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With the growing use cases of CSI-based WiFi sensing, future WiFi networks are moving towards integrating sensing and
communication (ISAC) by sharing the same frequency resources between data communication and WiFi sensing. However,
it is known that WiFi sensing is detrimental to WiFi communication due to its expensive use of frequency resources for
collecting CSI samples, limiting its effectiveness in ISAC. To address this challenge, we propose Slim-Sense, a novel approach
to resource saving while maximizing the sensing accuracy. We first demonstrate that it is possible to perform accurate
WiFi sensing without using the entire bandwidth. In fact, we can obtain close to maximum accuracy while utilizing only
24.42% of the bandwidth and 25% of the antennas. Obtaining such accuracy at low bandwidth requires the selection of
the antennas and bandwidth that are most relevant for sensing activities. One of Slim-Sense’s highlights is using a novel
approach consisting of a Sparse Group Regularizer (SGR) and Hierarchical Reinforcement learning (HRL) technique to select
the minimum optimal bandwidth resources for sensing while maximizing sensing accuracy. Considering the stochastic nature
of the sensing environment and the difference in requirements of different sensing applications, Slim-Sense provides an
environment and application-specific bandwidth resources for sensing. We evaluate Slim-Sense with four different WiFi CSI
datasets, each varying in sensing environment and application, including one we collected in 46 different environmental
settings. The experimental evaluation shows that Slim-Sense saves up to 92.9% resources while incurring < 5% reduction
in sensing accuracy compared to using entire spectrum resources. We show that Slim-Sense is generalized to different
environments and sensing models. Compared to the state-of-art solution, Slim-Sense outperforms and achieves a maximum
improvement of 28.75% in resource-saving and 42.18% in sensing accuracy.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing systems and tools; Ubiquitous
computing; Mobile computing; Human Activity Recognition.
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1 Introduction

In recent years, WiFi sensing using Channel State Information (CSI) is increasingly being used to develop device-
free, non-intrusive, and pervasive Human Activity Recognition (HAR) systems. In WiFi sensing, RF signals are
harnessed to capture and recognize different activities of a person in the indoor environment. With the growing
use cases of WiFi sensing, future WiFi networks aim to support ISAC (Integrated Sensing and Communication)
by sharing the same frequency spectrum resources between data communication and sensing. Enabling ISAC is
one of the main objectives of the upcoming WiFi standard IEEE 802.11bf [1, 6, 29].
With the increasing importance of the co-existence of sensing and communication applications, a few prior

works such as WiImg [37] have pointed out that the huge number of packets exchanged (200-2000 packets/sec)
for sensing hampers the performance of communication. They further report that exchanging only about
200 packets/sec for sensing causes a 40% reduction in communication throughput. On the other hand, multiple
works [12, 25, 27] have reported that reducing the sensing packet exchange frequency hampers sensing application
performance.
Hence, to enable ISAC, a recent prior work SenCom [15] tries to utilize the in-band WiFi communication

traffic by passively sniffing the communication packets to measure the CSI data. The paper proposes methods to
transform the CSI data collected from communication frames to be used for WiFi sensing. On the same lines,
MUSE-Fi [17] utilizes CSI from uplink/downlink traffic and beamforming reports for activity recognition in a
multi-person environment. In the absence of communication traffic, these solutions switch to an active mode of
CSI data collection, utilizing the entire bandwidth. BeamSense [35] tries to utilize beamforming reports measures
using NDP packets made originally for the communication purpose for sensing. However, beamforming reports do
not provide fine-grained information of the environment required for accurate sensing [39]. Moreover, collecting
beamforming reports at high rates requires the entire bandwidth, which hampers communication. On other hand,
WiImg [42] utilizes low-rate CSI samples to sense human activities. It generates artificial high-rate CSI samples
from the data collected at a lower sampling rate by leveraging lightweight GAN models.
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Fig. 1. Sensing Accuracy and Resource Saving for Exposing_CSI [8], SHARPax [28] and HeadGest datasets, with full

bandwidth having maximum possible accuracy Max_Accu, Random-Selection, and Reduced-Redundancy.

While such efforts are much needed for the true co-existence of WiFi sensing and networking, in this paper,
we take an orthogonal yet novel approach to enable smooth co-existence. We aim to minimize the utilization of
spectrum resources (i.e., channel bandwidth and antennas) and computation needed (training time) for sensing
purposes without impacting the accuracy of sensing applications. All prior works assume that it is important to
use the complete spectrum of resources for performing sensing. Recent WiFi communication standards (WiFi 6
and WiFi 7) both use OFDMA (Orthogonal Frequency Division Multiple Access) and OFDM as channel access
mechanisms. In case of OFDMA, the entire channel is broken into orthogonal sets of sub-carriers or RUs (Resource
Units). Similarly, there could be multiple orthogonal sub-channels in the case of OFDM. In this paper, we first
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ask the question, “Can we perform WiFi sensing by utilizing only a part of the bandwidth, i.e., by making it the

slimmest possible?" To that end, we performed a motivation experiment where we utilized two publicly available
WiFi sensing datasets and collected one dataset of our own (HeadGest). We first sense using the entire bandwidth,
followed by choosing the resource units randomly out of the entire channel, and finally, only select the resource
units that are uncorrelated (additional details on experiments are in Section 5.3). Fig. 1 shows the accuracy of HAR
versus the resource savings. We observe that we indeed can detect human activity utilizing only about 30− 50% of
resources while incurring a small reduction of 4 − 14% in sensing accuracy (for correlated selection). This forms
the motivation for our work. On the other hand, random or correlated selection causes a significant reduction in
sensing accuracy. Furthermore, to minimize the computation cost, we choose only relevant sub-carriers within
an RU/sub-channel as was used by prior work [31]. Thus, we propose Slim-Sense to perform WiFi sensing in a
way that maximizes sensing accuracy while minimizing resource usage and computation cost for sensing.

However, designing a generic system for diverse HAR applications using WiFi sensing comes with a number of
challenges. A key aspect of HAR applications is that they have a variety of resource requirements. For example,
more resources would be required to detect fine-grained activities such as finger movement or breath rate
monitoring compared to coarse-grained activities such as walking or running detection. Thus, we need to decide
how much resources would be needed for optimal sensing performance. The environment itself, i.e., the placement
of the TX-RX pair, the presence of other obstacles, etc, affects the performance of HAR. Further, given the WiFi
channel’s stochastic and frequency-selective nature, it is not sufficient to specify only how many resources
should be selected. It is also important to figure out which resources should be used. Thus, we need a systemic
way to figure out how much and which resources should be allocated for sensing purposes to achieve optimal
performance.

To solve this problem of selection of relevant resources, we provide a novel solution, Slim-Sense, that obtains
the optimal trade-off between sensing accuracy and resource saving. We consider the available channel bandwidth
and antennas as the entire spectrum resource. The selected resources must align with the sensing application
and ensure maximum sensing accuracy. To achieve this, we integrate resource selection for sensing in the
training procedure of the sensing model. We use a Sparse Group Regulariser (SGR), which deselects frequency
resources to minimize the sensing loss during the training process. We integrate SGR with the sensing model.
The selection (for sensing) and deselection (for communication) of resources, aimed at optimizing the trade-off
between sensing accuracy and resource savings, are tuned by the SGR hyperparameters. Furthermore, resource
selection is significantly influenced by the different antenna configurations at the sensing devices, especially when
the number of antennas exceeds one. Thus, we model the antenna selection as a hyperparameter tuning task. In
sensing scenarios, hyperparameter tuning is influenced by environmental dynamics. Since the environment is
only partially observable, we formulate this problem as a POMDP (Partially Observable Markov Decision Process)
problem. We solve the POMDP problem by designing a Hierarchical Reinforcement Learning (HRL) model to find
out the optimal hyperparameters to obtain the best minimum resources (sub-channels/RUs and Antennas) for
sensing without impacting its accuracy. The RL model has two agents, and they learn to make the best decision
by sharing their knowledge with each other. The agents can not observe the true environmental state, instead
they observe the environment with some uncertainty as it is only partially observable. Each agent maintains
a belief state after interacting with the environment and shares their belief states with each other. One agent
chooses the best possible antenna resources, and another one chooses only the minimum possible bandwidth
resources controlled by the SGR hyperparameter for selected antennas.
We then evaluate Slim-Sense utilizing 4 different datasets: HeadGest, Exposing_CSI [8], SHARPax [28] and

SimWiSense [14]. Each of the datasets varies in terms of various activities they capture, from course-grained
movements such as walking and running to fine-grained hand movement and so on; the experimental setups vary
in terms of the environment, noise, number of participants, interference levels, and so on. Slim-Sense adapts to
these varying setups and provides up to 92.9% resource savings with only a minimal reduction in sensing accuracy
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(less than 5%). Due to the usage of Doppler vectors (computed from CSI samples) as the features, Slim-Sense
generalizes to different environments. We demonstrate that the SHARP model, when using Doppler vectors as
input features, achieves 44.57%, 45.54%, and 42.97% more sensing accuracy compared to a SHARP model with
amplitude, phase, and the combination of amplitude and phase, respectively. Further, we show that Slim-Sense’s
framework is generic enough to be able to incorporate a different sensing model as well. We demonstrate the
functionality of Slim-Sense’s generalization framework through the usage of SimWiSense’s few-shot embedding
learning (FREL) model. Using SimWiSense’s sensing model and datasets, Slim-Sense provides 84.56% sensing
accuracy in a new and unseen environment with 50% resource saving. We compare Slim-Sense with a number of
baselines, including a recent prior work WiImg, and show that Slim-Sense outperforms all the baselines and
provides the best trade-off between sensing accuracy and resource savings. We believe Slim-Sense enables a
smooth coexistence of sensing and communication by providing an optimal trade-off between sensing accuracy
and resource-saving.
Key Contributions: We now summarize our contributions as follows:

(a) Identifying the Scope of Slimming: We first show the feasibility of WiFi sensing using only a part of the
available spectrum resources with only a minimal impact on sensing accuracy. Specifically, we show that
utilizing only 30 − 50% of the bandwidth used for WiFi communication is sufficient for sensing, with only a
small degradation of 4 − 14% in sensing accuracy. Such an observation can help realize the aim of integrating
sensing and communication by sharing the same spectrum of resources.

(b) Ensuring Environment-Aware and Application-Specific Resources Selection: We design Slim-Sense that applies
a Sparse Group Regularizer (SGR) to select appropriate resources to be fed onto the state-of-the-art sensing
model SHARP [28]. We design a Heirarchical Reinforcement Learning (HRL) model that helps choose the
minimum “useful" spectrum resources. HRL model, during training, interacts with the environment through
the SHARPmodel. During interaction (learning the environment), the SHARPmodel with SGR takes available
input resources as features and selects the most optimal subset of features for sensing. The SHARP, with
selected resources, obtains high sensing accuracy in new and unseen environments. The HRLmodel computes
rewards from obtained sensing accuracy by penalizing it with the number of selected resources. Based on
the obtained reward, the HRL model tunes the hyperparameters. On convergence, the HRL model selects
minimal resources while providing maximum sensing accuracy in new and unseen environments. The saved
resources are used for communication. Note that Slim-Sense takes Doppler vectors as input and provides
an optimal subset of the Doppler vectors and, in turn, spectrum resources. The Doppler vectors offer an
environment-independent representation of activities (details in Sections 2.1 and 3.1).

(c) Extensive Evaluation of Slim-Sense: We evaluate Slim-Sense on three publicly available datasets and our
own HeadGest dataset. The datasets vary in participants, activities, locations, and environmental setups. We
compare Slim-Sense with baseline approaches and WiImg [42]. In the case of our diverse HeadGest dataset,
Slim-Sense achieves 50% of resource-saving with only a 4.3% reduction in sensing accuracy compared to
Max_Accu (one where we utilize all the spectrum resources). In the case of diverse activities and IEEE
802.11ax, Exposing_CSI dataset, Slim-Sense achieves resource saving over 92% with only 3.5% reduction
in sensing accuracy compared to Max_Accu. In less challenging SHARPax dataset, Slim-Sense shows a
negligible reduction in sensing accuracy with up to 91% resource saving compared to Max_Accu. Compared
with the existing solution WiImg, overall, Slim-Sense achieves up to 42.18 more sensing accuracy with up to
28.25% more resource savings. We further demonstrate Slim-Sense’s generalizability with existing solutions
by integrating it with an existing solution, SimWiSense, achieving 50% resource savings with only a 6.8%
reduction in sensing accuracy compared to Max_Accu. In summary, through an extensive set of evaluations,
we show that Slim-Sense achieves a good tradeoff between resource savings and sensing accuracy across
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varied environments and other sensing models. We have released the implementation of Slim-Sense and
preprocessed dataset.1.

2 Background

2.1 Channel State Information (CSI)

Channel State Information (CSI) is the property of the wireless channel that is measured by most WiFi devices,
originally proposed for communication to implement advanced communication techniques such as beamforming,
MIMO, spatial multiplexing, and channel bonding. These techniques require knowledge of the current channel
conditions directly related to the properties of the WiFi channel. The CSI provides a very fine-grained knowledge
of the current channel conditions. It involves detailed knowledge of how the signal interacts with its physical
environment at a given time. Signal properties, such as strength, interference, and multipath effects, depend on
channel conditions and change over time due to environmental changes. Any change in environment, such as
human movement, alters the signal’s multi-path propagation, which can be captured by the CSI. Hence, WiFi
sensing systems primarily utilize CSI to develop a non-intrusive and passive human activity recognition system.

The new WiFi standard 802.11n/ac/ax and beyond has multiple-input multiple-output (MIMO) and Orthogonal
Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA) at the
physical layer. The WiFi system with OFDM or OFDMA and MIMO computes CSI data between each pair of
transmitter and receiver antennas for each subcarrier. In OFDMA/OFDM, the wide-band channel is divided
into 𝐾 orthogonal subcarriers or tones. The user information is transmitted over these 𝐾 subcarriers in parallel.
At the OFDMA/OFDM receiver, the channel parameters are continuously estimated for each subcarrier for
each received packet 𝑛 ∈ {1 . . . 𝑁 }. The estimated channel parameters are collected as CSI, a large complex
matrix that is environment-dependent and describes the channel frequency response of each subcarrier along
every receiving antenna for each packet. In OFDM/OFDMA, we are given the 𝑅 number of sub-channels/RUs.
Considering multi-path propagation, 𝑃 copies of the transmitted signal are collected at the receiver. Hence, CSI
𝐻
𝑟,𝑎,𝑛

𝑘
estimated for each packet 𝑛, each subcarrier 𝑘 ∈ {1 . . . 𝐾} of each sub-channel/RU 𝑟 ∈ {1 . . . 𝑅} and each

antenna 𝑎 ∈ A(set of antennas) can be represented as:

𝐻
𝑟,𝑎,𝑛

𝑘
=

𝑃∑︁
𝑝=1

𝜂
𝑟,𝑛

𝑘,𝑝
𝑒− 𝑗2𝜋 (𝑓𝑐+𝑘/𝑇 )𝜏

𝑛
𝑝 , (1)

where 𝑓𝑐 is the central frequency, 𝑇 = 1/Δ𝑓 (Δ𝑓 is sub-carrier spacing) is OFDM/OFDMA symbol duration,
𝜂
𝑟,𝑛

𝑘,𝑝
is the attenuation factor and 𝜏𝑛𝑝 is the path delay associated with path 𝑝 ∈ {1 . . . 𝑃}. These symbols are all

summarized in Table 1. Since CSI data is noisy in nature and environment-dependent, it is often not directly used
for sensing. Therefore, the WiFi sensing system extracts robust and environment-independent features from
the raw CSI data. Slim-Sense primarily focuses on the Doppler phase shift vector [28], which is a robust and
environment-independent feature.

2.2 Doppler Phase Shift Vector

The multipath components of a signal, as defined in Eq. (1), are obtained via scattering from static objects, such as
walls and furniture, as well as from dynamic objects, such as moving humans. Hence, each multipath component
has a different path length, delay, and attenuation. Different multipath signal components arrive at different
times due to different path lengths, causing variations in path delay. The variations in the path delay introduce
phase shift variations in the received signal. The phase shift 𝜙𝑛

𝑘
= −2𝜋 (𝑓𝑐 + 𝑘/𝑇 )𝜏𝑛𝑝 is directly proportional to the

main frequency 𝑓𝑐 and path delay 𝜏𝑛𝑝 . The symbol duration 𝑇 and subcarrier spacing Δ𝑓 are constants. The main
1https://github.com/vijay13feb/SLIM-SENSE.git
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Table 1. List of symbols and variables.

Symbol Definition

A Set of antennas available in the AP
𝑎𝑖 ∈ A A single antenna

𝑟 ∈ {1 . . . 𝑅} 𝑟 is sub-channels/RUs index, and 𝑅 is the total number of sub-channels/RUs
𝑘 ∈ {1 . . . 𝐾} 𝑘 is subcarrier index and 𝐾 is total number of subcarriers
𝑛 ∈ {1 . . . 𝑁 } 𝑛 is the packet index and 𝑁 is the total number of packets

𝐻
𝑟,𝑎,𝑛

𝑘
CSI values of each 𝑘 of each 𝑟 of each 𝑎 of each packet 𝑛

𝑝 ∈ {1 . . . 𝑃} 𝑝 path/copy of a signal and 𝑃 is total number of paths/copies of the signal
𝜂
𝑟,𝑛

𝑘,𝑝
Attenuation associated with path 𝑝 for 𝑘𝑡ℎ subcarrier of 𝑟 𝑡ℎ RU and 𝑛𝑡ℎ packet

𝜏𝑛𝑝 Path delay associated with path 𝑝 and packet 𝑛
𝑓𝑐 Central frequency
Δ𝑓 Sub-carrier spacing

𝑇 = 1/Δ𝑓 Symbol duration
𝜙
𝑟,𝑎,𝑛

𝑘
Undesired phase offset for 𝑘𝑡ℎ subcarrier of 𝑟 𝑡ℎ RU of 𝑎𝑡ℎ antenna and 𝑛𝑡ℎ packet

F Short-time Fourier Transform
𝑖 ∈ {1 . . . 𝑂} 𝑖 is observation window index and 𝑂 is total number of observation windows

𝐻
𝑟,𝑎,𝑛

𝑘
CSI estimated for each packet 𝑛, each subcarrier 𝑘 of each 𝑟 and each antenna 𝑎

𝐻𝑟,𝑎 (𝑖) CSI data matrix for 𝑟 of 𝑎 related to observation window 𝑖

𝐷
𝑟,𝑎
𝑖

The 𝑖𝑡ℎ Doppler vector of each sub-channel/RU 𝑟 and each antenna 𝑎
𝑊 Total number of packets in each observation window 𝑖

𝑣 ∈ {1 . . .𝑉 } 𝑣 is Doppler velocity index and 𝑉 is the length of the Doppler vector
𝑑
𝑟,𝑎
𝑣,𝑖

Doppler velocity in the Doppler vector
𝑁 𝑖
𝐷

Horizontally stacked Doppler vectors of all 𝑟 and then vertically
stacked by antenna-wise of 𝑖𝑡ℎ observation window

𝑓 Recognition system function
𝐶1, . . . ,𝐶𝑚 set of activities
P and P̂ Predicted probability distribution and ground truth probability distribution
𝑅 and 𝐴 Relevant subset of sub-channels/RUs and antennas, respectively
𝜆1 ∈ Λ1 Lambda values of set Λ1
𝜆𝑔 ∈ Λ𝑔 Lambda values of set Λ𝑔
𝑆 , 𝑠 , and 𝑠 State space, current state, and next state

𝛼 Action space
𝑡 Transition probability
𝜌 Reward function

Ω, 𝜔 Observation space, observation probability
𝛾 Discount factor

Θ1 and Θ2 penalty weightage
𝐺1, 𝐺2 Learning Agent
𝑏1, 𝑏2 Belief state of 𝐺1 and 𝐺2, respectively
𝛽 HRL learning rate
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frequency 𝑓𝑐 is different for each 𝑘 . Thus, the phase shift of the same path delay varies across different subcarriers.
The main frequency 𝑓𝑐 of each subcarrier 𝑘 remains fixed throughout the transmission. Hence, variations in
phase shift only depend on the path delay 𝜏𝑛𝑝 . The path delay 𝜏𝑛𝑝 can be expressed as:

𝜏𝑛𝑝 =
𝑙𝑛𝑝 + Δ𝑛𝑝

𝑐
, (2)

where 𝑐 is the speed of light, 𝑙𝑛𝑝 is the length of path 𝑝 related to the initial position of the physical object, and Δ𝑛𝑝
is the change in path length caused by movement of the physical object during the transmission period 𝑛𝑇𝑐 . The
multipath components consist of static paths scattered from static physical objects and dynamic paths scattered
from dynamic physical objects. The length of static paths remains the same throughout the transmission period𝑛𝑇𝑐 ,
as the position of the static objects is fixed. Thus, Δ𝑛𝑝 = 0 and path delay 𝜏𝑛𝑝 =

𝑙𝑛𝑝

𝑐
of each static path of the multipath

remains the same throughout the transmission duration. Therefore, the phase shift 𝜙𝑛
𝑘
= −2𝜋 (𝑓𝑐 +𝑘/𝑇 )𝜏𝑛𝑝 remains

constant (𝑓𝑐 ,𝑇 and 𝜏𝑛𝑝 remain constants) for static paths for each subcarrier. However, the length of dynamic
paths changes over time since the position of dynamic objects such as humans changes. For example, when a
dynamic object such as a human performs a specific activity in the indoor environment, the activity-related
movements of a human induce variation in the path length over time as each body part acts as a scatterer moving
at a specific velocity. The path length related to the moving scatterer changes during 𝑛𝑇𝑐 . Hence, the change in
path length Δ𝑛𝑝 for dynamic paths (whose 𝑙𝑛𝑝 changes during 𝑛𝑇𝐶 ) is defined as:

Δ𝑛𝑝 = −
∫ 𝑛𝑇𝑐

0
𝑣𝑝 (𝑥) cos𝜃𝑝 (𝑥) 𝑑𝑥, (3)

where 𝑣𝑝 (𝑥) is the velocity of the scatterer related to dynamic path 𝑝 , cos𝜃𝑝 (𝑥) results from the combination of
angles of the motion of the scatterer and angle of arrival/departure of the signal of 𝑝 . The change in path length
Δ𝑛𝑝 varies with changes in velocity 𝑣𝑝 (𝑥) and angle cos𝜃𝑝 (𝑥) over transmission duration 𝑛𝑇𝑐 . Thus, according
to Equation (2), 𝜏𝑛𝑝 changes as Δ𝑛𝑝 varies. As a result, variations in 𝜏𝑛𝑝 lead to complex variations in phase shift
𝜙𝑛
𝑘
= −2𝜋 (𝑓𝑐 + 𝑘/𝑇 )𝜏𝑛𝑝 . The Doppler phase shift vector reveals the complex variations in phase shift caused by

moving scatterer points.
The Doppler vector is computed from the𝑊 ≤ 𝑁 subsequent estimated CSI samples through a short-time

Fourier transform, i.e., during the channel observation window 𝑖 . These𝑊 CSI samples are estimated at the WiFi
monitor for𝑊 subsequent packets, collected with a sampling rate of 𝑇𝑐 . The value of𝑊 is selected in such a way
that the velocities and angles remain constant during 𝑖 ∈ {1 . . . 𝑂}, where 𝑂 is the total number of observation
windows. From Equation (3), this gives us:

Δ𝑛𝑝 = −𝑣𝑝 cos𝜃𝑝𝑛𝑇𝑐 , (4)

Thus, Doppler phase shift 𝑣𝑝 cos𝜃𝑝 is estimated from Equations (1), (2) and (4). Let 𝐻𝑟,𝑎 (𝑖) denote the 𝐾 ×𝑊
dimensional matrix of 𝑟 and 𝑎 for 𝑖𝑡ℎ observation window, which reveal the human movements. It is defined as:

𝐻𝑟,𝑎 (𝑖) =

𝐻
𝑟,𝑎,1
1 , . . . , 𝐻

𝑟,𝑎,𝑊
1

...

𝐻
𝑟,𝑎,1
𝐾

, . . . , 𝐻
𝑟,𝑎,𝑊

𝐾

 (5)

where each value in 𝐻𝑟,𝑎 (𝑖) matrix, represent estimated CSI according to Equation (1) within the current ob-
servation window 𝑖 . The short time Fourier transform F is applied on CSI matrix 𝐻𝑟,𝑎 (𝑖) to estimate the 𝑉 × 1
dimensional Doppler vector 𝐷𝑖 as:

𝐷
𝑟,𝑎
𝑖

= [𝑑𝑟,𝑎1,𝑖 , . . . , 𝑑
𝑟,𝑎

𝑉 ,𝑖
]𝑇 , (6)
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where each element in the 𝐷𝑟,𝑎
𝑖

is estimated as:

𝑑
𝑟,𝑎
𝑣,𝑖

=

𝐾∑︁
𝑘=1

|F {𝐻𝑟,𝑎 (𝑖)}|2, (7)

where 𝑣 ∈ {1 . . .𝑉 } is Doppler velocity index. The expression F {𝐻𝑟,𝑎 (𝑖)} represents the Fourier transform
applied column-wise (along subcarrier index 𝑘) to estimate the Doppler vector. The absolute values of squared
Fourier transform coefficients are summed over the subcarrier axis 𝑘 . The phase shift depends only on path
variations Δ𝑛𝑝 caused by human movements. The non-zero entries 𝑣 in the Doppler vector reveal the presence of
a moving scatterer with velocity 𝑣𝑝 (𝑥) and angle cos𝜃𝑝 (𝑥) as:

𝑣𝑝 cos𝜃𝑝 =
𝑣𝑐

𝑓𝑐𝑇𝑐𝑉
, (8)

where 𝑣𝑝 cos𝜃𝑝 represents activity-related movements and reveals the dynamic components Δ𝑛𝑝 (Equation (4)).
Hence, the quantity in Equation (8) serves as a reliable indicator of dynamic components and is considered an
effective feature for the activity recognition model. Human activities cause both small- and large-scale variations
in the Doppler phase shift vectors due to differences in velocity and angle associated with each activity. The
activity recognition model must detect and extract patterns at different scales to recognize different activities
accurately.

2.3 SHARP Model

A state-of-the-art model used for activity recognition, such as walking, jumping, etc, is SHARP [28]. SHARP uses
Doppler phase shift vectors as input to capture multi-scale variations of participant’s activities. It consists of a
sequence of max-pool and convolutional layers of different-sized kernels to identify the most important features
of the Doppler vectors. Next, the most important features of the Doppler vectors map are converted to a single
dimension by a flattened layer. Before passing the output features to Dense layer 20% of features are dropped
to avoid overfitting. Finally, features are passed to Dense layer to assign the probabilities to each activity. This
model has been validated to be highly accurate in settings such as homes, offices, and halls for 5-12 activities.

2.4 Related Works

We divide the related work into two categories: (1) WiFi sensing applications (2) ISAC (Integrated Sensing and
Communication).
WiFi sensing applications: WiFi signals have been used by a number of prior works for tasks such as fall
detection [5, 18, 21], motion detection [13, 24, 41], identification of breathing rate [2, 33], user and gesture
recognition [3, 23, 32]. Works on fall and motion detection pose the problem as one of binary classification. User
recognition and gesture recognition utilize multi-label classification, whereas identification of breathing rate
utilizes different forms of regression. A number of recent works have also looked at additional challenges of
WiFi sensing. For example, Muse-Fi [17] tackles the challenges of sensing in the context of multiple people by
separately using downlink and uplink CSI and beamforming reports. RF-Net [9] utilizes extra features and a
new neural network for meta-learning to generalize easily to different environments. OneFi [36], and WiLearner
[10] adapt to unseen gestures using a self-attention mechanism and autoencoder, respectively. The work [28]
proposes a convolutional neural network that generalizes to multiple types of activity recognition. These prior
works show efficient activity recognition across different locations and participants. However, they utilize the
entire available bandwidth for sensing, which is detrimental to WiFi communication, and utilizing the entire
bandwidth for sensing may leave no or insufficient spectrum resources for effective communication.
ISAC (Integrated Sensing and Communication) A number of works also aim to integrate communication
with the sensing capabilities of WiFi as shown in Table 2. For example, BeamSense [35] leverages existing WiFi
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Table 2. Comparison of Slim-Sense with existing works.

Parameter ISAC Saving Channel

Bandwidth

Saving

Antennas

Adaptive

Sampling Rate

Generalizability

BeamSense [35] ✓ ✗ ✗ ✗ ✓
SenCom [15] ✓ ✗ ✗ ✓ ✓
WiImg [42] ✓ ✗ ✗ ✓ ✗
Slim-Sense ✓ ✓ ✓ ✗ ✓

network devices to obtain compressed beamforming reports (CBR) by sniffing ongoing WiFi traffic and utilizing
CBR reports (compressed version of CSI) already supported by WiFi devices to recognize human activities. Most
of the 802.11 standard devices support channel sounding protocol to exchange CBR reports between transceivers.
The two most closely related works are SenCom and WiImg.

A recent work SenCom [15] overcomes several challenges of WiFi-based passive sensing, such as insufficient
CSI collection due to intermittent and unevenly distributed traffic from AP to clients and impaired CSI data
due to different modes (diversity or multiplexing) of communication. The key idea of SenCom is to enable WiFi
sensing through CSI samples collected passively from MIMO downlink communication traffic. SenCom provides
solutions for intermittent downlink traffic, which is unevenly distributed. If sufficient MIMO downlink traffic is
not available, it moves to collect the CSI packets in active mode. In active mode, it utilizes all of the resources.
WiImg [42] shows that the high frequency of sensing packets impacts the performance of communication.
They point out that typical sensing applications have a communication rate of 200 − 2000 packets/sec. With
such high sensing frequency exchanges, the authors claim thatWiFi sensing actually can not co-exist with WiFi

communication. The key idea of the other closely related work WiImg is to convert low-rate CSI samples into
images and then apply a Generative Adversarial Network (GAN) for CSI images inpainting to generate images of
high-rate CSI samples. It then utilizes high-rate CSI samples (synthetic samples) for activity recognition. In this
way, WiImg minimizes the impact of sensing on WiFi communication by reducing the need for high packet rates.
To achieve this, WiImg converts low-rate time-domain CSI samples into CSI amplitudes. Then, the low-rate CSI
amplitudes are converted into images, simulating the structure of color images with three channels: red, green,
and black. It uses 3 antennas to represent the channels, subcarriers to represent the image width, and sampling
rate (for example, 100 packets/second) to represent the image length. Next, WiImg distributes the image length
over the range of 0-250 (to the high sampling rate of 250 packets/second). The proposed GAN model then inpaints
distributed images based on the original image. The authors show that with just 25 packets/sec, the sensing
accuracy is improved by 31% compared to other interpolation works that try to interpolate the missing CSI values.
Thus, both SenCom and WiImg’s approach and resources saved differ significantly from that of Slim-Sense.
Another work related to Slim-Sense is BeamSense[35], which utilizes beamforming reports as raw input data
for sensing, unlike CSI-based WiFi sensing. However, unlike Slim-Sense, it is not possible to send packets for
communication in parallel while sensing.

Our evaluation compares the performance of Slim-Sense with WiImg, as both of them save spectrum resources.
We do not compare the performance of Slim-Sense with BeamSense, as BeamSense does not currently conserve
spectrum resources for communication. Since there are no public datasets that capture CSI in passive mode, and
the dataset of SenCom is not available, it is also not possible to compare Slim-Sense’s performance with SenCom.
However, SenCom’s strategy of passive-mode sensing is orthogonal to that of Slim-Sense, and it is possible to
integrate both the strategies to further save spectrum resources.
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3 Motivation and Problem Formulation

3.1 Motivation

Future WiFi networks aim to enable ISAC (Integrated Sensing and Communication), where the sensing and
communication nodes will co-exist. However, existing WiFi sensing solutions harm communication performance
due to their excessive usage of spectrum resources. Therefore, we ask this question "Is it always necessary to use

all the spectrum resources while performing WiFi sensing?" To answer this question, we perform a motivation
experiment using the two existing datasets (Exposing_CSI and SHARPax) and our own dataset HeadGest (dataset
details are in Section 5.1). First, we randomly choose a set of RUs/sub-channels from all the RUs/sub-channels.
We extract the Doppler vectors from the CSI samples of the randomly selected RUs/sub-channels and train the
appropriate deep-learning model used for that dataset. Fig. 1 shows a plot of sensing accuracy and resource
savings for three different datasets. We observe that a random selection of resources named Random-Selection
(details in Section 5.3) saves 50%, 57.5%, and 32.5% resources for HeadGest, Exposing_CSI and SHARPax datasets
respectively. However, it incurs a 16.4%, 20.28%, and 22.22% reduction in sensing accuracy compared to the original
HeadGest, Exposing_CSI, and SHARPax models, respectively. Next, we design a better algorithm where, instead
of randomly choosing the RUs/sub-channels, we compute cross-correlation between a pair of RUs/sub-channels.
We chose only uncorrelated RUs based on the correlation and performed the same experiment. We name this
method as Reduced-Redundancy as it aims to reduce the redundancy of the resources (details in Section 5.3).
Fig. 1 shows that Reduced-Redundancy provides better accuracy (improvement of 10.84%, 10.14%, and 8.08%)
and more savings (improvement of 0%, 16.5%, 38.8%) compared to Random-Selection. This shows the promise
of performing WiFi sensing without utilizing full spectrum resources. However, the accuracy obtained even with
Reduced-Redundancy is lower compared to original HeadGest, Exposing_CSI, and SHARPax models utilizing
the entire bandwidth. Thus, we aim to design a sensing framework to enable a smooth integration of WiFi sensing
with communication that can (1) minimize the utilization of spectrum resources for sensing, (2) minimize the
computation needed for sensing, and finally (3) maximize sensing accuracy. Moreover, the performance of the
sensing framework depends on the input features computed from the CSI data. In this motivation experiment, we
utilize the Doppler vectors as input features. The Doppler phase shift vector reveals the phase shift in the signal
caused by human movements independent of the surrounding environment’s configuration.
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(a) Simple Scenario: Training and Testing in the same
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(b) Challenging Scenario: Training in the simple scenario

and Testing in the challenging scenario.

Fig. 2. Sensing accuracy with different input features for Exposing_CSI dataset.

Doppler Vector as Input Feature: The raw CSI, as defined in Equation (1), is noisy in nature and affected by
surrounding static objects, walls, and environmental settings. Thus, it is usually not used directly for activity
recognition, as prior works show that it does not give high accuracy of sensing [7]. Early sensing solutions
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computed statistical features such as amplitude and phase variation from the collected raw CSI data. The amplitude
for the CSI sample of packet 𝑛 is the magnitude of the total complex sum of Equation (1) as:

𝐴
𝑟,𝑎,𝑛

𝑘
=
��𝐻𝑟,𝑎,𝑛
𝑘

�� , (9)
Moreover, the phase for the CSI sample of the packet 𝑛 is the angle of the total complex sum of Equation (1) as:

𝑃
𝑟,𝑎,𝑛

𝑘
= arg

(
𝐻
𝑟,𝑎,𝑛

𝑘

)
, (10)

CSI is affected by the multi-path propagation of the indoor environment and hence also accounts for the reflections
from static objects. The reflected signals, each with a different delay and phase shift, are superposed differently at
each subcarrier, and the delay induces a subcarrier-specific phase shift. Such behavior is environment-specific.
Hence, amplitude and phase, from Equation (9) and (10), can change due to various environmental settings,
including static obstacles and multipath effects. They do not solely depend on human movements. Moreover,
phase variation (𝑃𝑟,𝑎,𝑛

𝑘
−𝑃𝑟,𝑎,𝑛+1

𝑘
) depends on 𝜏𝑛𝑝 which is environment dependent. Therefore, amplitude and phase

variation does not support the development of robust, environment-independent human activity recognition
(HAR) systems. On the other hand, the Doppler vectors reveal the complex variations in the phase shift caused
by only human activities. As per Equation (2), variations in phase shift depend on path length. The path length
of signals reflected from humans performing activities changes over time as per Equation (3). However, the
path length of the signals reflected from the static object remains the same throughout the transmission. The
initial phase shift may change based on the object’s characteristics (such as shape, position, and material); the
variation in phase shift remains the same over time. Thus, the Doppler vector provides effective input features for
environment-independent human activity recognition. We conducted an experimental study, as shown in Fig. 2,
to demonstrate the robustness of Doppler vectors by training and testing the SHARP model using Exposing_CSI
CSI data in two scenarios:
(1) Simple Scenario: The training and testing of the SHARP model are conducted in the Lab environment

(details in Table 4), which remains the same during the experiment. The SHARP model with Doppler
vectors, amplitude, phase, or the combination of both achieves similar sensing accuracy over 90%, as shown
in Fig. 2a.

(2) Challenging Scenarios: The SHARP model with specific input features is trained in one environment (lab)
and tested in a new or unseen environment (Office). The SHARP model, with the Doppler vectors as input
features, achieves 44.57%, 45.54%, and 42.97% more sensing accuracy compared to the SHARP model with
amplitude, phase, and combination of both, as shown in Fig. 2b. This indicates that using the Doppler
vector as input features is more effective for environment-independent sensing than amplitude, phase, and
combination of both.

3.2 Problem Formulation

We now formally describe the problem. We are given |𝐴| number of antennas and 𝑅 number of sub-channels/RUs.
The number of sub-channels/RUs is based on channel access techniques such as OFDM or OFDMA and available
maximum bandwidth in 802.11n/ac/ax. Our aim is to choose the minimal set of resources while maximizing
the sensing accuracy. We model the choice of resource selection as choosing the minimum set of input features
computed from the raw CSI samples. We compute Doppler vectors, which provide effective input features for
environment-independent sensing. Note that these Doppler vectors represent RU/sub-channels and antennas.
Further, these Doppler vectors work as input features for the activity recognition model. Hence, we compute the

Doppler vector 𝐷
𝑟,𝑎
𝑖

(details in Section 2.1) from CSI data collected at each 𝑎 for each 𝑟 separately.We horizontally
stack 𝐷𝑟,𝑎

𝑖
for all 𝑟 of each antenna 𝑎. The sequence of 𝐷𝑟,𝑎

𝑖
(𝑟 ∈ {1 . . . 𝑅}) represents the entire bandwidth. Next,
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to select the most optimal sub-channel/RUs across antennas, we vertically stack them antennas-wise to get matrix
𝑁 𝑖
𝐷
as:

𝑁 𝑖𝐷 =


𝐷

1,1
𝑖

𝐷
2,1
𝑖

. . . 𝐷
𝑅,1
𝑖

𝐷
1,2
𝑖

𝐷
2,2
𝑖

. . . 𝐷
𝑅,2
𝑖

...

𝐷
1,𝐴
𝑖

𝐷
2,𝐴
𝑖

. . . 𝐷
𝑅,𝐴
𝑖


, (11)

where 𝑖 ∈ {1 . . . 𝑂} is the observation window index and 𝑂 is the total number of observation windows. The
dimension of the matrix 𝑁 𝑖

𝐷
is |𝐴| × (|𝑅 ×𝑉 |). Each row in 𝑁 𝑖

𝐷
represents the entire available bandwidth of each

antenna 𝑎, and each column in 𝑁 𝑖
𝐷
represents the Doppler vectors of specific 𝑟 across all antennas.We prepare

the Doppler vector dataset ([𝑁 1
𝐷
, . . . , 𝑁𝑂

𝐷
]) labeled with activities by stacking consecutive Doppler vector matrix 𝑁 𝑖

𝐷
.

The user may perform one of several activities 𝐶1, . . . ,𝐶𝑚 . Let the probabilities of each activity given by the
recognition system be denoted as P = [𝑃 (𝐶1), . . . , 𝑃 (𝐶𝑚)]. We represent the recognition system by a function
𝑓 : [𝑁 1

𝐷
, . . . , 𝑁𝑂

𝐷
] → P. The recognition system 𝑓 , trained with 𝑁 𝑖

𝐷
, when 𝐴 = 1 is independently applied to

the Doppler vectors computed from each antenna at runtime. This makes the recognition system 𝑓 generalized
across devices with different numbers of antennas.

Let 𝑃 (A) be the power set of antennas. Let the most relevant subset of antennas, denoted by Â ∈ 𝑃 (A), and the
most relevant subset of sub-channels/RUs, denoted by R̂, be selected to sense the activities. The overall objective
of Slim-Sense is to obtain a probability distribution P that is as close as possible to the ground truth P̂ while
penalizing the selection of more antennas and more RUs. This is achieved by selecting the most relevant R̂ and Â.
We first quantify the error using the categorical cross-entropy between the distributions P and P̂:

𝑄1 =
𝑚∑︁
𝑗=1

P̂(𝐶 𝑗 ) log(P(𝐶 𝑗 )) (12)

We now seek to quantify the amount of data used to compute𝑄1. Let𝑋 𝑟𝑎𝑣 = 1 denote that 𝑑𝑟,𝑎
𝑣,𝑖

(as per Equation (7))
is selected, and 0 otherwise. Then, the number of Doppler velocities used for the decision is quantified as:

𝑄2 =
∑︁
𝑎∈A

𝑅∑︁
𝑟=1

𝑂∑︁
𝑖=1

𝑉∑︁
𝑣=1

𝑋 𝑟𝑎𝑣 |𝑑𝑟,𝑎
𝑣,𝑖

| (13)

Then, we quantify the number of RUs used across the antennas. Let 𝑦𝑟𝑎 be 1 if 𝑟 th RU of 𝑎th antenna is selected
and 0 otherwise. This gives us:

𝑄3 =
∑︁
𝑎∈Â

𝑂∑︁
𝑖=1

𝑅∑︁
𝑟=1

𝑦𝑟𝑎 |𝐷𝑟,𝑎𝑖 | (14)

Hence, the overall objective 𝑄 is defined as:

Q = arg min
Â∈𝑃 (A)
𝜆1∈Λ1
𝜆𝑔∈Λ𝑔

{
Q1 + 𝜆1Q2 + 𝜆𝑔Q3

}
,

(15)

where 𝜆1 ∈ Λ1 and 𝜆𝑔 ∈ Λ𝑔 , as shown in Table 3, are the scalar hyperparameters that control the trade-off between
minimizing loss function and deselecting irrelevant 𝑑𝑟,𝑎

𝑣,𝑖
and 𝐷𝑟,𝑎

𝑖
. The optimal value of 𝜆1 and 𝜆𝑔 provides most

relevant set of Doppler vectors denoted as 𝑅.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 225. Publication date: March 2025.



Slim-Sense: A Resource Efficient WiFi Sensing Framework towards Integrated Sensing and Communication • 225:13

Table 3. Set of possible value of hyperparameters.

Hyperparameters Possible Values

Λ1 {0.0, . . . , 1.0}
Λ𝑔 {0.0, . . . , 1.0}
P(𝐴) if 𝐴 = 4 {{0}, {1}, {2}{3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3},

{2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3}}

4 Design and Solution Approach of Slim-Sense

We now discuss the design and solution approach of Slim-Sense as shown in Fig. 3. The input to Slim-Sense
is Doppler vectors and ground truth labels of activities. The output will be a selected set of relevant resources,
i.e., antennas and RUs. Note that all the notations are listed in Table 1. Next, we present the components of
Slim-Sense. Finally, we describe the working of Slim-Sense.

4.1 Design of Slim-Sense

Equation (15) defines our joint optimization problem of minimizing loss function (𝑄1), complexity of the neural
network 𝑓 (𝑄2), and utilization of bandwidth resources (𝑄3). The objective𝑄2 provides sparsity across 𝑑𝑟,𝑎

𝑣,𝑖
within

a 𝐷𝑟,𝑎
𝑖
, and where decision variable 𝑋 𝑟𝑎𝑣 select 𝑑𝑟,𝑎

𝑣,𝑖
that contribute to recognition activities. The objective 𝑄3

provides sparsity across 𝐷𝑟,𝑎
𝑖

within the entire bandwidth represented by 𝑁 𝑖
𝐷
, and where decision variable 𝑦𝑟𝑎

select set of 𝐷𝑟,𝑎
𝑖

that contribute to recognition activities. We aim to control the decision variables to tune the
degree of the sparsity applied at the 𝑑𝑟,𝑎

𝑣,𝑖
and 𝐷𝑟,𝑎

𝑖
level. This ensures we obtain the minimum set of optimal

Doppler vectors with optimal Doppler velocities for sensing with minimal impact on sensing accuracy. To achieve
this, we integrate the tuning process within the training of 𝑓 , which ensures feature selection aligned with
the learning objectives. To implement this approach, we apply 𝐿1 regularizer to apply sparsity across 𝑑𝑟,𝑎

𝑣,𝑖
and

employ group regularizer to apply sparsity across 𝐷𝑟,𝑎
𝑖

. 𝐿1 and group regularizer jointly form the Sparse Group
Regularizer (SGR). 𝑓 with SGR takes 𝑁 𝑖

𝐷
(with a given combination of antennas) as input and provides 𝑅 while

optimizing 𝑄 . To obtain the optimal combination of antennas 𝐴, 𝑓 with SGR takes 𝑁 𝑖
𝐷
as input with different

antenna combinations 𝑃 (𝐴). With each combination of antennas, 𝑓 with SGR provides corresponding 𝑅 while
optimizing 𝑄 . The optimization of 𝑄 includes minimizing resource usage and loss function and is controlled by
the hyperparameters are Â, 𝜆1 and 𝜆𝑔. Hence, it is essential to tune these hyperparameters to achieve optimal
performance.
One straightforward solution is to perform an exhaustive search of these hyperparameters. The exhaustive

search involves selecting hyperparameters, training the function 𝑓 with each combination of hyperparameters,
and observing the performance of 𝑓 in one instance. The search process is sequential, selecting one set of
hyperparameters at an instance. Consequently, it makes a series of iterations where hyperparameters are selected
sequentially over time. Moreover, selecting hyperparameters from the set of hyperparameters is performed
through random or grid search, and the selection of hyperparameters in each instance is independent of previous
instances. Thus, hyperparameter tuning is a sequential process that follows the Morkovain property, which resembles

a Markov Decision Process (MDP). Note that 𝑓 is unknown, and we will only be able to observe it partially. The
environment of different sizes and clutters, consisting of multiple reflecting surfaces, as well as placement of the
monitoring devices, the access points, and the number of antennas at the receiving devices, affect the CSI [34],
which reflects in the Doppler vector. Hence, 𝑓 can sense only a portion of the environmental changes, as many of
these changes cannot be directly observed. Considering the stochastic and partially observable environment,
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we model the problem of hyperparameter tuning as an instance of the Partially Observable Markov Decision
Process (POMDP), a generalized form of MDP. We formally define the POMDP as a tuple T = (𝑆, 𝛼, 𝑡, 𝜌,Ω, 𝜔,𝛾),
consisting of state space (𝑆), action space (𝛼), transition probability (𝑡 ), reward function (𝜌) observations space
(Ω), observation probability (𝜔) and discount factor (𝛾 ). The state space (𝑆) consists of a set of states in which
each state is represented as 𝑠 = ( [𝑁 1

𝐷
, . . . , 𝑁𝑂

𝐷
], (P(𝐶1), . . . , P(𝐶𝑚))). The action space is a set of all possible

values of hyperparameters defined as 𝛼 = (𝑃 (A),Λ1,Λ𝑔). The observation space Ω is a set presenting the
performance (defined in Equation (15)) of 𝑓 with selected hyperparameters. The observation probability 𝜔 defines
the uncertainty associated with observations. The discount factor 𝛾 is retained as a parameter and 𝑡 is the
transition probability. The reward function 𝜌 defines the accuracy achieved by the function 𝑓 to recognize the
activities. Let 𝐶𝑖 be the activity label recognized by the function 𝑓 , and 𝐶𝑖 be the ground truth activity labels.
Thus, the reward function 𝜌 is defined as:

𝜌 =
1
𝑂

𝑂∑︁
𝑖=1

1(𝐶𝑖 = 𝐶𝑖 ) − (Θ1 ( |𝑅 |) + Θ2 ( |𝐴|)), (16)

where |𝑅 | and |𝐴| are the total number of selected sub-channels/RUs and antennas. The term (Θ1 ( |𝑅 |) +Θ2 ( |𝐴|))
defines a penalty on higher usage of RUs and antennas, where Θ1 and Θ2 parameters are penalty weightages. The
penalty term gives a tradeoff between accuracy and resource utilization to optimize the performance of 𝑓 while
conserving resources. We implement POMDP using Reinforcement Learning (RL), which provides adaptability to
changes in the environment over time. Moreover, RL provides flexibility to model the uncertain environment,
which is only partially observable.
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4.2 Components of Slim-Sense

Slim-Sense has two components, activity recognition model (𝑓 ) with SGR and Hierarchical Reinforcement Learning

(HRL) model, as shown in Fig. 3. The HRL model provides the most optimal combination of hyperparameters,
whereas 𝑓 with SGR provides the most optimal resources controlled by hyperparameters. We now discuss each
of these components.

4.2.1 Activity Recognition Model (𝑓 ) with SGR. We utilize SHARP, a state-of-the-art human activity recognition
model, to implement the function 𝑓 (details in Section 2.3). However, the SHARP model only minimizes the
loss function 𝑄1 in Equation (15) and does not consider the amount of bandwidth resources used. The model
complexity 𝑄2 and resource selection 𝑄3 in Equation (15) are jointly optimized by the Sparse Group Regularizer
(SGR). The SGR applies a weight on selection of each channel carrier, both individually and as a group, depending
on the sub-channel that the carrier belongs to. This weighted sum is added as a penalty to the other objective of
maximum accuracy. In this way, the regularizer pushes the weights of the particular Doppler vector to zero if the
Doppler vector does not contribute significantly to minimizing the recognition loss/error. Hence, unimportant
Doppler vectors are discarded, and only the important/relevant group of Doppler vectors are retained. To combine
this with improvement in accuracy, we fuse the Sparse Group Regularizer (SGR) directly following the input layer
using the convolutional layer in the architecture of the SHARP model, as shown in Fig. 3. We strategically position
the SGR just after the input layer so that the model can process and interpret the initial input data effectively
before it is further analyzed by the SHARP model. It enables an efficient approach to feature regularization just
before the data processing pipeline. The SGR and the SHARP model recognize activities with the most relevant
resources (Doppler velocities and the group of Doppler vectors). The selection of resources is controlled by
hyperparameters tuned by HRL.

4.2.2 Slim-Sense’s Hierarchical Reinforcement Learning Technique. We model the problem of hyperparameter
tuning as an instance of the Partially Observable Markov Decision Process (POMDP). A standard technique for
solving the POMDP problem for hyperparameters defined in §. 4.1 is to utilize hierarchical reinforcement learning
(HRL) shown in Fig. 3, as the number of possible actions is large in number. The total possible actions are equal
to |P(𝐴) | × |Λ1 | × |Λ𝑔 |. For example, IEEE802.11ax allows up to 160 MHz bandwidth with 𝑅 = 74 RUs and up
to 𝐴 = 8 antennas. Furthermore, we empirically observe that 5 distinct values of 𝜆1 and 𝜆𝑔 are generally used,
leading to an overall search space of (28 − 1) × 5 × 5 = 6375 possible choices of actions. Since a major goal of our
problem was to have relatively low computation, we use two parallel RL agents, denoted by 𝐺1 and 𝐺2, as shown
in Fig. 3. Both agents interact with the environment and choose separate actions (selecting hyperparameters)
as part of their learning. The environment is configured by a labeled Doppler vector dataset with a SHARP 𝑓
model with SGR in a specific indoor location. 𝐺1 selects most optimal combination of antennas 𝐴, whereas 𝐺2
selects most optimal pair of 𝜆1 and 𝜆𝑔. Hence, the overall search space is reduced to (28 − 1) + 5 × 5 = 280. Both
agents interact with the environment by training the SHARP model with SGR using the labeled Doppler vector
dataset and selected hyperparameters. Next, the agents 𝐺1 and 𝐺2 obtain the sensing accuracy from the unseen
environment and compute the reward function 𝜌1 and 𝜌2 from Equation (16), respectively. The agents 𝐺1 and 𝐺2
maintain belief state 𝑏1 and 𝑏2 to account for the uncertainty of the environment in the current state. The agent
chooses an action (selecting hyperparameter) based on the belief state using the 𝜖-greedy strategy. The agents𝐺1
and𝐺2 updates their belief state based on the observation received from the environment as well as other agent’s
belief states (𝑏2 and 𝑏1 respectively). We used Q-learning to train the agents and formulate the Bellman equation
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to update the Q-value as:

𝑄 (𝑏1, 𝛼1) = 𝑄 (𝑏1, 𝛼1) + 𝛽 [𝜌1 + 𝛾 max
𝛼1

𝑄 (𝑏2, 𝛼2)] −𝑄 (𝑏1, 𝛼1), and

𝑄 (𝑏2, 𝛼2) = 𝑄 (𝑏2, 𝛼2) + 𝛽 [𝜌2 + 𝛾 max
𝛼2

𝑄 (𝑏1, 𝛼1)] −𝑄 (𝑏2, 𝛼2) (17)

where𝑄 (𝑏1, 𝛼1) and𝑄 (𝑏2, 𝛼2) are the Q-values of each agent and 𝛽 is learning rate. Slim-Sense uses an 𝜖-greedy
method to select the action with 𝜖 = 0.1 so that a random action is taken 10% of the time. We now discuss the
process of actual running of Slim-Sense during both training and testing.

4.3 Working of Slim-Sense

We integrate the resource selection for sensing in the training procedure, allowing Slim-Sense to identify
the minimum optimal resources while training. First, Slim-Sense, through the HRL model, determines the
hyperparameters needed to train and test the SHARP model. Next, through SHARP with SGR model, obtains
the resources for sensing while training with given hyperparameters in the training environment. Thereafter, it
evaluates the trained SHARP model in new or unseen environments and obtains the sensing accuracy. Through
this, Slim-Sense’s HRL model adapts to a new environment by choosing the right set of hyperparameters. This
way, Slim-Sense, on convergence, obtains the optimal combination of𝐴, 𝜆1, and 𝜆𝑔 , and in turn, minimum optimal
resources 𝐴 and 𝑅. We now discuss the process in detail.

Slim-Sense, in a specific environment setup, initializes action space 𝛼 with available antenna combinations and
sets of lambda values as shown in Table 3. The learning agent𝐺1 chooses the unique combination of antennas
from 𝑃 (A) and utilizes 𝜆1 and 𝜆𝑔 chosen by𝐺2. Next,𝐺1 observes the sensing environment by training the SHARP
(𝑓 ) with SGR in the training location and obtains the sensing accuracy in the new or unseen locations (testing).𝐺1
gets the immediate reward 𝜌1 defined as Equation (16) utilizing testing sensing accuracy and selected resources
(|𝐴| and |𝑅 |). Note that 𝑓 can partially observe the environment state. Hence, 𝐺1 obtains the observation of the
current state by introducing random uncertainty in the 𝜌1. Based on the observation, it updates its belief state
𝑏1 and shares with 𝐺2. Now, 𝐺2 updates its belief state 𝑏2 considering 𝑏1. Next , 𝐺2 chooses 𝜆1 and 𝜆𝑔 from Λ1
and Λ𝑔, respectively and utilizes 𝐴 chosen by 𝐺1. Like 𝐺1, 𝐺2 gets the reward 𝜌2 and obtains observation of the
current state by introducing random uncertainty in 𝜌2 and updates its belief state 𝑏2. 𝐺2 shares its belief state
with 𝐺1. Like 𝐺2, 𝐺1 updates its belief state 𝑏1 considering 𝑏2. Both agents compute their Q-values using their
own belief states using Equation (17), and then updates its belief states based on the observed environment. On
convergence,𝐺1 provides 𝐴 and𝐺2 provides 𝜆1 and 𝜆𝑔 . Using optimal values of 𝐴, 𝜆1, and 𝜆𝑔 Slim-Sense provides
𝑅.

Note that though we have used ground truth labels in our Slim-Sense, in a new environment where ground truth is

not available, we initially allow Slim-Sense to utilize the entire bandwidth for a calibration stage, assuming that the

activity recognized using the entire bandwidth is the ground truth. We show later in Section 6.2.2 that this calibration

takes about 2 minutes of time .

5 Evaluation Methodology

We now describe our evaluation methodology, which consists of a discussion of the datasets, evaluation scenarios,
baseline approaches and evaluation metrics.

5.1 Description of Dataset

Table 4 summarizes the details of our collected dataset HeadGest and pre-existing datasets. We have chosen the
datasets to evaluate the performance in a diverse variety of challenging conditions, including cluttered areas,
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Table 4. Summary of Datasets.#Sub-channels/RUs: Total number of subchannels or RUs #Samples: Total number of samples

in each activity, #Duration: Duration of each activity, #Participants: Total number of participants, #Dist: Distance between Tx

and Rx.

Dataset Parame-

ter

HeadGest Exposing_CSI [8] SHARPax [26] SimWiSense [14]

Standard 802.11𝑛 802.11𝑎𝑥 802.11𝑎𝑥 802.11𝑎𝑐
Access Technol-

ogy

OFDM OFDM/OFDMA OFDM/OFDMA OFDM

Bandwidth 40 −𝑀𝐻𝑧 160 −𝑀𝐻𝑧 80 −𝑀𝐻𝑧 80 −𝑀𝐻𝑧
#Sub-

channels/RUs

2 8/74 4/37 4

Sampling Rate L 100 CSI/sec 150 CSI/sec 133 CSI/sec 300 CSI/sec
Tx and Rx 1 Tx and 1 Rx with 1

antenna
1 Tx and 3 Rx with 4
antenna

1 Tx and 1 Rx with 4
antenna

1 Tx and 3 Rx with 1
antenna

Tx-Rx distance 1 − 5 m 2 − 6 m 4 m 1.5 − 2 m
#Participants 33 3 1 3
#Samples/activity 35000 (minimum) 48000 63840 50000 (minimum)
Duration/activity 2 − 35 minutes 1.33 minutes 2 minutes 2.7 minutes
Total Duration 51 hours 1.86 hours 16 minutes 2.7 hours
Total Samples 7, 349, 761 4, 032, 000 251, 040 750, 000
Activities Looking Forward,

Looking Down,
Looking Up, Looking
Left, Looking Right,
Nodding and Shaking

Walk, Sitting, Wave
hands, Wiping, Run,
Empty room, Clap-
ping, Squat, Jump,
Standing, Lay down,
Stretching

Walking, Running,
Staying, Empty room

Push Forward, Rotate,
Hands up and down,
Waive, Brush, Clap,
Sit, Eat, Drink, Kick,
Bend forward, Wash
hands, Call, Browsing
phone, Check wrist,
Read, Waive while
sitting, Writing, Side
bend, and Standing

Locations Lab-1, Lab-2, Lab-3,
Meeting Room and
Housing Room

Lab, Office, Hall House corridor Classroom, Office

#Scenarios 46 7 1 2
Uniqueness Challenging and di-

verse experiment se-
tups

11𝑎𝑥 CSI data for 12
static, dynamic and
physical activities

11𝑎𝑥 data in simple
scenario

Collected in multi-
person activities envi-
ronment

multiple people, different scenarios of training and testing, as well as fine-grained activities. We now discuss
each of them in detail:
(1) HeadGest: This dataset is used to evaluate the diversity in training and testing environments and includes

a large number of participants. This is ensured by collecting the data in different phases (Phase-1, Phase-2,
Phase-3), where each phase consists of a distinct setup of the transmitter-receiver pair. The data collection
setup consists of one standard laptop (with Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz with 8 GB RAM)
and twoWiFi-enabled ESP32s microcontrollers with a single antenna. We use the CSI extraction toolkit [16]

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 225. Publication date: March 2025.



225:18 • Singh et al.

Table 5. Summary of the HeadGest Dataset.

Scenarios #Participants Location Setup #Experiments #Samples Duration

Phase-1
6 Meeting Room AP and Rx at 4m apart 1 1,390,950 40 hours3 Housing Room 1 746,957
10 Lab-1 1 2,213,329
3 Lab-2 1 879,153

Phase-2

3 Lab-2 Changing angles 6 54,637

3 hours

Varying distance 5 173,609
Crowded locations 6 97,489
AP wall mounted 4 203,111
Remote deployment 3 139,628
Interferer 2 91,374
Obstacles close to AP 4 153,610

Phase-3 8 Lab-3 Obstacles close to monitor 12 1405082 8 hours

to extract the CSI values. We configured one ESP32 as an active access point (Transmitter) and the other
as an active station (monitor). 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 transmits 40𝑀𝐻𝑧-IEEE802.11n traffic with a sampling rate of
100 packets/second. The datasets are collected in five different places – (i) Meeting Room (4𝑚 × 2.5𝑚) is
small in size and consists only of basic furniture and a fan, (ii) Housing Room (4𝑚 × 3𝑚) is medium in
size and has a wardrobe, two beds, and a study table. Housing room was shared with one person during
data collection; (iii) Lab-1 (12𝑚 × 8𝑚) is large in size and consists of different furniture and desktops, and
very few people were present during data collection (iv) Lab-2 (12𝑚 × 8𝑚) have the same characteristics as
Lab-1 and was crowded and (v) Lab-3 (3𝑚 × 5𝑚) were empty, and only participants were present during
data collection. Additional details about the data collection setup are given in Tables 4-5. Phase-1 dataset is
collected with 22 participants in Lab-1 (10 Participants), Crowded Lab-2 (3 participants), Meeting Room (6
participants), and Housing Room (3 participants) in 4 different experimental setups in which the distance
between transmitter and monitor devices is set to 2 m.
The Phase-2 dataset varies in a number of settings to study performance in various situations, namely, 1)
Varying distance: To capture the impact of distance between transmitter and receiver, we set the initial
distance to 1𝑚, then increment the distance by 1𝑚 up to 5𝑚. 2) Changing angles: Different angles can
capture various environmental reflections. We set the distance between AP and Rx to 2𝑚 and rotate the AP
around the monitor. Hence, the angle between AP and monitor varies to different angles such as 0◦, 45◦, 90◦,
135◦, 180◦ and 270◦. 3) Crowded locations: We collected the CSI samples in the crowded scenarios in Lab-3
where 10 − 15, 15 − 20, and 20 − 25 people are present during data collection. Crowded environments lead
to a more complex multipath propagation, making the sensing more challenging. 4) AP wall mounted: To
collect the CSI data in a setup where AP is normally wall mounted in a real scenario. The monitor is placed
in 4 different locations with varying angles and distances. 5) Remote deployment: We placed the AP in
one location and the monitor in another location to evaluate the sensing performance in the through-wall
scenario. 6) Interferer: In the real scenario, the interferer (non-target) might present close to the target
participants. Hence, we collect the CSI data in the scenario where the non-target person sits close to the
target participants. 7) Obstacles close to AP: The obstacle close to the AP creates additional reflections and
scattering, altering the signal’s multipath components. We placed obstacles of different materials such as
wooden door (1𝑖𝑛 width), wooden panel (2𝑖𝑛 width), glass (0.25𝑖𝑛 width), and nylon sheets (4 sheets).
In Phase-3, we collected data with 8 participants in Lab-2 in 12 different experimental setups. In this phase,
we placed obstacles of three materials, such as wood, glass, and fiber, between the AP and monitor. We use
a total of 4 sheets of each material, starting with 1 sheet, then 2 sheets, followed by 3 sheets, and finally 4
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sheets. This setting represents the most challenging scenarios of WiFi sensing deployment, where signal
attenuated significantly at Rx results in noisy CSI.
We collected a total of 7349761 CSI samples over a duration of 51 hours, involving 33 participants in our own
lab. For each participant, a total of 155300 samples are collected. For each head gesticulation, a minimum of
16000 samples are collected. We shared a consent form regarding the usage of the dataset for this study
with our institute’s IRB approval.

(2) Exposing_CSI: Exposing_CSI dataset is one public dataset [8] which used IEEE 802.11ax for a relatively
larger number of activities (12) ranging from static, dynamic, and physical. It also uses the highest bandwidth
of 160 MHz, making the use of Slim-Sense especially relevant in this case. The dataset is collected in
3 different locations such as Lab, Office, and Hall. The Lab is a medium-sized room with more clutters,
hence rich multipath reflections. The Office is a small room with more clutter and rich multipath reflection.
However, the hall is a larger room with no clutters; hence, the reflection is only from the ceiling and
floor. A total of 3 participants annotated as A, B, and C participated in data collection. The dataset reflects
scenarios such as 1) S1-Lab: same person, same environment, 2) S2-Lab: different person, same environment,
3) S3-Lab, S4-Lab, S5-Lab: same person, same environment on different days, 4) S6-Office: Same person
different environment, and 5) S7-Hall: same person different environment. In scenarios, S1-Lab, S4-Lab,
S5-Lab, S6-Office, and S7-Hall, CSI data is collected with Participant A. Moreover, in S1-Lab and S4-Lab, data
is collected on the same day at different times. In S5-Lab, data is collected on the next day. In S2-Lab and
S3-Lab, data is collected with Participants B and C. The sampling rate and duration of CSI data collection for
each activity are 150 packets/second and 80 seconds, respectively. Hence, for each activity, 150× 80 = 12000
samples are collected at each antenna in 7 different scenarios.

(3) SHARPax: SHARPax [28] is the other public dataset that performed activity recognition using the IEEE
802.11ax standard. Compared to Exposing_CSI, this uses a relatively simpler scenario of a house corridor
with a relatively fewer (4) number of activities. However, compared to other datasets, the distance between
the transmitter-receiver pair is fixed and is on the higher side, i.e., 4𝑚, making the sensed signals weaker.
The house corridor is medium in size, and reflection surfaces include only wall, ceiling, and floor. The dataset
is collected in one scenario S1-House corridor. The sampling rate and duration of CSI data collection for
each activity are 133 samples/second and 2 minute, respectively. Hence, for each activity, 15960× 4 = 63840
samples are collected at 4 antennas of the monitor device.

(4) SimWiSense Dataset This dataset is collected in multi-person environments with 3 participants perform-
ing 20 activities simultaneously using IEEE 802.11ac standard. The presence of multiple people and 20
different activities add a new layer of complexity to activity recognition on this dataset. The dataset is
collected in two scenarios: Classroom and Office. The distance between AP and monitor is set to 1.5𝑚−2.0𝑚.
In both scenarios, all 3 participants were performing activities at a distance of 1.5𝑚 − 2.0𝑚 from AP. The
sampling rate and duration of CSI data collection for each activity are 300 samples/second and 2.7 minutes.
Hence, for each activity, 50000 samples are collected at each monitor device.

Preparing Input Dataset: We prepare the Doppler vector dataset ([𝑁 1
𝐷
. . . 𝑁𝑂

𝐷
]) from HeadGest, Exposing_CSI,

and SHARPax datasets. First, we normalize the CSI values for each CSI sample by dividing them by the mean
amplitude over all considered subcarriers to remove unwanted amplification. Second, we remove the phase
offset using the phase sanitization algorithm, as used in [28]. We thus obtained the CSI complex-valued vector
with amplitude and phase (the real term indicates amplitude, and the imaginary term indicates phase). Third,
we compute the Doppler vector (𝐷𝑟,𝑎

𝑖
) by taking𝑊 = 31 sanitized CSI samples of all considered subcarriers

of each 𝑟 for each observation window 𝑖 . The size of Doppler bins is set to 𝑉 for each 𝐷𝑟,𝑎
𝑖

before applying
Fourier transform. We empirically obtained the optimal value of 𝑉 (details in Section 6.3.4). Thus, we obtained
𝑁 𝑖
𝐷
for each observation window 𝑖 . We obtained the Doppler vector traces dataset ([𝑁 1

𝐷
. . . 𝑁𝑂

𝐷
]) by sliding the
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observation window with a step size of 1 row. The total number of observation windows is 𝑂 = 𝑁 − (𝑊 − 1). In
this work, we considered a maximum of 𝐴 = 4 antennas at the monitoring devices. The SimWiSense solution used
amplitude as input features to train the sensing model. Hence, we compute the amplitude as input features from
SimWiSense’s CSI samples for each subcarrier.

Table 6. Training and Testing scenario of the datasets.

Dataset Training Scenario Testing Scenario

HeadGest Phase-1 Phase-2 and Phase-3
Exposing_CSI S1-Lab S2-Lab, S3-Lab, S4-Lab, S5-Lab
SHARPax S1-Corridor S1-Corridor
SimWiSense Classroom Office

5.2 Evaluation Scenarios

Table 6 shows the training and testing scenario of all 4 datasets. We train Slim-Sense at a particular training
scenario and then evaluate it both at the same as well as unseen locations (testing scenarios). On each dataset, we
use 60% of the samples for training, 20% for testing, and 20% for validation, all extracted from training scenarios.
Slim-Sense’s evaluations in testing scenarios indicate how well Slim-Sense adapts to different persons and
environments. To examine the generability of Slim-Sense in applying to a new sensing framework, we also
evaluate Slim-Sense with a different sensing model SimWiSense [14]. To do this, we replaced the SHARP model
(𝑓 ) with the SimWiSense’s few-shot embedding learning (FREL) model and evaluated Slim-Sense using the
SimWiSense dataset.

5.3 Baselines

We compared Slim-Sense with the following five baseline approaches:
(1) Static configuration: We compare the performance of Slim-Sense with three static configurations –

≈ 74% Resources, ≈ 45% Resources, ≈ 30% Resources.2 We use the SHARP model with SGR and tune 𝜆1
and 𝜆𝑔 to obtain 75%, 45%, and 30% resources and compute the sensing accuracy. The % of resources saved
depends on 𝜆 values, hence we get selected resources as ≈ 75%, ≈ 45% and ≈ 30%.

(2) Max_Accu: In this approach, we use all the antennas 𝐴 of the monitoring device and sub-channels/RUs 𝑅
to compute the Doppler vectors and train the SHARP model with SGR setting 𝜆1 = 0 and 𝜆𝑔 = 0. We termed
the achieved sensing accuracy as Maximum Achievable Accuracy (Max_Accu).

(3) Random-Selection:We randomly select the 𝐴 ∈ 𝑃 (A) and sub-channels/RUs 𝑅 in this approach. We
compute the Doppler vectors and train the SHARP model with SGR setting 𝜆1 = 0 and 𝜆𝑔 = 0.

(4) Reduced-Redundancy: First, we compute cross correlation amongst RUs/sub-channels for all anten-
nas. Next, we use the 𝐻𝐷𝐵𝑆𝐶𝐴𝑁 clustering algorithm to cluster the sub-channels/RUs based on cross-
correlation values. We ensure a minimum of one sub-channel/RU in each cluster. We then select the first
sub-channel/RUs iteratively from each cluster.

(5) WiImg: As discussed in Section 2.4 WiImg [42] enables WiFi sensing under low-rate CSI samples by
generating synthetic samples. As the codebase for WiImg is not publicly available, we re-implement it.
As followed in WiImg, we convert the CSI data of the first three antennas {0, 1, 2} and the entire channel
bandwidth into images. In the case of HeadGest dataset, we use single antennas to represent the RGB. We
downsample the collected CSI samples to get the images of low-rate CSI samples. We then apply GAN

2The percentage of used resources are controlled by SGR with tuning 𝜆1 and 𝜆𝑔 , hence the %of Resources might not be exact.
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that uses inpainting to generate the images of high-rate CSI samples (original sampling rate used in the
specific dataset). To validate the correctness of the implementation, we compute a cosine similarity between
inpainted and original images. We obtain a similarity index of 0.9 versus the original study’s similarity
index of 0.92 for all four datasets, validating the correctness of the implementation. We prepare the training
data of high-rate inpainted images (synthetic samples) from training scenarios and testing data from testing
scenarios. We use the state-of-the-art THAT [22] model, which has been utilized in WiImg, to obtain the
sensing accuracy. While downsampling, we choose the sampling rate that provides maximum sensing
accuracy. For example, WiImg obtains 54.3%, 55%, 62.50,and 62% sensing accuracy with downsampled
sampling rate of 25, 50, 75, and 100 samples per second, respectively, with Exposing_CSI (150 samples per
second). Thus, we choose the sampling rate of 75 to compare with SimWiSense.

6 Evaluation Results

We now present the results of our evaluation. We first present the optimal trade-off between sensing accuracy
and resource-saving for Slim-Sense compared with baselines for 4 datasets. We then evaluate the generalization
of Slim-Sense across various environments, a new environment without ground truth, and in terms of applying
a new sensing solution to it. Finally, we showcase the detailed working of Slim-Sense through resource selection
mechanism, confusion matrix across different activities, training and testing time, ablation study, and convergence
of Slim-Sense.

6.1 Comparison of Slim-Sense with Baselines

We now discuss the performance of Slim-Sense and compare it with baseline approaches. Fig. 4 shows the
trade-off between sensing accuracy and resource saving for HeadGest, Exposing_CSI and SHARPax.

6.1.1 Slim-Sense’s Performance on HeadGest Dataset. HeadGest dataset consists of a total of 46 experimental
setups in challenging scenarios such as obstacles between transmitter and receiver, interferers close to target
person and crowded environment. As shown in Fig. 4a, Slim-Sense is able to provide 50% resource saving with
only 4.3% reduction in accuracy compared to Max_Accu for HeadGest dataset. Slim-Sense adapts to challenging
scenarios by obtaining the most relevant resources and utilizing the Doppler vectors as input features. For
HeadGest, with only two sub-channels available, the maximum achievable resource saving is limited to 50%.
Static configuration ≈ 30 , ≈ 45% and ≈ 75% is not applicable. Compared to Random-Selection, Slim-Sense
provides 11.7% more sensing accuracy with the same 50% resource saving. Randomly selecting resources for
sensing does not adapt well to challenging scenarios. Compared to Reduced-Redundancy, Slim-Sense provides
a similar trade-off between sensing accuracy and resource saving. Reduced-Redundancy in limited available
sub-channel, select most relevant sub-channel for sensing. Similarly, WiImg achieves similar resource saving
compared to Slim-Sense by downsampling to 50 packets/ second from an initial sampling rate of 100 packets per
second. This comes at a cost of 42.18% lower accuracy compared to Slim-Sense. Low-rate CSI samples reduce
temporal resolution, hence reducing the sensing accuracy. WiImg’s GAN obtains high-rate synthetic CSI samples
from low-rate CSI amplitude samples. In the diverse and challenging scenario, obtained synthetic CSI amplitude
samples only approximate the high rate of the original samples. Hence, WiImg’s sensing model fails to adapt to
challenging scenarios trained with synthetic samples of low-rate CSI amplitude samples.

6.1.2 Slim-Sense’s Performance on Exposing_CSI Dataset. Exposing_CSI use IEEE 802.11ax (reduced sub-carrier
spacing between subcarriers) CSI samples for the relatively large number of activities and the highest bandwidth
of 160𝑀𝐻𝑧 with 4 antennas. Fig. 4b shows that with Exposing_CSI dataset, Slim-Sense achieves over 92% resource
saving with a 3% and 4% reduction in sensing accuracy compared to Max_Accu (71% and 74%) for OFDMA
and OFDM respectively. Compared to ≈ 30 , ≈ 45% and ≈ 75%, Slim-Sense incurs a 2.66% mean reduction in
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Fig. 4. Trade-off between Sensing Accuracy and resource saving: Slim-Sense vs. baselines across different datasets.

accuracy while achieving 47.34%more resource saving. Static configurations with manual resource selection fail to
provide the optimal trade-offs. Compared to Random-Selection, Slim-Sense achieves 23% and 15% more sensing
accuracy with 35.4% and 61% more resource saving for OFDMA and OFDM, respectively. Random-Selection fails
to provide maximum resource saving due to random selection of resources. Compared to Reduced-Redundancy,
Slim-Sense achieves 4% and 8% more sensing accuracy with 42.9% and 38.75% more resource saving for OFDMA
and OFDM, respectively. WiImg achieves a sensing accuracy comparable to Slim-Sense with a sampling rate of
75 packets/sec in OFDMA and OFDM, respectively. But Slim-Sense achieves 27.4% and 28.25% more resource
saving compared to WiImg in OFDMA and OFDM, respectively. WiImg performs well in testing scenarios using
generated synthetic samples, achieving a sensing accuracy comparable to Slim-Sense. However, this comes at
the cost of lower resource saving, which affects the overall system performance. This shows that Slim-Sense
performs well across diverse activities with IEEE 802.11ax CSI samples.
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6.1.3 Slim-Sense’s Performance on SHARPax Dataset. SHARPax uses IEEE 802.11ax CSI samples collected in one
location to capture fewer (4) number of activities. SHARPax uses a relatively simpler scenario compared to other
datasets listed in Table 4. The distance between the transmitter-receiver pair is fixed at 4𝑚, which is on the higher
side. Fig. 4c shows that Slim-Sense achieves 91.25% and 87.5% of resource-saving with a sensing accuracy of
92.3% and 96% with SHARPax dataset for OFDMA/OFDM respectively. The reduction in sensing accuracy is only
3% and 3.7% compared to Max_Accu. Similarly, compared to ≈ 30, ≈ 45% and ≈ 75% Slim-Sense provides better
trade-off with 2.06% and 2.33% mean reduction in sensing accuracy with 44.81% and 37.05% more resource-saving
in OFDMA/OFDM, respectively. Compared to Random-Selection, Slim-Sense archives 15.3% and 26% more
sensing accuracy and 21.25% and 36.25% more resource saving for OFDMA and OFDM respectively. Similarly,
compared to Reduced-Redundancy, Slim-Sense achieves 17.25% and 37.5% more resource saving in OFDMA
and OFDM. However, Reduced-Redundancy archives similar sensing accuracy compared to Slim-Sense. This
indicates that in simple scenarios, Reduced-Redundancy, and static configurations archive similar sensing
accuracy as Slim-Sense. However, Slim-Sense achieves more resource saving. Slim-Sense achieves 22.86% and
18.06% more sensing accuracy than WiImg (sampling rate of 65 packets/sec) in OFDMA and OFDM, respectively.
Moreover, Slim-Sense achieves 28.75% and 25% more resource saving compared to WiImg in OFDMA and OFDM,
respectively. These results show that Slim-Sense outperforms the baselines in simpler environments as well.

6.2 Generalizability of Slim-Sense

In this section, we discuss the generalizability of Slim-Sense in three key areas: adapting to new and challenging
environments, deploying to a new or unseen environment, and adapting to a new sensing solution.
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Fig. 5. Adaptability of Slim-Sense by testing in both seen or unseen environments during training present in our HeadGest

Dataset.

6.2.1 Performance of Slim-Sense in Challenging Environmental Conditions. Since the HeadGest dataset is collected
in the most diverse and challenging environment, with obstacles present between Tx and Rx, as well as the
presence of crowd, we utilize this dataset for this experiment. Furthermore, in Phase-2, the placement of Tx and
Rx is not controlled. Phase-2 and Phase-3 together represent environmental scenarios with varying noise levels,
environmental dynamics, and complexity.
We evaluate Slim-Sense in three scenarios:
(1) Slim-Sense-Phase-1: Trained in Phase-1 and evaluated on Phase-1’s new or unseen locations,
(2) Slim-Sense-Phase-2 - Trained in Phase-1 and evaluated on Phase-2, and
(3) Slim-Sense-Phase-3 - Trained in Phase-1 and evaluated on Phase-3. Max_Accu represents the maximum

achievable sensing accuracy on Phase-1.
Fig. 5 shows the performance of Slim-Sense. In these scenarios, Slim-Sense achieves 50% resource saving and

obtains over 80% sensing accuracy in all scenarios. The sensing accuracy of Slim-Sense is lower by 5.36% than
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Max_Accu in Phase-1. Moreover, in challenging environmental settings, Slim-Sense provides a sensing accuracy
lower by 7.91% in Phase-2 and 11.36% in Phase-3, respectively, than Max_Accu. Slim-Sense trains the SHARP
model with SGR in Phase-1, evaluates in Phase-2 and Phase-3, and adjusts the controlling hyperparameters.
Slim-Sense explores different hyperparameters to provide the optimal trade-off between sensing accuracy and
resource saving. In this way, the selected hyperparameters and resources used for training the SHARP model
with SGR enable the model to be adapted even in challenging settings. This shows that while the accuracy of
sensing of Slim-Sense does suffer under challenging environmental conditions, the reduction in accuracy is
relatively small.

Table 7. Performance of Slim-Sense in a new environment (Office) while trained on a different environment (Lab) utilizing

Exposing_CSI dataset.

Convergence time Max Accuracy Sensing Accuracy Resource Saving

120s 70% 5.40% reduction 81.25%

6.2.2 Deploying Slim-Sense in a New Environment. We now show the performance of Slim-Sense in a new
environment when the ground truth activity label is not available (detail in Section 4.3). We train Slim-Sense
with Exposing_CSI dataset of Lab environment. Next, we deploy the trained Slim-Sense in Office environment of
Exposing_CSI. We utilize all antennas and sub-channels/RUs to recognize the activities in Office environment to
obtain the ground truth𝐶𝑖 . Note that for Slim-Sense to function, the same activities must be present. Slim-Sense
utilizes trained Q-table to select the𝐴 and 𝜆1 and 𝜆𝑔 . Next, Slim-Sense interacts with the environment and returns
𝐴 and 𝑅 (controlled by 𝜆1 and 𝜆𝑔). The SHARP with SGR provides recognized activity label 𝐶𝑖 . Thus, we obtained
the sensing accuracy (70%). We did not retrain Slim-Sense on Office environment. To evaluate the impact of
choosing the slimmest possible bandwidth resource (𝐴 and 𝑅), we compute Max_Accu (74%) utilizing 𝐶𝑖 and
the actual activity label provided in the Office dataset. Compared to Max_Accu, Slim-Sense achieves 81.25%
resource saving with 5.40% reduction in accuracy while taking only ≈ 120𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to find the relevant 𝐴 and 𝑅 as
listed in Table 7.
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Fig. 6. Performance of Slim-Sense with SimWiSense model compared with WiImg.

6.2.3 Performance of Slim-Sense with SimWiSense’s Sensing Model. Now, we investigate the generalizability
of Slim-Sense with respect to adapting to a new sensing model. We confirm this aspect of generalizability of
Slim-Sense by changing our 𝑓 from SHARP model to SimWiSense’s FREL model. We integrate FREL with sparse
group regularizer and reinforcement learning. For evaluation, we utilize the multi-person environment dataset
from SimWiSense, collected at a sampling rate of 300 CSI samples/second. Slim-Sense is trained with CSI samples
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collected in the classroom environment and tested with CSI samples in the office environment. Slim-Sense
with FREL achieves 84.56% sensing accuracy with 50% resource saving, as shown in Fig. 6. Next, for WiImg, the
sampling rate is selected as 150 CSI samples/second. WiImg achieves similar resource saving compared with
Slim-Sense. However, Slim-Sense achieves 18.73% more sensing accuracy compared to WiImg. In conclusion,
Slim-Sense can be easily integrated into other sensing solutions and achieve similar sensing accuracy while
saving resources for communication.

6.3 Detailed Functioning of Slim-Sense

We now discuss the details of the functioning of Slim-Sense and the ablation study.
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Fig. 7. Confusion matrices for five activities (A: Walk, B: Run, C: Jump, D: Sitting and F: Standing) for Exposing_CSI dataset.

6.3.1 Accuracy of Classification of Slim-Sense Across Activities. Fig. 7 shows the confusion matrices with
Max_Accu and Slim-Sense for 5 activities for Exposing_CSI dataset. Fig. 7a shows the activity recognition
performance of the SHARP model without SGR (Max_Accu), utilizing the entire spectrum resources. The model
demonstrates high accuracy for specific activities but shows notable confusion between Sitting and Standing and
appears overtrained for Run activity, resulting in poorer generalization across activities. Fig. 7b shows the activity
recognition performance of the SHARP model with SGR, utilizing resources obtained by Slim-Sense with 92.5%
resource saving. It demonstrates improved generalization and reduces confusion between Sitting and Standing

and also mitigates overtraining on Run activity. To summarize, Slim-Sense effectively provides the minimum
quality resources needed for sensing.

6.3.2 Resource Selection Through Slim-Sense. According to our solution approach, Slim-Sense tunes the hyperpa-
rameters that control the resource selection to ensure robust WiFi sensing across different scenarios. Slim-Sense
adjusts 𝜆1 and 𝜆𝑔 along with the optimal 𝐴 to minimize resource usage while maintaining a minimal reduction
in sensing accuracy. We now show some sample observations of our Slim-Sense’s HRL model. Fig. 8 shows
the impact of different 𝐴 and 𝜆1 and 𝜆𝑔 values used by Slim-Sense’s HRL during training on Exposing_CSI
CSI dataset. During training, Slim-Sense’s HRL model trains the SHARP with SGR in the training scenario,
with hyperparameters selected by learning agents. The trained model is then evaluated in testing scenarios
to determine the sensing accuracy. The learning agents compute the reward based on equation (16), update
their belief states, and select the next set of hyperparameters. The SHARP model is subsequently retrained
and evaluated with the new hyperparameter set. HRL’s agent 𝐺1 selects different combinations of antennas as
shown in Table 3. Slim-Sense prepares training and testing scenarios dataset with the selected combination of
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(a) Exposing_CSI Dataset and OFDMA channel access.
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(b) Exposing_CSI Dataset and OFDM channel access.

Fig. 8. Impact of 𝐴, 𝜆1 and 𝜆𝑔 on sensing accuracy and resource saving. Here, 𝜆1 = 𝜆𝑔 .

antennas. In this way, Slim-Sense explores different sets of antenna combinations and, on convergence, achieves
optimal combinations of antennas. As shown in Fig. 8b and Fig. 8a, for both OFDM and OFDMA, we observe
that 𝐴 = {1}, {2}, {3}, {0, 2}, {0, 3}, {2, 3} provides mean accuracy of 33.8%. However, 𝐴 = {0}, {0, 1}, {1, 3}.. and
other combinations provide mean accuracy of 61.5%. Hence, selecting the best antenna combination is crucial in
sensing applications. Slim-Sense correctly chooses the antenna configuration as we obtain over 69% accuracy.
Tuning 𝜆1, 𝜆𝑔 values carefully provides the most relevant resources 𝑅 while maintaining the Max_Accu. SGR
provides more resource savings by increasing the 𝜆1, 𝜆𝑔 values. Hence, Slim-Sense’s HRL learns to adjust the 𝜆1,
𝜆𝑔 and 𝐴 to find the optimal values for the same. To summarize, Slim-Sense achieves the optimal combination of
antennas and frequency spectrum on convergence.
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Fig. 9. Training and testing time. Note that, for WiImg, the training time of the GAN model is also added to the training

time of the sensing model. For Reduced-Redundancy, the running time of HDBSCAN is added to the training time of the

sensing model. For statistical configuration, the time required to determine an appropriate configuration is included in the

training time.

6.3.3 Training and Testing Time. Fig. 9 shows the training and testing (prediction) time of Slim-Sense and
Baselines across all datasets. The details on the total number of training and testing samples are provided in
Section 5.1. Note that the training and testing are impacted by the shape of input features and the total number
of training and testing samples. Moreover, the training and testing times depend separately on the sub-channels
(OFDM) and RUs (OFDMA). We train Slim-Sense and other Baseline on Ubuntu 22.04.4-LTS with AMD EPYC
7543, 32-Core Processor, 125𝐺𝐵 RAM, with Nvidia 𝐿40 48𝐺𝐵 GPU. The GPU memory requirement during training
ranges from 2𝐺𝐵 to 10𝐺𝐵. The testing or evaluation is conducted on the same server, utilizing only the CPU
without GPU acceleration. Testing of Slim-Sense requires 1𝐺𝐵 to 2𝐺𝐵 of RAM.

Statistical configuration requires manual retuning of hyperparameters to determine an appropriate configura-
tion, and the time taken for this is included in the training time. For statistical configuration, the training is in
the range of 185 − 283 minutes for 𝑂𝐹𝐷𝑀 −𝑂𝐹𝐷𝑀𝐴 for all datasets. On the other hand, Reduced-Redundancy
first determines correlation matrices and runs the HDBSCAN clustering algorithm, then trains the sensing model
based on resources selected by HDBSCAN. For Reduced-Redundancy, the training time is in the range of
200 − 350 minutes. WiImg is required to generate high-rate CSI samples from low-rate CSI samples through
the trained GAN model and train the sensing model with high-rate CSI samples. Hence, the training time,
which includes both the training time of the GAN model and the sensing model, ranges from 145 − 168 minutes.
Max_Accu and Random-Selection each train the model only once, utilizing the entire resource and randomly
selected resources, respectively. The training time for both is in the range of 7 − 10 minutes. The training time of
Slim-Sense is the combined training and testing times of the SHARP model with SGR across all the steps during
convergence. We train Slim-Sense over 10 episodes, with each episode consisting of 15 steps. The training time of
Slim-Sense is around 445 and 945 minutes for OFDM and OFDMA respectively. Slim-Sense’s HRL determines the
minimum resources by selecting the optimal hyperparameter through exploration and exploitation strategy. Thus,
Slim-Sense takes the maximum time to train compared to baselines. However, it achieves minimum resources
with minimal impact on sensing accuracy compared to baselines. The testing or prediction time for all approaches
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remains the same, at approximately 60 seconds. This observation indicates that Slim-Sense does not induce extra
overhead in activity prediction. Similarly, when deployed in a new or unseen location, Slim-Sense takes ≈ 120
seconds to identify the minimum resources.
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Fig. 10. Comparison of sensing accuracy with different Doppler vector sizes.

6.3.4 Searching Optimal Size of Doppler Vector 𝑉 . We find the optimal size of the Doppler vector 𝑉 for each
dataset for both OFDM/OFDMA channel access mechanisms. 𝑉 defines the granularity of the Doppler velocities
in the frequency domain that is captured during the short-time Fourier Transform (FFT) (F ) process. The
higher/lower value of 𝑉 allows for a more fine/coarse-grained analysis of the Doppler vector but requires
more/fewer computational resources. The optimal 𝑉 makes the activity recognition computationally efficient yet
maintains the same performance. We use all the antennas 𝐴 and 𝑅 to obtain the Doppler vector and set the 𝜆1
and 𝜆𝑔 to 𝑧𝑒𝑟𝑜 . Fig. 10b and Fig. 10a show that the optimal size of 𝑉 is different for all three datasets for OFDM
and OFDMA, respectively. We observe that the size of 𝑉 directly affects the performance of the SHARP model
with SGR. We observe that the optimal value of 𝑉 is 40, 60 and 40 with sensing accuracy of 80.77%, 100.0% and
91% respectively for Exposing_CSI, SHARPax and HeadGest dataset as shown in Fig. 10.
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Fig. 11. Trade-off between Sensing Accuracy and resource saving: Ablation Study of Slim-Sense by removing one component

at a time with Exposing_CSI dataset.

6.3.5 Ablation Study. We now justify the design choices of Slim-Sense by performing an ablation study. We
retain only one component of Slim-Sense, remove the rest, and evaluate the performance of Slim-Sense. We
perform this exercise with Exposing_CSI dataset. We observe that adding each of these parameters leads to
substantial improvement in resource saving while giving similar levels of accuracy, as shown in Fig. 11. This
confirms that each parameter introduced in the design of Slim-Sense is useful.
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Fig. 12. Convergence time of Slim-Sense to provide the optimal 𝑅 and 𝐴.

6.3.6 Convergence of Slim-Sense. Fig. 12 shows the convergence of Slim-Sense to obtain the optimal values
of three hyperparameters 𝜆1, 𝜆𝑔, and 𝐴 and providing the maximum accuracy while saving the maximum
resources for Exposing_CSI dataset. In Slim-Sense’s HRL, 𝐺1 and 𝐺2 observe the environment by tuning three
hyperparameters. Fig. 12 shows the convergence of 𝐺1 and 𝐺2 to achieve the maximum Sensing Accuracy while
saving the maximum resources for Exposing_CSI dataset with OFDMA channel access. We train the HRL model
for 10 episodes, and for each episode, the number of steps is set to 15. The average time for each step is 150s.
In each step, both agents observe the environment separately. Initially, the fluctuation in measured Sensing
Accuracy is in the range of 10% − 71%. After the 90th step, the HRL model starts converging, and at the 135th step,
it converges as the values in subsequent sensing accuracy are within a smaller range of 61% − 68% and finally
gets 68% sensing accuracy. This observation shows that Slim-Sense’s HRL technique converges to maximum
sensing accuracy after around 150 episodes.

7 Discussion

Now, we discuss the limitations and scope of future works to address them.
Longer Convergence Time: The convergence time of Slim-Sense includes the training and testing time of
the sensing model 𝑓 with SGR in a specific environment across all the steps during convergence. This time is
influenced by factors such as environment dynamics, model complexity, and the number of samples for training
and testing. The convergence time of Slim-Sense is relatively longer compared to the baseline approaches. Hence,
a promising direction of future work is the integration of Slim-Sense with lightweight sensing models specifically
designed for embedded devices. By replacing the sensing model 𝑓 with a lightweight sensing model, Slim-Sense
can be optimized for faster convergence.
Deployment Challenges and Hardware Requirement: We train Slim-Sense on the server with GPU
acceleration. When deployed in real scenarios after training, Slim-Sense with inherent sensing model with
SGR is able to run on sensing devices (e.g., Laptop or Desktop, smart TV, Xbox Kinect, so on [43]) to obtain the
minimum resources for the target application. Hence, one of the primary challenges is ensuring that Slim-Sense
can effectively run on various hardware configurations, which may not have the same computational capabilities
as the training server. One key solution is to utilize a lightweight sensing model adaptable to resource-constrained
devices. Our Slim-Sense’s generalizability of integration to any sensing model enables incorporating a lightweight
sensing model. We envision the integration of Slim-Sense to enable integrated sensing and communication
in real scenarios. However, current hardware does not support ISAC, which requires the sharing of available
spectrum resources between communication and sensing. The new WiFi standard IEEE 802.11bf [1] aims to
address this limitation by proposing amendments to both the MAC and Physical layer of the WiFi devices. In the
future, we plan to work on a live integration of Slim-Sense on WiFi devices.
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Opportunistic Use of Passive Mode: In active mode, sensing devices trigger the access point to send the special
probing packets at a specific interval to collect the CSI. Thus, active sensing is detrimental to communication.
However, active sensing enables robust and efficient sensing solutions [30, 36, 37, 43]. We currently aim to reduce
spectrum resources for active WiFi Sensing. A recent work, SenCom [15], enables a passive mode of sensing. In
passive mode, sensing devices collect the CSI data from ongoing communication traffic. When communication
traffic is not available, the sensing device switches to active mode. In future work, we plan to integrate Slim-Sense
with the passive mode of sensing. However, such passive sensing can only be used when there is a sufficient
number of communication packets.
Cost of Scaling to New Activities or a Null Activity Class: When deployed in a new or unseen environment
where the class label of activities is missing (i.e., null class activities), Slim-Sense first utilizes the specific trained
sensing model to recognize the class label of the activities. Then, Slim-Sense utilizes the HRL model to obtain the
minimum resources. In this work, we have used the SHARP model with SGR to obtain the minimum resources
for recognizing target activities. In the case of new activities, Slim-Sense is needed to retrain to adapt to new
activities. However, its generalizability to new sensing solutions allows integration with systems that adapt to
new activities, such as OneFi [36]. OneFi proposed a lightweight few-shot learning framework using transductive
fine-tuning to adapt to new activities without retraining the entire model. A similar strategy of retraining would
also be needed in case a complete change of the environmental conditions, such as a blocked antenna, leads to a
strong drop in sensing accuracy.
More Extensive Evaluation: While we have evaluated Slim-Sense on 4 different types of datasets. We can
extend this exercise and evaluate for more possible datasets. Further, in the paper, we have shown results where
we have considered only course-grained activities such as walking, running, head movement, etc. An interesting
future work would be to evaluate Slim-Sense for fine-grained activities such as finger movement, breath rate
monitoring, and so on to evaluate its effectiveness.
Usage of DeepRL: To solve the POMDP problem, we design hierarchical reinforcement learning. However, an
alternate choice would have been to use deep-RL. We refrain from doing this in the paper as training a deep-RL
model would increase the complexity and training time. Since Slim-Sense is designed to run on WiFi devices, the
aim should be to minimize the complexity. However, it would be possible to design a lightweight deep-RL to be
employed on WiFi devices. For example, [4, 11, 19] all modify original YoLo [40] a DNN to run object detection
on smaller edge devices like Jetson Nano. On the same lines, FastDeepIoT [38] and DeepAdaptor [20] identify
and then prune the nodes in the neural network to make it light enough for execution on embedded systems.

8 Conclusion

In this paper, we propose Slim-Sense that performs WiFi sensing utilizing the minimum possible spectrum
resources with a minor impact on sensing performance compared to using complete spectrum resources. Such a
technique enables smooth integration of sensing and communication by minimizing the impact of sensing on
communication. We have showcased the performance of the Slim-Sense through four diverse datasets. The key
feature of Slim-Sense is providing environment-independent and application-specific resources, which provides
robust WiFi sensing across different environments. We showcase the adaptability of the Slim-Sense in a new or
unseen environment. We highlight the generalizability of Slim-Sense in relation to existing sensing solutions
and varied environments. We believe Slim-Sense will act as an enabler to support ISAC in future WiFi networks.
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