iteration,
we only need to compare pairs of equivalence classes (rather
than the original hypotheses). The number of such equivalence
classes is easily seen to be equal to GT

R where GR is the
number of locations (grid cells) within R times the number of
power levels, and T is the maximum number of transmitters

2In our concurrent work [6], we optimize the MAP algorithm itself for the
case of localizing multiple transmitters.

possible/allowed within a range R of s (or any location). Thus,
computation of benefit of s requires consideration of G2T

R

pairs of equivalence classes. If we assume T to be a small
constant, then the overall time complexity of AGA reduces to
O(nB3) as before, and to O(nB) if we assume conditional
independence of sensor observations.

IV. EVALUATION

In this section, we evaluate the performance of our algo-
rithms developed in the previous sections. We first describe
the evaluation platforms used in our experiments.

A. Evaluation Platforms

We use the following three evaluation platforms with vary-
ing fidelity of signal propagation characteristics, to demon-
strate the performance of our techniques.
• Simulation based on synthetic data. To demonstrate the

scalability of our techniques and the sensitivity of our algo-
rithms to changes in settings, we consider a large geographic
area of 4km by 4km, with signal path-loss values generated
using the SPLAT! [13] application for the Longley-Rice [14]
model. We use the noise in the sensor measurements (mea-
sured independently) to generate the required JPDs. We
assume observations to be conditionally independent, thus
representing the JPDs as set of probability distributions,
one for each sensor and intruder configuration pair. Unless
otherwise stated, for this large-scale platform, we use 100m
x 100m grid cells giving 1600 potential locations, randomly
deploy a transmitter at the height of 30m at a random
power between 27-33 dBm which corresponds to roughly
250-750m of transmission range. We randomly deploy 100
spectrum sensors in the area.

• Indoor Data. We use publicly available data [15], which de-
ploys transmitters and receivers at 44 locations in an indoor
building of an area of 14m × 14m, with the transmitters
sending signals at 2.443 GHz. Here, we use 1m x 1m grid
cells, thus giving us a total of 196 potential locations and
hypotheses.

• Outdoor Testbed. Finally, to evaluate our techniques in a
more practical outdoor setting, we deploy our own testbed
in a parking area of dimension 10m× 10m. Each grid cell
has size of 1m x 1m. We place a total of 18 sensors on
the ground. The sensors consist of single-board computers
such as Raspberry Pi’s and Odroid-C2’s connected to an
RTL-SDR dongle. The RTL-SDRs use dipole antennas. We
collect raw Inphase-Quadrature (I/Q) samples from the RTL-
SDRs [10], while transmitting data using a USRP-based
transmitter from each grid cell at a height of 1.5m. We
perform FFT on the I/Q and update the evaluation dataset
description samples with a bin size of 256 samples to get the
signal power values, and then utilize the mean and standard
deviation of the power reported for each of the sensors.

Metrics We evaluate the performance of a localization strategy
in terms of two key metrics: (i) Localization accuracy, i.e.,
Oacc(T), and (ii) Weighted localization error, which weights
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Fig. 3: Comparison of various techniques for (i) Localization accuracy
(Oacc ()), and (ii) Weighted localization error, for varying available
budget (number of sensors).

the misclassification error by the Euclidean distance between
the actual and the predicted location (§III-E).
Compared Algorithms. We implement both of our designed
algorithms, AGA and GA. We also implement two other
techniques for comparison purposes. The first technique, called
Coverage, is the selection heuristic from the recent work [2],
which essentially tries to maximize the “coverage” of the
sensors in a greedy manner.3 We also implement a Random
algorithm which selects the required sensors randomly. We
implement these algorithms in python, with extensive use of
numpy library for vectorized operations. For our algorithms,
we also leverage the data-level parallelism inherently present
in computation of Oacc and Oaux by utilizing a GPU using
numba library [16]. With the above, GA and AGA run in less
than a minute, over a 3.3GHz i9-7900X CPU with 20 cores.
To ensure that our results are statistically significant, we run
each of the algorithms 100 times; the range of values is plotted
in each of the figures.

B. Simulation Based on Synthetic Data

Varying Budget. Figure 3 shows the performance of our tech-
niques for budgets varying from 1 to 20 sensors. We observe
that AGA and GA easily outperform other two algorithms
in terms of both metrics, with AGA outperforming even GA
quite significantly. For example, AGA outperform Coverage
by up to 39% and 56% for localization accuracy and error
respectively, while outperforming GA by 15% and 50% for
the two metrics respectively.
Varying Number of Hypotheses. We now show the perfor-
mance of our algorithms in terms of localization accuracy,
for varying number of hypotheses. In Figure 4, we plot three
different cases: (i) the default configuration of 100m by 100m
grid cells, (ii) a larger area of 6km by 6km with 100m by 100m
grid cells giving 3600 potential locations, and finally (iii) a
configuration with default 4km by 4km area, but smaller 62.5m
by 62.5m grid cells. First, we observe that AGA continues
to outperform other techniques significantly across different
cases, with the performance gap between AGA and others
increasing with increase in number of hypotheses. Also, as
expected, with increase in area and thus number of hypotheses,
the accuracy of each of the algorithms falls, but deterioration
in AGA’s accuracy is much less compared to other techniques.

3Their approach Metropolis performs worse than their greedy approach in
open areas [2], and hence, not compared.
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Fig. 4: Comparison for con-
figurations with different num-
ber of hypotheses, with a fixed
budget of 10 sensors.
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Fig. 5: Comparison for varying
number of available sensors, with
a fixed budget of 10 sensors.
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Fig. 6: Comparison of various techniques, for sensors with non-
uniform cost.

Varying Sensor Density, and Non-Uniform Sensor Costs.
Figure 5 shows the accuracy of localization for varying sensor
density (i.e., number of available sensors) with a fixed budget
of 10 sensors. We observe that AGA continues to outper-
form other techniques, with localization accuracy of AGA
significantly improving with increase in number of sensors.
Surprisingly, however, the performance of other techniques re-
duces slightly with increase in number of sensors, across these
specific set of experiments. We also evaluate performance of
techniques under the setting of sensors with non-uniform cost.
See Figure 6. We observe that AGA continues to outperform
the other techniques in both metrics.

Empirical Evaluation of k Value. We now evaluate the k
value as defined in Lemma 1. In particular, the performance
guarantee of AGA depends on the value of k, with better
performance guarantee for lower k (ideally, k should be equal
to 1). Figure 7 shows the value of k for varying budget. We
observe that at low budgets, the value of k is large, but it
reduces with increases in budget. In particular, for budgets of
10 and 15 sensors, k equals 1.78 and 1.19 respectively. This
shows that AGA’s performance guarantee as per Theorem 2
reaches its near-best for a moderately small budget.

Comparison with Optimal in Small Instances. To confirm
AGA’s performance with respect to optimal, we consider small
instances of the problem and compare AGA with an optimal
algorithm (exhaustive search). See Figure 8. We observe that
AGA and optimal perform near-identically, with the optimal
algorithm yielding at most 0.7% higher localization accuracy
than AGA.

C. Evaluation in Indoor and Outdoor Testbeds

Indoor Data. We now evaluate our techniques over a pub-
licly available data-trace taken in an indoor environment, as
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Fig. 9: Performance over public indoor data.

described in the previous subsection. See Figure 9. We again
observe similar performance trends as in previous experiments,
for both the performance metrics. The relatively smaller per-
formance gap between AGA and GA is likely due to smaller
a number of hypotheses.

Outdoor Testbed Figure 10 shows the performance of various
algorithms over our outdoor testbed described in the previous
subsection. Observe that AGA again performs the best among
all techniques in both the metrics. As in the indoor testbed, the
performance gap between the AGA and GA is less compared
to the large-scale simulations due to a small number of
hypotheses. Note that because of the noise in the dataset, the
localization accuracy reaches a maximum of only 75% even
with all the 18 sensors.

V. RELATED WORK

Sensor Selection for Transmitter Localization. A large
number of works have developed techniques for detecting
and localizing transmitters or intruders that emit radio sig-
nals [17], [18]. Note that the transmitter localization problem
is slightly different from another well-studied problem of
indoor localization [19], wherein a user is localized based on
signal received from multiple transmitters; herein, the issue of
selecting transmitters to localize the user has no incentive, and
hence not been addressed before. To the best of our knowledge,
none of these prior works on transmitter localization either
have addressed the optimization problem addressed in the
paper. The closest related works are [1] and [2] as discussed
next. The work [1] focuses on detection of unauthorized
transmitters using low-cost sensors in the context of shared
spectrum systems; they consider the problem of selection
of sensors in this context, and propose a heuristic with no
performance guarantees. The key difference of our work from
theirs is that they focus on detection of transmitters, which
is a much simpler problem than localization of transmitters.
In addition, [2] considers selection of sensors for transmitter
localization, but with a objective of maximizing the “coverage”
of the region by the sensors. They present heuristics without
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Fig. 10: Performance over outdoor testbed data.

any performance guarantees. Nevertheless, we implement their
approach and compare with our techniques (§IV).
Sensor Selection in Sensor Networks. Sensor selection
is a natural problem to address in the context of wireless
sensor networks deployed to detect and/or localize an event
or phenomenon (see [20] for a survey). Many of these works
have leverage the submodularity property to develop greedy
approximation algorithms. The closest work among these is
that of [21] which shows approximability of the greedy ap-
proach for the problem of minimizing uncertainty in estimating
a spatial phenomenon (e.g., temperature). However, in general,
the key difference of our work with these works is our desired
objective function (Oacc or Perr)—and thus, the making the
proof of monotonicity and/or submodularity of the objective
function very different. In our case, we had to even circumvent
the non-submodularity of the objective function Oacc by
considering an appropriate auxiliary objective function.
Online Selection of Sensors. An alternate formulation of our
sensor selection problem could be to select sensors adaptively
based on the observations of previously selected sensors.
This online problem is similar to the adaptive stochastic
optimization problem addressed in other contexts [22], [23],
[24], [25]. However, in online selection, a sensor is selected
based on analysis (which will incur non-trivial latency) of
observations of previous sensors. This makes localization
based on near-simultaneous sensor observations, required to
localize intermittent transmitters, infeasible. Also, note that
online selection needs to be done anew for each localization,
which may be performed very frequently (e.g., every second
or fraction of a second) in many applications, e.g., spectrum
patrolling. Thus, our focus is on offline selection.

VI. CONCLUSION

In this work, we consider the hypothesis-driven approach
for localization of transmitters, and develop techniques to
optimize the localization accuracy under a constraint of limited
resources. Developed techniques are shown to yield provably
approximate solutions. Our work can be instrumental in max-
imizing the network lifetime of a spectrum monitoring and/or
patrolling system. Our future work focusses on improving
our theoretical performance guarantee results, and developing
similar sensor selection approximation algorithms for other
localization approaches that are not hypothesis-driven.

APPENDIX A: PROOF OF THEOREM 1
Let T be a given subset of sensors. For simplicity and

without any loss of generality, let use assume that (i) the



JPD for H0 has a zero mean, and (ii) the variance of the
JPDs for both H0 and H1 is same (=Σ). T hus, the JPD for
H0 is N(0,Σ) and for H1 is N(p,Σ), where N(µ, σ) is a
normal distribution with mean µ and variance σ, p is the vector
(one dimension for each sensor in T) of means, and Σ is the
covariance matrix. To prove the theorem, we will show the
following for a given set of sensors T:

1) Perr(T) = Q( 1
2

√
pT Σ−1p), where pT is the transpose

of the p vector and Q() is the tail function.
2) Oacc(T) = 1− Perr(T) is montone and submodular.

The theorem follows easily from the above, as it is well
known that greedy algorithms for a monotone and submodular
objective function yield a 63% approximation [11].

Expression for Perr(T). We start with computing
Perr(T|H0), i.e., the probability that MAP picks H1

(i.e., P (H1|x) > P (H0|x)) when the prevailing hypothesis
in H0, based on an observation vector x from T. We get:

P (H1|x) =
1√

2πΣ|
exp[−1

2
(x− p)T Σ−1(x− p)]

P (H0|x) =
1√

2π|Σ|
exp[−1

2
xT Σ−1x]

Now, the expression P (H1|x) > P (H0|x) is equivalent to
P (H1|x)/P (H0|x) > 1 which simplifies to:

xT Σ−1p >
1

2
pT Σ−1p. (10)

We are interested in computing the probability of above
expression being true, given H0. In essence, given H0, we
want to compute:

Perr(T|H0) = P (xT Σ−1p >
1

2
pT Σ−1p)

= P (
xT Σ−1p√
pT Σ−1p

>
1

2

√
pT Σ−1p) = Q(

1

2

√
pT Σ−1p),

where Q is the tail function of the standard Gaussian distri-
bution. The last equation follows, since in H0, the expression
xT Σ−1p√
pT Σ−1p

has a mean of 0 and a standard deviation of 1.

Similarly, we can show that Perr(T|H1) = Q( 1
2

√
pT Σ−1p),

since variance of the JPDs in H0 and H1 is same (Σ). Thus,
Perr(T) = Q( 1

2

√
pT Σ−1p), and the localization accuracy

Oacc(T) is:

Oacc(T) = 1− Perr(T) = 1−Q(
1

2

√
pT Σ−1p) (11)

Oacc () is Monotone and Submodular. First, we note that
the value of pT Σ−1p increases monotonically with “growth”
(more dimensions) in p. Now, since Q(z) is a monotonically
decreasing function, we get Oacc(T) > Oacc(T ∪ {s}). For
submodularity, we note that Q(z) is continuous, differentiable,
with d2Q(z)

dz2 > 0,∀z > 0. Thus, the rate of reduction of Q(z)
reduces with an increase in z. Thus, Oacc is submodular.

APPENDIX B: PROOF OF LEMMA 1
We prove the lemma in three parts.

Oaux(T) ≤ Oacc(T). This directly follows from an applica-
tion of Boole’s inequality [26] which states that the probability
of a union of events is never greater than the sum of the
probabilities of individual events. In particular, by Boole’s
inequality, we have for all i:

P (∪j 6=iMAPij = j|Hi) ≤
∑
j 6=i

P (MAPij = j|Hi) (12)

Then, by multiplying each by P (Hi), summing over all i,
subtracting each side from 1, and noting that

∑
i P (Hi) = 1,

we get Oaux(T) ≤ Oacc(T) using Eq (8) and Eq (9).
Oacc(T) ≤ 1− 1

k (1−Oaux(T)). To get this, we utilize the
fact that the probability of a union of events is more than the
probability of each of the individual events. Thus,

P (∪j 6=iMAPij(x) = j|Hi) ≥ max
j 6=i
{P (MAPij(x) = j|Hi)} ∀i.

We also have the below, as maximum is greater than mean:

max
j 6=i
{P (MAPij(x) = j|Hi)} ≥

1

m

∑
j 6=i

P (MAPij(x) = j|Hi) ∀i,

where 0 ≤ i ≤ m. Now, using Eq (8) and the above two
equations, we get:

Oacc(T) ≤ 1− 1

m

m∑
i=0

∑
j 6=i

P (MAPij(x) = j|Hi)P (Hi)

= 1− 1

m
(1−Oaux(T)).

The lemma now follows from the following fact, whose
proof we omit for lack of space.

1−Oaux(T ′)

1−Oacc(T ′)
≤ 1−Oaux(T )

1−Oacc(T )
, for any T ′ ⊇ T

APPENDIX C: INDEPENDENT SENSOR OBSERVATIONS

From Theorem 1’s proof and notations therein, note that Eq
(9) can be written as:

Oaux(T) = 1−
∑
i

∑
j 6=i

Q((pj − pi)Σ
−1(pj − pi)

T )P (Hi),

(13)
where Q(x) denotes the Gaussian Q-function [27]. Now,
suppose we wish to compute Oaux(T ∪ {sk}) for a sensor
sk whose observations have a mean of pki for hypothesis Hi

and a variance is σ2
k. We denote the argument of Q() in Eq (9)

by qij(T). Then, we have the following recurrence relation:

Oaux(T∪{sk}) = 1−
∑
i

∑
j 6=i

Q(qij(T∪{sk}))P (Hi) (14)

We note that computing qij(T) directly using Eq (13) takes
O(B2) time. However, we can reduce the time complexity by
computing qij(T) incrementally in constant time by using:

qij(T ∪ {sk}) = qij(T) + (pki − pkj)/σ2
k.

As computing the Q-function takes constant time, the above
reduced the time complexity by a factor of O(B2).
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