
User Allocation in Mobile Edge Computing: A
Deep Reinforcement Learning Approach

Subrat Prasad Panda Ansuman Banerjee
Indian Statistical Institute

Email: {subratprasad.mail@gmail.com, ansuman@isical.ac.in}

Arani Bhattacharya
Indraprastha Institute of Information Technology Delhi

Email: arani@iiitd.ac.in

Abstract—In recent times, the need for low latency has made it
necessary to deploy application services physically and logically
close to the users rather than using the cloud for hosting services.
This paradigm of computing, known as edge or fog computing,
is becoming increasingly popular. An edge user allocation policy
determines how to allocate service requests from mobile users to
MEC servers. Current state-of-the-art techniques assume that the
total resource utilization on an edge server is equal to the sum of
the individual resource utilizations of services provisioned from
the edge server. However, the relationship between resources uti-
lized on an edge server with the number of service requests served
from there is usually highly non-linear, hence, mathematically
modelling the resource utilization is challenging. This is especially
true in case of an environment with CPU-GPU co-execution, as
commonly observed in modern edge computing. In this work,
we provide an on-device Deep Reinforcement Learning (DRL)
framework to predict the resource utilization of incoming service
requests from users, thereby estimating the number of users an
edge server can accommodate for a given latency threshold. We
further propose an algorithm to obtain the user allocation policy.
We compare the performance of the proposed DRL framework
with traditional allocation approaches and show that the DRL
framework outperforms deterministic approaches by at least 10%
in terms of the number of users allocated.

Index Terms—Mobile Edge Computing, Edge User Allocation,
Service Latency, Deep Reinforcement Learning

I. INTRODUCTION

Mobile Edge Computing (MEC) [1] is a promising new
paradigm in which computing devices or edge servers pro-
vide compute-intensive low-latency services by being installed
much closer to the user, in cellular towers, mini data centres or
even in homes of mobile users. Service requests from mobile
users are offloaded to nearby MEC servers, as an alternative
to executing them on the resource-deprived mobile devices or
sending them to a distant cloud server. The increasing demand
for compute-intensive applications like real-time vehicle iden-
tification, object detection and route prediction is gradually
leading to widespread adoption of MEC, and installation of
MEC servers alongside mobile base stations [2].

A major challenge in MEC is to determine the user-server
binding policy for routing of service requests. This problem,
called Edge User Allocation (EUA), aims to ensure that users
are allocated resources on edge servers while satisfying con-
straints on coverage, resource availability, latency requirement
and so on. The EUA problem becomes challenging since it
needs to satisfy such a diverse variety of constraints.

A number of algorithms have been proposed to solve the
EUA problem [3]–[5]. Allocation polices in recent literature
often provide an optimization solution based on metrics like
latency, count of allocated users, energy etc. However, all these
works assume linear dependence of resource utilization of
services on the number of services provisioned on an edge
server. Works that consider the non-linear relationship, such
as [6], do not consider CPU-GPU co-execution. In contrast,
we show via experiments on both CPUs and GPUs that
this relation is usually highly non-linear, i.e. the resource
utilization by services does not scale linearly if the number of
requests grows, as shown in [7]–[11] using the Google cluster
trace dataset [12]. The non-linearity arises due to the diverse
effects of various internal system attributes such as software
/ hardware architecture, operating system policies, number of
cores, varying nature of service workloads in CPU / GPU,
service invocation patterns etc.

In conventional allocation approaches, the total resource
utilization at each server is assumed to be the cumulative sum
of the resource utilization footprint of each service request
[3], [4], [13]. In the real world, the amount of resources that
may be utilized by any service during execution is highly
dynamic, which is often difficult to model mathematically.
Generally, the resource utilization values for MEC services
in prior research articles are taken as the mean or maximum
based on the records of service execution. However, these
approaches lead to resource under-use or overflow on the edge
servers due to sub-optimal allocation. In our work, we learn
the resource utilization of services using machine learning
methods instead of just assuming average or maximum values
from past execution records. While utilizing supervised models
is one possible way, they require an extensive amount of data
for training, and cannot adapt if the recorded data at some
instance of time changes in future. Therefore, we utilize a
Deep Reinforcement Learning (DRL) [14] based approach that
incrementally learns the appropriate resource allocation based
on experience and interaction with the MEC system, instead
of just the training dataset obtained a priori [15]. This makes
the DRL based framework trainable on the device itself. This
is quite advantageous since the agent can continually adapt to
variations in the MEC environment and thereby create policies
which best approximate the resource utilisation.

In our proposed work, the DRL agent learns the system
environment of edge servers i.e. it learns the number of users

3000 5000 7000 9000 11000
RAM(MB)

2.9

3.0

3.1

3.2

3.3

3.4

3.5
YO

LO
 E

xe
xu

ti
on

 T
im

e(
s)

2 3 4 5
Number of Cores

3.0

3.5

4.0

4.5

5.0

YO
LO

 E
xe

xu
ti

on
 T

im
e(

s)

40 50 60
CPU Background Workload(%)

3.0

3.1

3.2

3.3

3.4

3.5

3.6

YO
LO

 E
xe

xu
ti

on
 T

im
e(

s)

2 3 6 10
GPU Background Utilization(%)

2.8

3.0

3.2

3.4

YO
LO

 E
xe

xu
ti

on
 T

im
e(

s)

Fig. 1: Non-Linear relationship between different resource attributes and YOLO execution time (a) varying RAM (b) varying
number of cores (c) varying CPU workload (d) varying GPU utilization in a CPU-GPU co-execution environment.

2000 3000 4000 5000 6000 7000 8000 9000 1000011000
RAM(MB)

30.4

30.5

30.6

30.7

30.8

30.9

31.0

31.1

31.2

YO
LO

 E
xe

xu
ti

on
 T

im
e(

s)

1 2 3 4 5 6
Number of Cores

24

26

28

30

32

YO
LO

 E
xe

xu
ti

on
 T

im
e(

s)

10 20 30 40 50 60 70
CPU Background Workload(%)

22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5

YO
LO

 E
xe

xu
ti

on
 T

im
e(

s)

Fig. 2: Non-Linear relationship between different resource attributes and YOLO execution time using only CPU (a) varying
RAM (b) varying number of cores (c) varying CPU workload in a CPU-only environment.

which can be served at a particular edge server under the
constraint of a defined service latency threshold. Rather than
formulating a complex mathematical model of the system, the
DRL agents inherently learn non-linear dependencies directly
from the edge server by observing system parameters over a
while. The DRL agents do not need the dataset to perform the
training task, hence can be trained online directly on the edge.
We propose to use the DRL for on-device training to learn the
edge system dynamics, thereby, reducing the overhead of the
requirement of the training dataset. We propose an algorithm to
obtain the user allocation policy from the trained DRL agent.

We have evaluated our approach using a real world dataset
[4], which consists of locations of users and edge servers at the
Central Business District (CBD), City of Melbourne, Australia.
We have compared the number of users allocated with our pro-
posed method with two deterministic baseline approaches: (a)
the deterministic Integer Linear Programming (ILP) approach
inspired from works in [3] [4] and (b) a Greedy solution to
the ILP based on user allocation to nearest neighbourhood.
Since the proposed method is based on DRL, unlike other
Machine Learning (ML) approaches, the requirement of large-
scale dataset is not necessary. Our experiments outperform the
traditional linear approach by approximately 10% with 500
users and 50 edge servers in the MEC environment.

The rest of this paper is organized as follows. We illustrate
a motivating scenario for this work in section II-B. In Section
III, we provide a short description of DRL and formulate our
DRL agent to solve the EUA problem, while in Section IV,
we present a deterministic approach used as our baseline.
Subsequently, in Section V we discuss experiments and results
obtained using our proposed approach. We then discuss related

work in Section VI. Finally, we discuss some limitations and
open issues in Section VII and then conclude in Section VIII.

II. MOTIVATION

In this section, we first show through experiments how the
standard assumption of linear dependence of resource utiliza-
tion breaks in practice. We then use a motivating example
to demonstrate how these assumptions lead to inefficient
allocations of users to edge devices.

A. Observations to Verify Assumptions

We first observe the service execution times of a widely used
object detection application YOLO [16] in Figures 1 and 2
both using and without using a GPU respectively, to process
an image. We run the experiments on a machine with Intel(R)
Xeon(R) CPU E5-1650 v4 processor, 64GB RAM and Quadro
P4000 8GB GPU (further details in Section V). By default,
we retain the amount of RAM at 11000 MB, number of
cores equal to 4, CPU background workload at 40% and GPU
background workload at 10%. We then vary only a single
parameter for each experiment, where the parameters are (a)
amount of available RAM, (b) number of available cores,
(c) CPU background workload, and (d) GPU background
workload. We repeat the experiments a total of 20 times and
show the execution times in box plots.

Figure 1 shows the execution time when we vary the amount
of RAM available (Figure 1(a)), the number of available CPU
cores (Figure 1(b)), the background workload on each CPU
(Figure 1(c)) and the background workload on GPU (Figure
1(d)). Note that the standard YOLO implementation uses both
CPU and GPU. We find in Figure 1(a) that changing the

amount of available RAM had relatively minor effect on the
execution time. Increasing the number of cores in Figure
1(b), however, had a major impact, with a reduction in the
execution time. However, the reduction is highest when we
increase the number of cores from 2 to 3 (equal to 22.22%),
whereas it is relatively small when we increase it from 4 to
5 (equal to 8.5%). Thus, this relationship is non-linear. We
again change the CPU utilization adding background jobs
to the CPU, with the CPU utilization varying from 40%
to 60%. As with the number of cores, we find that if the
CPU background workload is low, increasing it increases the
execution time of YOLO by a modest amount. Finally, we
note that increasing the background workload on the GPU in
Figure 1(d) increases the execution time initially, but beyond a
point, there is no general trend. Figure 2 shows the execution
time of YOLO while varying the same parameters but on
a system where only CPU is present. We note that due to
the absence of GPUs, the execution time is on the higher
side. However, the trends in execution time visible in Figure
1 are all identical. Thus, Figures 1-2 show that the non-
linear relationship between execution times and CPU/GPU
parameters depends on a number of hidden parameters related
to CPU/GPU availability and is relatively difficult to model.

Based on the findings above, we note that modeling service
execution times is challenging due to the following factors:

• Non-linear relationship between available processor
resources and execution time: The relationship between
the execution time and the CPU/GPU parameter is non-
linear. For example, in Figure 1(b), we find that reducing
the number of available cores increases the execution
time by a much higher factor when the number of avail-
able cores is small. Similarly, increasing the background
workload of CPU and GPU slows down execution much
more if the workload is already high. Moreover, there are
significant variations in the execution time, making them
difficult to model directly. The optimization models in
prior research do not accommodate these factors.

• Variation Across Time: Figures 1 and 2 show that
there is a substantial difference in execution times even
with identical configurations on the same machines. For
example, in Figure 1(a), the execution times vary from
2.82s to 3.47s. This occurs because execution of services
depends on multiple hidden parameters, such as service
invocation patterns, temperature, etc. Since most model-
ing techniques utilize deterministic values of execution
times, it can lead to inefficient edge user allocations.

• Variation Across Services: Users are likely to invoke
different services and each service invoked has its own
pattern of execution time. This complicates the task of
modeling the service execution times. For example, Table
1 shows that the execution time of Yolo on e1 increases
approximately linearly on increasing the number of users,
but that of MobileNet on e1 is non-linear.

Edge
Server DQN Agent

User
Requesting
Service s1

User
Requesting
Service s2

u1

u2

u3

u4

u5

u6

u7

e1 e2

Fig. 3: Representative MEC Server Allocation Scenario

B. A Motivating Example

Consider a simple scenario with seven mobile users
u1, u2 . . . u7 and two edge servers e1 and e2 as illustrated in
Figure 3. Each user is requesting for one of the two services s1

and s2 available on the edge servers. The users u1, u2, u4 and
u6 are requesting for the service s1, whereas, the remaining
users are requesting for service s2. For this example, the
service s1 corresponds to the YOLO [16] application and
service s2 corresponds to the MobileNetV2 [17] application.
Each edge server is denoted by a resource vector which
represents the resources available and the status of the edge
server for service execution. We denote the resource vector
on each edge server as a 4-tuple (Available RAM, Number of
Cores, CPU Background Workload%, GPU Utilized%). The
GPU Utilized(%) denotes the current GPU memory utilization
(in percentage) by the background processes. In this example,
the resource vectors for edge servers e1 and e2 are taken
as (15000, 8, 60%, 10%) and (6000, 4, 40%, 6%) respectively.
We now explain how a conventional deterministic approach
leads to inefficient user-to-server allocation.

Allocation with Deterministic Approaches: For allocation
of users to the edge servers with constraints on latency
threshold, a deterministic value for service execution needs
to be determined from historical execution footprints using
approaches like averaging, or computation of median, maxi-
mum or regression. If we use a simple linear approach to find
the service execution time, for edge server e1, we find that
the execution time for a single user request for service s1 is
3.12s. Linearly interpolating this value for 4 users gives us an
execution time of 12.48s. However, in real-world execution,
the execution time for 4 users is 3.46s as shown in Table I. Let
us assume that we are given a latency threshold of 6.5s, i.e.
users should be allocated in such a way that their execution
finishes in 6.5s. A deterministic approach considering only the
execution time of a single request for services will produce an
allocation of u1, u2 and u3 to e1. Note that only two users can
be served for service s1 as each will take execution time of
3.12s producing a total of 6.24s. Similarly, only one user can

Users YOLO on e1 YOLO on e2 MobileNet on e1 MobileNet on e2
1 3.12 3.26 6.32 6.03
2 3.23 3.29 6.40 6.12
3 3.35 3.37 6.42 6.18
4 3.46 3.50 6.54 6.26

TABLE I: Service execution times (in seconds) of YOLO and
MobileNetV2 on edge servers e1 and e2.

be served for service s2 as it takes 6.32s of execution time for
a single service. Thus, the total number of users we are able
to allocate using the deterministic approach is equal to 3.

Potential of Data-driven Allocation Approach: As illus-
trated in Table I, the execution time of four users running
YOLO is below the latency threshold of 6.5s. Thus, it was
actually possible to allocate the users u1, u2, u4 on e1, as it
only takes 3.35s. Furthermore, it is also possible to accomo-
date u5 and u7 on e2 as two users only take a total of 6.12s.
Thus, we are able to allocate a total of 5 users (i.e., 2 more
users than the deterministic approach) using the data-driven
approach with more accurate modeling of resource utilization.

III. ALLOCATION WITH REINFORCEMENT LEARNING

The MEC environment comprises of edge servers denoted
as E = {e1, e2, . . . ej}, where each edge server ej has a
coverage radius of rj . The mobile users located within the
coverage radius of an edge server can request for services
hosted on that server. A set of users U = {u1, u2, . . . ui}
may request for services from the set S = {s1, s2, . . . sk}
hosted on an edge server. The resources available on each
edge server is denoted by the resource vector (RAM, Cores,
CPU Background Workload%, GPU Utilized%). Since users
are mobile and service requests are dynamic, the allocation
algorithm discussed later in this section, is executed to obtain
an allocation policy (which decides the user-server binding)
whenever: (a) new users join the coverage area of an edge
server, (b) users move away from the coverage area of an edge
server, (c) user service requests change, or (d) edge servers or
mobile users go offline.

The goal of the allocation policy in this work is to serve as
many possible service requests as possible while strictly hon-
ouring a service execution latency threshold Γ. The knowledge
of service execution time is needed to make such decisions of
whether to assign a user’s request to an edge server or not. For
deterministic allocation approaches, the service execution time
for services can be obtained from historical data by statistical
methods, and then the determined value is used to obtain
an allocation policy. However, due to the dynamic nature of
execution time, the allocation policy can over or under allocate
users to edge servers during real execution. In this work, we
propose an RL based learning framework to obtain user-server
binding decisions honouring the threshold Γ by learning the
service execution patterns from experience directly on the edge
server.

The agent in the RL framework learns the environment to
choose better action choices by exploring the environment

STATES
RAM,
Number of Cores,
CPU Background Workload %,
GPU Utilization %,
Number of Requests for Service s1,
...
Number of Requests for Service sk

ENVIRONMENT
Execute service requests as
per ACTION and record the
service execution time to
compute the REWARD.

ACTION

DQN Agent

REWARD

Train DQN Agent

Fig. 4: Illustration of Reinforcement Learning Framework

and receiving feedback from the action. The primary advan-
tage of RL is that it can learn the underlying environment
without requiring massive amount of labelled data. In this
RL framework, the agent continuously interacts with the edge
servers to take actions i.e. executes several service requests and
obtains the corresponding rewards according to the execution
footprint. As shown in Figure 4, the state is denoted by the
resource vector of the edge server along with the number
of service requests. The action represents the set of service
requests waiting to be executed on the edge server. For our RL
problem, the agent is modeled as a Markov Decision Process
(MDP) [18] represented as a tuple (Σ, A,R), as illustrated in
Figure 5. The notations used throughout the paper are shown
in Table II. The entries of the MDP are as follows:
• Σ is a finite set of states represented with six attributes

as (R: RAM(MB), C:Number of Cores, CW : CPU
Background Workload%, GU : GPU Utilization%, Ns1:
Number of service requests for Service s1, . . . , Nsk:
Number of service requests for Service sk). The values
for RAM, Number of Cores, CPU Background Workload
percentage and GPU Utilization percentage are taken
from the resource vector of the edge server. Moreover,
additional attributes are added to include the number of
service requests for each service s ∈ S. The number of
service requests represents the number of users requesting
to get served for a particular service hosted on the edge
server. For example, the state (5000, 4, 40, 10, 100, 300)
represents an edge server that hosts two services s1 and
s2 with the currently available resource of 5000MB, 4
CPU cores, CPU background workload at 40% and GPU
utilization of 10%, and 100 users requesting for service
s1 and 300 users requesting for service s2.

• A is the set of actions represented by the number of user
service requests executed on an edge server. An action
an ∈ A is represented by a tuple (pn1, pn2 . . . pnk), where
k is the total number of services hosted on the edge server

and pnk represents the number of service requests for
service sk to be executed on an edge server. For example,
for an edge server hosting two services s1 and s2, the
action (50, 100) ∈ A represents 50 service requests for
service s1 and 100 service requests for service s2 to be
executed. Since the action space has size O(|U | × |S|),
we reduce the cardinality of the action space using
quantization of size λ. For example, the quantization size
λ = 10 produces a new action space where the new
action tuple (2, 2) represents all the actions in the range
(11 − 20, 11 − 20) in the old action space. We discuss
the impact of λ on performance in the experiments.

• R(σ, an) is the immediate reward received after the agent
takes a particular action an ∈ A at state σ ∈ Σ. The
reward is computed from the total latency Ltot

j resulting
due to an action an at an edge server ej ∈ E. Given
a state σ = (R,C,CW,GU,Ns1, . . . , Nsk) ∈ Σ and an
action an = (pn1, . . . , pnk) ∈ A on the edge server ej
hosting k services with hard service latency threshold of
Γ, the reward is the sum of the services accommodated,
multiplied by a damping factor η. Note that if the services
chosen cannot be accommodated, then we have a reward
of zero. Formally,

Rlin(σ, an) =

η
k∑

i=1

pnk if latency L < Γ

0 Otherwise
(1)

The agent in the MDP learns the optimal action i.e. the
maximum number of service requests that can be deployed
on the edge server so that the total latency Ltot

j does not
exceed Γ where Ltot

j = Lser
j + Lnwk

j , the sum of service
execution time Lser

j and network latency Lnwk
j for edge

server ej . The network latency Lnwk
j for an edge server ej

is the maximum possible latency incurred due to network
communication delays. The reward returned is higher for
actions with a higher number of service requests executed
under the latency threshold of Γ, however, the reward is low
whenever the service latency Γ is not honoured for certain
actions. The agent learns the optimal action by exploring
and exploiting the environment [18]. The environment for our
problem is the real system which provides the real latencies
(Ltot

j) and state of the system. The latency generated by a
particular action an ∈ A is derived directly from the system
by executing a number of services on the edge server ej due
to the action an. The latency Ltot

j is used to return the reward
R(σ, an) for an action an at state σ on an edge server ej .

The RL agent is trained using the Deep-Q learning [14]
paradigm. In Deep-Q learning, the states of the RL agent are
input to a neural network and Q-values of each action are the
output of the neural network. The Q-values at time step t for
state st and action at are calculated as per the equation given
in Equation 2 [18], where α is the learning rate and β is the
discount factor.

Notations Descriptions
U The set of users {u1, u2 . . . ui}
E The set of edge servers {e1, e2 . . . ej}
S The set of services {s1, s2 . . . sk}
Σ State of the MDP

(RAM, Cores,
CPU Background Workload(%),
GPU Utilization(%),
Number of requests for service s1, . . .
Number of requests for service sk)

A Action space of the MDP
R(σ, an) Reward due the action an ∈ A at state σ ∈ Σ
λ Quantization size for action space reduction
Lser
j Service execution latency

for the edge server ej
Lnwk
j Network latency for the edge server ej

Ltot
j Lser

j + Lnwk
j for an edge server ej

Γ The latency threshold for MEC environment
γkj Latency of single request for service sk at

edge server ej
η Damping factor in reward function
α Learning rate in Q-value update
β Reward discount factor in Q-value update
Uopt
j Predicted optimal number of user service

request tuples on the edge server ej
rj The coverage radius of edge server ej
dij The distance between user ui and server ej
Ω(u) Returns the index of service requested

by user u

TABLE II: List of Notations

Q(st, at)← Q(st, at)+

α{R(st, at) + β max
at+1∈A

[Q(st+1, at+1)]−Q(st, at)} (2)

The optimal policy is to select the action with the maximum
Q-Value. The agent can be trained on an edge server during
service installations to predict the number of users that could
get deployed there. This reduces the effort for offline training
in contrast to simple supervised learning approaches.

Algorithm 1 presents our heuristic to obtain the user-server
allocation policy. The proposed algorithm performs a load
balancing of service requests while computing the allocation
policy. The optimal number of user service requests Uopt

j

that can be allocated to a particular edge server ej predicted
from the trained Deep Q agent is a tuple of size equal
to the number of services hosted on the edge server i.e.
Uopt
j = (uopt1 . . . uoptk). For example, the tuple of predicted

users Uopt
1 = (100, 200) with an edge server ej hosting two

services s1 and s2 denotes that the optimal number of service
requests that can be accommodated on ej honouring the given
latency threshold is 100 for service s1 and 200 for service s2.

States: (RAM, Cores,
CPU Background Workload %,
GPU Utilization %, Number of

Users Requesting Service s1 ...
Number of Users Requesting

Service sk)

......

Ac
tio

n
a 1:

 (p
11

, p
12

...
p 1k

) Action an : (p
n1 , p

n2 ... p
nk)

Re
wa

rd
 R

(a 1)

Fig. 5: Our RL model for a single episode.

Algorithm 1: Algorithm for User Allocation with RL
Input : U ← Users, E ← Servers, DQN Agent
Output: Returns User-Server Allocation List Alloc[]

1 foreach e ∈ E do
2 S ← State of the edge server e
3 Uopt

e [k]← Tuple of predicted number of user
service requests given the state σ ∈ Σ for an edge
server e using the trained DQN RL Agent

4 end
5 foreach u ∈ U do
6 elist ← List of servers covering user u
7 eselected ← The server with maximum Uopt[Ω(u)]

in the list elist
8 Alloc[] ← Append (u, eselected) which assigns user

u to the server eselected
9 Decrement Uopt

eselected
[Ω(u)] by 1

10 end

IV. DETERMINISTIC APPROACH USED AS BASELINE

In this section, we present a baseline ILP model that is based
on a conventional allocation policy that works with deter-
ministic service execution times. Given the initial resource
state vector on an edge server ej , the execution time for
a single request for service sk (denoted by γkj) on that
particular edge server is typically determined by averaging
over historical service execution data. This value of γkj is
used in the Integer Linear Programming (ILP) model below
to determine the number of users that can be allocated on
an edge server. The ILP formulation generates the user-server
binding policy with an objective of maximizing the number
of users allocated to the edge servers. The allocation of user
ui ∈ U to the edge server ej ∈ E is denoted by the binary
variable xij and the distance between the corresponding user
and edge server is denoted as dij . The function Ω(u) returns
the index of the service from S requested by the user u ∈ U .
For allocation, the distance between the user and edge server

dij should not exceed the coverage radius of the edge server
rj which is represented as a constraint in Equation 4. The
total latency caused due to users assigned to a particular edge
server ej should not exceed the latency threshold Γ, as in
constraint Equation 5 for our ILP formulation. The constraint
in Equation 6 ensures the allocation of a particular user to
a maximum of only one edge server. The deterministic ILP
allocation policy is developed along the approach followed in
prior research [3] [4] etc. The solution returned by an ILP
solver is used to compare against our proposed approach with
the RL agent. It may be noted that in this ILP formulation,
we consider only the latency constraint, while neglecting
additional resource constraints of the edge devices. Inclusion
of additional resource constraints would make the ILP model
conservative to allocation. Furthermore, multiple works ([4],
[5]) utilize ILP as a standard technique to further build their
own approaches based on it. The latency threshold constraint
used in modelling of ILP indirectly involves soft constraints
on resources. Hence, the threshold on execution time keeps a
check on resource overflow.

Objective:

Maximize :

|U |∑
i=1

|E|∑
j=1

xij (3)

where,

xij =

{
1, If user ui is allocated to server ej
0, Otherwise

Subject To:
1) Coverage Constraint:

dij ≤ rj (4)

2) Latency Threshold Constraint:

Lnwk
j +

|U |∑
i=1

(xij × γΩ(i)j) ≤ Γ : ∀j ∈ {1, . . . |E|} (5)

3) User-Server Mapping:

|E|∑
j=1

xij ≤ 1 : ∀i ∈ {1, . . . |U |} (6)

4) Integer Constraint:

xij ∈ {0, 1} : ∀i ∈ {1, ..|U |} ,∀j ∈ {1, ..|E|} (7)

Considering the hardness of the above, solving for the optimal
allocation policy on a real system makes it harder for the base-
line allocation scheme to be implemented in the real world for
large workloads. A greedy approximation strategy is therefore
proposed for solving the allocation problem. We use a simple
greedy heuristic based on the nearest neighbourhood allocation
principle for comparison with our RL based approach, i.e.,
allocate an user to the nearest edge server with available

resources to accommodate the user’s request under the given
latency threshold. We present experimental results to compare
the relative performances in the following section.

V. EXPERIMENTS AND ANALYSIS OF RESULTS

All experiments are conducted on a machine with Intel(R)
Xeon(R) CPU E5-1650 v4 processor, 64GB RAM and Quadro
P4000 8GB GPU. The services YOLO [16] and MobileNetV2
[17] are used widely for object detection in images and videos.
Both of these use both CPU and GPU for computation.
Also, the applications are computationally heavy. So, the
aforementioned services are used as representative services
in our MEC environment to show the effectiveness of the
learning approach to embracing more hidden parameters as
GPU is also involved. All programs are written in Python,
the software library Stable-Baseline3 [19] is used for training
of RL agents and the Python Mixed-Integer-Programming
library is used as the ILP solver. The results from the RL-
based approach discussed in Section III are compared with the
deterministic formulation shown in Section IV which is similar
to the modelling approach of [3] [4]. The number of users
allocated and execution time for running the algorithms are
demonstrated for the following: (a) ILP in Section IV [ILP],
(b) Greedy algorithm in Section IV [Greedy] and (c) Proposed
RL approach with reward in Equation 1 [RL]. Experimental
results clearly show the effectiveness of our work.

A. Experiment Setup

We use the data-set for edge server locations as in [3], which
includes data of base stations and users within the Melbourne
Central Business District area. The coverage area of edge
servers is set to 150 meters radius. The edge servers are
assigned with the initial resource vector randomly as shown
in Table III. The RL agent proposed in this work is trained
using total latency which is the sum of network latency and
service execution latency. We use network latencies from the
real world PlanetLab and Seattle latency data-set [20]. Since
the PlanetLab and Seattle latency data-set comprises latencies
from across the world, which is not fully representative of
latencies in an MEC environment, we cluster the data-set into
150 clusters considering devices which are in proximity of
each other. A cluster is picked according to the distance of
an user from an edge server and a representative network
latency is assigned. The service execution latency is obtained
by executing YOLO and MobileNetV2 varying RAM, Number
of Cores, Workload(%), GPU Utilization (%) and Number
of Service Requests. The trained model is then used for
predicting the number of users that can be accommodated on
the server given the state of the edge server. The quantization
size of the action space is set to λ = 100. The damping factor
in the reward function is set to η = 0.01 to avoid gradient
overflow while training the DQN agent.

The DQN agent in the RL framework uses a neural net-
work of 2 layers having 64 nodes at each layer with layer
normalisation for our proposed model. The learning rate α is
set to 0.0001 and discount factor β in Q-value calculation is

Parameter Assumed Value
Initial RAM 3000 - 11000MB

Number of CPU cores 2 - 5
Initial CPU Workload 40 - 60%
Initial GPU Utilization 1 - 10%

Quantization Size λ 100
Damping Factor in reward η 0.01

Learning rate in neural network α 0.0001
Discount factor β 1

Number of time steps (episode) 5,00,000
Number of Users 100-500

Number of Servers 20-80
Latency threshold 20-50s

TABLE III: Values of different parameters used for evaluation.

set to 1. The exploration fraction for the agent is set to 0.4
for our experiment. The DQN agent is trained for 5, 00, 000
time steps with each step corresponding to one episode during
exploration, which takes around 0.6 milliseconds for each time
step during training of the agent. Overall it takes around 50
minutes to train for 5, 00, 000 training steps. The γj for each
server in the deterministic ILP is obtained from the server
by first executing YOLO and MobileNetV2, then computing
the average time taken for execution given the initial resource
state vector of the server. Our experiment has by default
a total of 500 users, the number of edge servers as 20-
80, and latency threshold Γ of 50ms. We also have a set
of experiments to study the influence of varying each of
these individual parameters. We repeat each experiment 50
times and then record the average allocation results for the
sake of comparison. For each experiment, we show the (i)
average reward using our technique, (ii) training loss using our
technique, (iii) number of users allocated using our technique
and the baselines, and (iv) the execution time (in log scale) of
running our technique and the baselines.

B. Experimental Results

Default Configuration: Figure 6 shows the performance for
the default configurations. We first note that the average reward
converges after 200,000 rounds. This corresponds to around
1200s of training time. After this, further training does not
increase the reward significantly. Thus, the training loss also
does not reduce from this point (Figure 6(b)).

We then record the number of users that can be allocated by
varying the number of servers between 20 to 80. We find that
the number of users allocated is higher using RL as compared
to ILP and the Greedy technique by up to 16% and 18%
respectively. This improvement is highest when the number
of edge servers is equal to 40. On increasing the number of
edge servers further, RL still performs better than ILP, but by
a more modest amount. This is because when the number of
servers is sufficiently high, even a simple allocation algorithm
leads to allocation of most users. Thus, RL is most effective
when the number of servers present is limited.

0 200000 400000
Number of Training Steps

5

0

5

10

15

Av
er

ag
e

Re
w

ar
d

Reward, = 50

(a) Average Reward

100000 200000 300000 400000 500000
Number of Training Steps

5

0

5

10

15

Tr
ai

ni
ng

 L
os

s

Reward, = 50

(b) Training Loss

20 40 60 80
Number of Servers

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(c) Number of Allocated Users

20 40 60 80
Number of Servers

0.5

1.0

1.5

2.0

2.5

Ti
m

e[
lo

g 1
0(

m
s)

]

ILP
Greedy
RL

(d) Execution Time

Fig. 6: Comparison of different performance parameters under the default configurations: RL versus baseline

We also compare the performance in terms of execution
time of each of these techniques. Once again, we find that
RL has the least execution time, with allocation for even 80
servers taking only around 0.1s, in contrast to the Greedy
heuristic and ILP which take 0.32s and 1.2s respectively.
Thus, RL performs better in terms of both number of users
allocated as well as execution time under these configurations.

Performance under Varying Threshold Latency and
Varying Number of Users: We now consider the
performance of RL and baseline techniques when we vary
the threshold latency with number of users varying between
100-500 and the number of servers fixed at 50. Figure 7
shows the performance in terms of the number of allocated
users for each of the techniques. We find that the number
of users allocated falls the least with a decrease in the
threshold latency. This is different from the ILP and greedy
techniques, where we find that there is a more significant
decrease in performance with a reduction in the threshold
latency. For example, when the number of users present is
equal to 400, the ILP can allocate 280 and 310 for latency
thresholds of 30s and 50s respectively. On the other hand,
RL allocates around 320 users in both the cases. This
shows the importance of RL especially in cases where the
latency constraint is tighter. The execution time is lowest
for RL, thereby outperforming the ILP and greedy techniques.

Performance under Varying Threshold Latency and
Varying Number of Servers: We now consider the
performance of RL and baseline techniques when we vary
the threshold latency with number of servers varying between
20-80 and the number of users fixed at 500. Figure 8 shows
the performance in terms of number of allocated users for
each of the techniques. We find that the difference in number
of users allocated by RL compared to the other approaches
to be significant when the latency threshold is lower. The
deterministic approaches struggle to allocated users with
strict latency constraints. The number of servers in the MEC
environment also affects the performance of the algorithms
since more servers in the MEC environment makes the
situation easier for the deterministic algorithms to allocate
users. In such cases, the ILP and the greedy techniques attain
results comparable to our proposed RL agent. As expected,

the execution time is less for RL than those approaches.

Impact of Training Time: We consider the number of
allocations generated by an under-trained RL agent with
30, 000 training steps and compare it against a properly trained
RL agent with 1, 50, 000 training steps. The quantization
size of the action space is kept at λ = 2 for both the cases.
The results are illustrated in Figure 9. Figure 9a shows the
allocation with varying number of users with the number of
servers fixed at 30, while, Figure 9b shows the result for
varying number of servers with number of users fixed at
500 in the MEC environment with a latency threshold of
Γ = 10s. The properly trained RL agent produces better
results in comparison to the under-trained agent which is seen
as inadequate to capture the non-linearity in execution time.

Impact of Quantization Parameter: We also study the
impact of quantization size λ on the RL agent for generating
allocation policies. Figure 10 shows the effect of quantization
size of λ = 5 and λ = 100 with the quantization size of
λ = 2. The model with λ = 2 produces better allocation
results compared to a higher quantization size of λ = 5 and
λ = 100. The higher value of quantization size reduces the
action space significantly while sacrificing the accuracy for
allocation, hence the allocation results with the RL agents of
quantization size λ = 5 and λ = 100 do not perform as
expected due the reduced accuracy of prediction. The better
allocation result produced by λ = 100 as compared to λ = 5
does not always mean λ = 100 is better than λ = 5. Changing
the quantization value affects the accuracy of allocation, so,
the allocation result may over-shoot or get damped according
to different MEC scenarios. The change in allocation result
due to variation in λ is insignificant especially considering the
significant reduction in action space due to use of quantization.

VI. RELATED WORK

Prior research falls into three major categories – articles that
have studied the EUA problem, studies that have modeled the
performance of cloud / edge using ML techniques, and addi-
tional system prototypes that have used Deep Reinforcement
Learning (DRL) to solve resource allocation problems.
EUA Problem: A number of works formulate EUA as an
optimization problem, and use a variety of techniques such

100 200 300 400 500
Number of Users

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(a) Latency Threshold=20s

100 200 300 400 500
Number of Users

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(b) Latency Threshold=30s

100 200 300 400 500
Number of Users

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(c) Latency Threshold=40s

100 200 300 400 500
Number of Users

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(d) Latency Threshold=50s

Fig. 7: Comparison of the number of allocated users when the latency threshold is varied with varying number of users.

20 40 60 80
Number of Servers

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(a) Latency Threshold=20s

20 40 60 80
Number of Servers

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(b) Latency Threshold=30s

20 40 60 80
Number of Servers

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

ILP
Greedy
RL

(c) Latency Threshold=40s

Fig. 8: Comparison of the number of allocated users when the latency threshold is varied with varying number of servers.

100 200 300 400 500
Number of Users

0

100

200

300

U
se

rs
 A

llo
ca

te
d

Training Steps=30000
Training Steps=150000

(a) Varying Users

20 40 60 80
Number of Servers

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

Training Steps=30000
Training Steps=150000

(b) Varying Servers

Fig. 9: Impact of under training on allocation

100 200 300 400 500
Number of Users

0

100

200

300

U
se

rs
 A

llo
ca

te
d

= 2
= 5
= 100

(a) Varying Users

20 40 60 80
Number of Servers

0

100

200

300

400

U
se

rs
 A

llo
ca

te
d

= 2
= 5
= 100

(b) Varying Servers

Fig. 10: Impact of Quantization parameter on allocation

as ILP, approximation algorithms or heuristics to solve them
[3], [4], [21]–[27]. For example, [3] and [4] formulate the
allocation problem as a version of the bin-packing problem,
with the objective being to maximize the number of users
allocated to the cloud and the QoE of users. Authors in [21]

propose optimal and approximate mechanisms for allocating
network resources in MEC. The work [22] formulates joint
allocation and service placement as that of minimizing the
number of users allocated to each cloud server. In [28]
the authors consider minimizing each MEC server’s energy
consumption. In [23], the authors derive an approximation
algorithm by incorporating rewards that are awarded when
user requirements are honoured. In [24], the authors for-
mulate a time-slotted model and develop a polynomial-time
approximation by jointly optimizing service placement and
request scheduling, i.e., which user requests are to be routed to
deployed services. In [25], [26] and [27] the authors develop
a mathematical model of an edge system and solve the opti-
mization problem using reinforcement learning. In all of these
works, the MEC environment is modelled by innately assum-
ing that the resource utilization of a service on an edge server
scales linearly with the number of services deployed. Although
DRL is used for the EUA problem in [29], it still assumes a
linear relationship between resource utilization and execution
time. As shown in Section II, this is not true in practice. Our
work, therefore, uses a more general technique that does not
depend on the linear assumption. The work in [6] uses a
game-theoretic approach to solve the user allocation problem
from an application provider perspective. Though it introduces
non-linearity in the mathematical formulation by considering
weighted cumulative sum of resource utilization of the services
on a given edge server, the resource utilization of a service on
an edge server is still determined from past resource utilization
footprints. This approach therefore, partially misses to model

the dynamic setting. The work [30] investigates the EUA
problem in a multi-cell multi-channel downlink power-domain
Non-orthogonal Multiple Access (NOMA)-based MEC sys-
tem with an objective of maximizing the benefit to mobile
application vendors. The work [31] handles communication
interference caused due to user allocation and proposes an
interference aware allocation policy using a game-theoretic
approach. The work [32] models user allocation considering
user migration from the perspective of service providers as a
stochastic optimization problem. This proposal puts forward
an online Lyapunov optimization-based algorithm, and proves
its performance bounds. The work [33] handles the trade-
off between multi-tenancy and interference in the pursuit
of a cost-effective service user allocation by proposing a
game-theoretic approach, namely MI-SUAGame. Further, [30],
[31], [32] and [33] propose weighted non-linear mathematical
formulations for computing the total resource utilization and
use optimization approaches to obtain an allocation scheme.
The formulation explicitly models the MEC environment using
a predefined mathematical formulation which ignores system
attributes like service execution at GPUs on an edge server or
dynamics in service resource utilization.

ML-based Performance Models: Some works utilize ma-
chine learning based performance models to predict the service
parameters for different cloud architectures. For example,
PARIS [34] and CherryPick [35] use random forests and
Bayesian optimization respectively to identify the best VM
for different workloads. SLAOrchestrator [36] uses a linear
regression model to learn the performance of workloads.
AutoPilot [37] uses a multi-armed bandit technique to identify
an action to scale up or down execution on cloud systems. The
work in [38] uses a deep neural network to learn the system
dynamics of LTE Network devices to allocate users to different
base stations. Our work utilizes DRL to allocate users, as we
find that the linear models do not work well in practice, while
also observing that deep neural networks cannot be run on the
edge due to performance reasons.

Deep Reinforcement Learning Based Prototypes: A num-
ber of systems utilize DRL to optimize their performance,
albeit not necessarily for allocation of users to cloud or edge
[39]. For example, Pensieve [40] uses DRL to allocate bitrates
to video streaming clients. DRL is used by [41] to allocate
channel bands for transmission to IoT devices using DRL and
[42] to allocate power to different antennas. The work [43]
uses DRL to perform accurate indoor localization of users
using Bluetooth Low Energy (BLE) signals. Finally, in the
context of MEC, DRL has been used for caching data close to
the users [44] and even computation offloading [29], [45]. In
particular, [29] uses DRL to solve the optimization formulation
instead of conventional optimization methods, while assuming
a linear relationship in mathematically modelling the MEC
system. Also, the work in [46] uses Sequence-to-Sequence
(S2S) neural network models with DRL training to solve
the problem of task offloading in MEC. These works are
based on the observation that simplistic models often fail to

accurately take into account the relationship between resource
availability and performance in actual systems. We leverage
the same observation in the context of the EUA problem. To
the best of our knowledge, this is the first work that learns
the relationship between resource utilization and edge server
system performance using DRL to predict the number of users
that can be allocated to a particular edge server.

VII. LIMITATIONS AND OPEN ISSUES

While our RL approach promises to better allocate users to
edge servers, there are a number of open issues and threats to
validity. We now discuss some of them.
• Presence of Heterogeneous Edge: Our trace-driven sim-

ulation is based on the assumption that the edge servers
are homogeneous in nature, i.e. the hardware configura-
tion of each edge server is assumed to be identical. The
recent rise of heterogenous edge [47] can create situations
where the edge servers can have different configurations.
While we believe that our approach should work well
under such settings, we have not considered them in our
evaluation.

• Unpredictable Traffic Patterns: The rise of the Internet
of Things (IoT) is gradually making traffic patterns un-
predictable due to the increase in the number of control
signals [48]. While we have shown that our model works
well under current traffic patterns, how our technique
would react to a case with such unpredictable traffic
patterns is currently left for future work.

• Training on User Device: One drawback of our ap-
proach is that the RL is trained on the user device. While
we show that the training on user device is lightweight
enough to be feasible, there might be concerns raised by
users about their battery consumption.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose the RL approach for online train-
ing and edge user allocation in the context of mobile edge
computing. Our approach eliminates the need for modeling
exact execution times a priori, whereby we show through
experiments that many of the standard assumptions related to
resource utilization do not hold in practice. The proposed RL
framework automatically infers the resource utilization relation
by executing services on the edge server and allocates users
to edge servers while honoring the defined latency threshold.
We carry out our experiments using a real-world dataset
and service execution data. Our experiments show that the
RL based approach outperforms deterministic approaches that
carry out resource allocation based on historical execution
footprints. As future work, we plan to extend our work to
implement this framework on an actual edge testbed.

REFERENCES

[1] F. Bonomi, R. A. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the first edition
of the MCC workshop on Mobile cloud computing, MCC@SIGCOMM
2012, Helsinki, Finland, August 17, 2012 (M. Gerla and D. Huang, eds.),
pp. 13–16, ACM, 2012.

[2] “IoT Edge | Microsoft Azure.”
[3] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and

Y. Yang, “Optimal edge user allocation in edge computing with variable
sized vector bin packing,” in ICSOC, pp. 230–245, Springer, 2018.

[4] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. G. Hosking,
J. C. Grundy, and Y. Yang, “Edge user allocation with dynamic quality
of service,” in Service-Oriented Computing - 17th International Confer-
ence, ICSOC 2019, Toulouse, France, October 28-31, 2019, Proceedings
(S. Yangui, I. B. Rodriguez, K. Drira, and Z. Tari, eds.), vol. 11895 of
Lecture Notes in Computer Science, pp. 86–101, Springer, 2019.

[5] K. Poularakis, J. Llorca, A. M. Tulino, I. J. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in 2019 IEEE Conference on Computer Com-
munications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019,
pp. 10–18, IEEE, 2019.

[6] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and Y. Yang,
“A game-theoretical approach for user allocation in edge computing
environment,” IEEE Trans. Parallel Distributed Syst., vol. 31, no. 3,
pp. 515–529, 2020.

[7] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in Proceedings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, (New York, NY, USA), Association for Computing Machin-
ery, 2012.

[8] S. Gupta and D. A. Dinesh, “Online adaptation models for resource
usage prediction in cloud network,” in Twenty-third National Conference
on Communications, NCC 2017, Chennai, India, March 2-4, 2017,
pp. 1–6, IEEE, 2017.

[9] B. R. Ray, M. U. Chowdhury, and U. Atif, “Is high performance
computing (HPC) ready to handle big data?,” in Future Network Systems
and Security - Third International Conference, FNSS 2017, Gainesville,
FL, USA, August 31 - September 2, 2017, Proceedings (R. Doss,
S. Piramuthu, and W. Zhou, eds.), vol. 759 of Communications in
Computer and Information Science, pp. 97–112, Springer, 2017.

[10] P. Minet, E. Renault, I. Khoufi, and S. Boumerdassi, “Analyzing traces
from a google data center,” in 14th International Wireless Commu-
nications & Mobile Computing Conference, IWCMC 2018, Limassol,
Cyprus, June 25-29, 2018, pp. 1167–1172, IEEE, 2018.

[11] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: the Next Generation,” in
Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys’20), (Heraklion, Greece), ACM, 2020.

[12] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” technical report, Google Inc., Mountain View, CA,
USA, Nov. 2011. Revised 2014-11-17 for version 2.1. Posted at https:
//github.com/google/cluster-data.

[13] Q. Peng, Y. Xia, F. Zeng, J. Lee, C. Wu, X. Luo, W. Zheng, H. Liu,
Y. Qin, and P. Chen, “Mobility-aware and migration-enabled online edge
user allocation in mobile edge computing,” in 2019 IEEE International
Conference on Web Services, ICWS 2019, Milan, Italy, July 8-13, 2019
(E. Bertino, C. K. Chang, P. Chen, E. Damiani, M. Goul, and K. Oyama,
eds.), pp. 91–98, IEEE, 2019.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013.

[16] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pp. 779–788, 2016.

[17] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pp. 4510–4520, IEEE
Computer Society, 2018.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[19] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto,
and N. Dormann, “Stable baselines3.” https://github.com/DLR-RM/
stable-baselines3, 2019.

[20] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency estima-
tion for personal devices: A matrix completion approach,” IEEE/ACM
Trans. Netw., vol. 25, no. 2, pp. 724–737, 2017.

[21] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wirel.
Commun., vol. 16, no. 3, pp. 1397–1411, 2017.

[22] K. Poularakis, J. Llorca, A. M. Tulino, I. J. Taylor, and L. Tassiulas,
“Service placement and request routing in MEC networks with storage,
computation, and communication constraints,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1047–1060, 2020.

[23] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement
with provable guarantees in heterogeneous edge computing systems,”
in 2019 IEEE Conference on Computer Communications, INFOCOM
2019, Paris, France, April 29 - May 2, 2019, pp. 514–522, IEEE, 2019.

[24] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in 2019 IEEE Conference on
Computer Communications, INFOCOM 2019, Paris, France, April 29 -
May 2, 2019, pp. 1279–1287, IEEE, 2019.

[25] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A reinforce-
ment learning approach,” IEEE Trans. Mob. Comput., vol. 20, no. 3,
pp. 939–951, 2021.

[26] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on SARSA,” IEEE Access, vol. 8,
pp. 54074–54084, 2020.

[27] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, pp. 1–1, 2019.

[28] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wirel. Commun., vol. 17, no. 3, pp. 1784–1797, 2018.

[29] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in 2018 IEEE
Wireless Communications and Networking Conference, WCNC 2018,
Barcelona, Spain, April 15-18, 2018, pp. 1–6, IEEE, 2018.

[30] P. Lai, Q. He, G. Cui, F. Chen, J. Grundy, M. Abdelrazek, J. G. Hosking,
and Y. Yang, “Cost-effective user allocation in 5g noma-based mobile
edge computing systems,” IEEE Transactions on Mobile Computing,
pp. 1–1, 2021.

[31] G. Cui, Q. He, F. Chen, Y. Zhang, H. Jin, and Y. Yang, “Interference-
aware game-theoretic device allocation for mobile edge computing,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[32] P. Lai, Q. He, X. Xia, F. Chen, M. Abdelrazek, J. Grundy, J. G.
Hosking, and Y. Yang, “Dynamic user allocation in stochastic mobile
edge computing systems,” IEEE Transactions on Services Computing,
pp. 1–1, 2021.

[33] G. Cui, Q. He, F. Chen, H. Jin, and Y. Yang, “Trading off between
multi-tenancy and interference: A service user allocation game,” IEEE
Transactions on Services Computing, pp. 1–1, 2020.

[34] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H.
Katz, “Selecting the best vm across multiple public clouds: A data-
driven performance modeling approach,” in Proceedings of the 2017
Symposium on Cloud Computing, SoCC ’17, (New York, NY, USA),
p. 452–465, Association for Computing Machinery, 2017.

[35] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud configura-
tions for big data analytics,” in 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
March 27-29, 2017 (A. Akella and J. Howell, eds.), pp. 469–482,
USENIX Association, 2017.

[36] J. Ortiz, B. Lee, M. Balazinska, J. Gehrke, and J. L. Hellerstein,
“Slaorchestrator: Reducing the cost of performance slas for cloud data
analytics,” in 2018 USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018 (H. S. Gunawi and B. Reed,
eds.), pp. 547–560, USENIX Association, 2018.

[37] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, “Autopilot:
Workload autoscaling at google,” in Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems, EuroSys ’20, (New York, NY,
USA), Association for Computing Machinery, 2020.

[38] A. K. Albanna and H. Yousefi’zadeh, “Congestion minimization of LTE
networks: A deep learning approach,” IEEE/ACM Trans. Netw., vol. 28,
no. 1, pp. 347–359, 2020.

https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

[39] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in commu-
nications and networking: A survey,” IEEE Commun. Surv. Tutorials,
vol. 21, no. 4, pp. 3133–3174, 2019.

[40] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2017, Los Angeles,
CA, USA, August 21-25, 2017, pp. 197–210, ACM, 2017.

[41] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 2, pp. 257–265, 2018.

[42] A. Zappone, M. Debbah, and Z. Altman, “Online energy-efficient power
control in wireless networks by deep neural networks,” in 19th IEEE
International Workshop on Signal Processing Advances in Wireless
Communications, SPAWC 2018, Kalamata, Greece, June 25-28, 2018,
pp. 1–5, IEEE, 2018.

[43] M. Mohammadi, A. I. Al-Fuqaha, M. Guizani, and J. Oh, “Semisu-
pervised deep reinforcement learning in support of iot and smart city
services,” IEEE Internet Things J., vol. 5, no. 2, pp. 624–635, 2018.

[44] H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching
transient data for internet of things: A deep reinforcement learning
approach,” IEEE Internet Things J., vol. 6, no. 2, pp. 2074–2083, 2019.

[45] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iraf: A deep
reinforcement learning approach for collaborative mobile edge comput-
ing iot networks,” IEEE Internet Things J., vol. 6, no. 4, pp. 7011–7024,
2019.

[46] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,” IEEE Communications Magazine,
vol. 57, no. 5, pp. 64–69, 2019.

[47] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pp. 1270–1278, IEEE, 2019.

[48] V. Nagendra, A. Bhattacharya, A. Gandhi, and S. R. Das, “Mmlite: A
scalable and resource efficient control plane for next generation cellular
packet core,” in Proceedings of the 2019 ACM Symposium on SDN
Research, pp. 69–83, 2019.

	Introduction
	Motivation
	Observations to Verify Assumptions
	A Motivating Example

	Allocation with Reinforcement Learning
	Deterministic Approach Used as Baseline
	Experiments and Analysis of Results
	Experiment Setup
	Experimental Results

	Related Work
	Limitations and Open Issues
	Conclusion and Future Work
	References

